
Diploma Thesis

hp-DGFEM in Con
epts 1.4

Philipp Frauenfelder

Mar
h 6, 2000

instru
ted by

Prof. Christoph S
hwab

Seminar for Applied Mathemati
s

Department of Mathemati
s

Swiss Federal Institute of Te
hnology

Z�uri
h

Abstra
t

Dis
ontinuous Galerkin Finite Element Methods (DGFEM) were introdu
ed over 25

years ago for the numeri
al solution of �rst-order hyperboli
 problems. Although, sub-

sequently mu
h of the resear
h of partial di�erential equations has
on
entrated on the

development and the analysis of
onforming Finite Element Methods (FEM), re
ent

years have witnessed renewed interest in dis
ontinuous s
hemes. In
ontrast to stan-

dard FEM, DGFEM allow dis
ontinuous numeri
al solutions. The DGFEM
an also

be thought of as the higher-order extension of the
lassi
al
ell
entre Finite Volume

Method (FVM)|a popular dis
retization te
hnique in the
omputational aerodynami
s

ommunity.

This Diploma thesis is devoted to the implementation of the hp-version of the DG-

FEM as presented in [17℄. The motivation is to have a numeri
al eviden
e for the proof

of exponential
onvergen
e in a polygon [18℄. The implemented se
ond-order partial dif-

ferential equation
overs a large
lass of equations whi
h in
ludes adve
tion-dominated

di�usion problems and problems of ellipti
 type. The proof of the exponential
onver-

gen
e does not in
lude the adve
tion term, tough.

Unfortunately, there is an important di�eren
e between the implemented DGFEM

from [17℄ and the one used in [18℄: the former uses weakly enfor
ed Diri
hlet boundary

onditions and the latter strongly enfor
ed Diri
hlet boundary
onditions.

The outline of the thesis is as follows:
hapter 1 gives a very short introdu
tion

to FEM and then to DGFEM in
luding the variational formulation of the implemented

equation. In
hapter 2, a summary of the results in [18℄ is given (the proofs are omitted).

Chapter 3 presents the basis of the software whi
h was used (Con
epts by Dr. Christian

Lage). In
hapter 4, the needed extensions to Con
epts are explained. And in
hapter 5,

the numeri
al results are presented. In the appendix, some of the sour
e
ode is given

for the experien
ed reader.

The
losing remarks
an be found on page 61.

Contents

1 Introdu
tion to DGFEM 1

1.1 Continuous Dis
retization . 1

1.1.1 Variational Form . 1

1.1.2 Finite Element Spa
e . 2

1.1.3 Linear System . 2

1.2 Dis
ontinuous Dis
retization . 3

1.3 Adve
tion Di�usion Problem . 4

1.3.1 Variational Form . 6

1.3.2 Consisten
y . 8

2 Exponential Convergen
e in DGFEM 9

2.1 The Model Problem and its Regularity 9

2.2 hp-DGFEM . 10

2.2.1 Variational Formulation . 11

2.3 Stability . 11

2.4 Convergen
e . 12

2.4.1 Approximation on the Unit Square 12

2.4.2 Approximation on a Polygon . 13

2.4.3 Convergen
e on a Polygon . 14

3 Introdu
tion to Con
epts 15

3.1 History and Authors . 15

3.2 Main Parts of Con
epts . 16

3.2.1 Topology, Geometry and Mesh . 17

3.2.2 Shape Fun
tions, Elements and Spa
e 19

3.2.3 Bilinear Forms and Operators . 21

3.2.4 Linear Forms and Ve
tors . 22

3.2.5 Solver . 23

3.3 Main Steps in a Con
epts Appli
ation . 23

3.4 Some UML Diagrams of Con
epts . 24

3.4.1 Class Diagram . 24

3.4.2 Obje
t Diagram . 25

iii

3.4.3 Sequen
e Diagram . 28

3.5 Element Integration . 32

4 Extensions to Con
epts for DGFEM 35

4.1 New Classes for DGFEM . 35

4.2 New Ideas for Con
epts . 37

4.2.1 Dis
ontinuous Elements . 37

4.2.2 Integration over an Edge . 40

4.3 Other Extensions . 42

4.3.1 Boundary Conditions . 42

4.3.2 Graph of a Solution . 43

4.3.3 Sort of Adaptivity . 43

4.3.4 Debugging Te
hniques . 44

4.4 Wish List for Extensions . 45

4.4.1 Te
hni
al Extensions . 45

4.4.2 Algorithmi
 and Fun
tional Extensions 45

5 Numeri
al Results 49

5.1 Model Problem . 49

5.2 Results on the Unit Square . 50

5.3 Results on an L Shaped Domain . 54

5.4 Con
lusions . 57

5.4.1 Exponential Convergen
e . 57

5.4.2 Stabilisation . 59

Closing Remarks 61

A Do
umented Sour
e Code of the Extensions to Con
epts 63

A.1 Integration over an Edge . 63

A.2 Boundary Conditions . 72

A.3 Sort of Adaptivity . 75

A.4 Debugging Te
hniques . 77

A.5 Mesh Generation on the L Shaped Domain 78

A.6 Main program . 81

Symbol Index 89

Bibliography 91

iv

1 Introdu
tion to Dis
ontinuous

Galerkin Finite Element Methods

The
onvergen
e of any numeri
al method is based upon
onsisten
y of the approximation

and upon stability of the dis
retization. It is well known that hp-FEM
an a
hieve

exponential approximation rates for typi
al se
ond order partial di�erential equations

for
ertain problems (e. g. in solid me
hani
s). This requires the
ombination and

simultaneous variation of the polynomial degree and mesh-re�nement.

For strongly adve
tion dominated problems, as they appear in
omputational
uid

dynami
s, the usual Galerkin type dis
retisations (as in FEM) do not exhibit good

stability properties. Of parti
ular interest are dis
ontinuous approximations whi
h
an

be used for �rst order or strongly adve
tion dominated problems. The dis
ontinuous

Galerkin FEM (DGFEM) implement su
h a dis
ontinuous approximation.

This
hapter gives �rst a very brief introdu
tion to standard FEM. Most of the

prin
iples found there
an also be applied to DGFEM, whi
h are presented in the se
ond

se
tion. The last se
tion shows a more sophisti
ated variational formulation for DGFEM

(the one whi
h was used to implement the hp-DGFEM).

Most of the information in this
hapter is taken from [5℄ and [17℄.

1.1 Continuous Dis
retization

Let
 � R

2

be a bounded domain with � = �
 and � = �

D

[�

N

the partition of � into

a Neumann and Diri
hlet boundary. Consider the model problem

��u+ u = f in

u = 0 on �

D

�u

�n

= g

N

on �

N

:

(1.1)

1.1.1 Variational Form

We introdu
e the spa
e

H

1

0

(
) =

�

u 2 H

1

(
) : u = 0 on �

D

	

:

1

1 Introdu
tion to DGFEM

The standard pro
edure of multiplying with a test fun
tion and integrating by parts

leads to the variational formulation of (1.1):

Find u 2 H

1

0

(
) su
h that

Z

ru � rv + uv dx =

Z

fv dx+

Z

�

N

g

N

v ds 8v 2 H

1

0

(
):

(1.2)

This variational formulation is dis
retised by restri
ting u and v to a FE-subspa
e of

H

1

0

(
).

1.1.2 Finite Element Spa
e

We
onsider a partition (FE-mesh) T of
 into open elements K su
h that

S

K2T

K =
.

We will assume that the K 2 T are images of the referen
e element

^

 = (0; 1)

2

under

aÆne maps F

K

, i. e.:

8K 2 T : K = F

K

(

^

):

With ea
h K 2 T we asso
iate a polynomial degree p

K

� 1 and
olle
t them in the

degree ve
tor p = fp

K

: K 2 T g. P

p

(

^

) denotes the polynomials of total degree p on

^

.

In order to dis
retise (1.2), subspa
es of
ontinuous fun
tions must be
hosen. Usu-

ally, one
hooses

S

p;1

0

(
; T) :=

n

u 2 H

1

0

(
) : uj

K

Æ F

K

2 P

p

K

(

^

); 8K 2 T

o

� H

1

0

(
);

We introdu
e the bilinear form

a(u; v) :=

Z

ru � rv + uv dx (1.3)

and the linear form

l(v) :=

Z

fv dx+

Z

�

N

g

N

v ds (1.4)

and �nally dis
retise (1.2):

Find u

FE

2 S

p;1

0

(
; T) su
h that a(u

FE

; v) = l(v) 8v 2 S

p;1

0

(
; T): (1.5)

1.1.3 Linear System

By expressing u

FE

and v in a basis of S

p;1

0

(
; T), (1.5) leads to a linear system whi
h

an be solved by standard te
hniques. Let N := dimS

p;1

0

(
; T) and f'

i

g

N

i=1

be a basis

of S

p;1

0

(
; T). Then we
an write

u

FE

=

N

X

i=1

u

i

'

i

and v =

N

X

j=1

v

j

'

j

:

2

1.2 Dis
ontinuous Dis
retization

Therefore, (1.5) leads to

a

N

X

i=1

u

i

'

i

;

N

X

j=1

v

j

'

j

!

= l

N

X

j=1

v

j

'

j

!

N

X

i;j=1

u

i

a('

i

; '

j

)v

j

=

N

X

j=1

l('

j

)v

j

u

>

Av = l

>

v

where

A = fa('

i

; '

j

)g

N

i;j=1

; u = fu

i

g

N

i=1

; v = fv

j

g

N

j=1

and l = fl('

j

)g

N

j=1

:

Solving

A

>

u = l (1.6)

for u results in u

FE

=

P

N

i=1

u

i

'

i

satisfying (1.5).

Remark 1.7 The presented
ontinuous dis
retization of (1.1) leads to a symmetri
 A

as the bilinear form a in (1.3) is symmetri
. This won't be the
ase anymore with the

dis
ontinuous dis
retization. Moreover, A is positive de�nite:

a(u; u) =

Z

jruj

2

+ u

2

dx > 0 for u 6= 0 in the L

2

-sense.

1.2 Dis
ontinuous Dis
retization

The
ontinuity of the FE-solution in the previous se
tion is restri
tive. As mentioned in

the �rst paragraphs of this
hapter, it is desirable to admit dis
ontinuous approximations

for u

FE

. To this end, the variational formulation (1.2) must be
hanged. This deserves a

new name: Dis
ontinuous Galerkin Finite Element Method, short: DGFEM. We won't

treat a detailed derivation of the new variational formulation, see [5℄ for this. But we will

show a heuristi
 interpretation of the new variational formulation. Later in the
hapter

we show
onsisten
y of a more sophisti
ated formulation.

We assume that the elements in the subdivision T are numbered in a
ertain way.

We denote by E the set of element edges asso
iated with the mesh T . Sin
e hanging

nodes are permitted in the DGFEM, E will be understood to
onsist of the smallest

edges in �K.

The
hanged variational formulation:

Find u

DG

2 S

p;0

0

(
; T) su
h that B

DG

(u

DG

; v) = l(v) 8v 2 S

p;0

0

(
; T); (1.8)

3

1 Introdu
tion to DGFEM

where

B

DG

(u

DG

; v) =

X

K2T

Z

K

ru

DG

� rv + u

DG

v dx

+

X

e2E

Z

e

[u

DG

℄ hrv � n

e

i � [v℄ hru

DG

� n

e

i ds;

(1.9)

S

p;0

0

(
; T) =

n

u 2 L

2

(
) : uj

K

Æ F

K

2 P

p

K

(

^

); uj

�K\�

D

= 0; 8K 2 T

o

and l(v) the same as in (1.4). From now on, we write S

p

0

(
; T) instead of S

p;0

0

(
; T).

With the numbering of T we de�ne

[v℄ := vj

�K

i

\e

� vj

�K

j

\e

(1.10)

and

hvi :=

1

=2

�

vj

�K

i

\e

+ vj

�K

j

\e

�

; (1.11)

where K

i

and K

j

share the edge e with i > j. n

e

is de�ned as the unit normal ve
tor of

the edge e pointing from K

i

to K

j

.

Remark 1.12 The
hoi
e of the minus sign in (1.9) is somewhat arbitrary but has a

good reason: if we
hanged it to a plus sign the resulting matrix would be inde�nite.

With the minus, the matrix is non-symmetri
 put positive semide�nite:

8u 2 H

1

(
) : B

DG

(u; u) =

X

K

Z

K

jruj

2

dx � 0:

(1.8) and (1.9) are similar to (1.2)|apart from the di�erent spa
es|only the sum

over the internal edges in (1.9) is new. As there is no need for
ontinuity anymore, we

an
hoose the basis fun
tions of S

p

0

(
; T) to have support in exa
tly one element of T .

If we evaluate only the �rst sum in (1.9) with su
h a basis, the asso
iated matrix has a

blo
k diagonal stru
ture, ea
h blo
k resulting from one K 2 T . If we would solve this

system, an element would not have any
onne
tion to its neighbours. This
onne
tion

is introdu
ed by the se
ond sum in (1.9).

1.3 Adve
tion Di�usion Problem

In the introdu
tory paragraph, adve
tion dominated problems were mentioned. We now

onsider an adve
tion di�usion problem and show the variational formulation of su
h a

problem. For a more detailed des
ription, see [17℄.

Let
 be a bounded Lips
hitz domain in R

d

, d = 2 or 3, and
onsider

�r

�

a(x)ru

�

+ b(x) � ru+
(x)u = f(x); (1.13)

4

1.3 Adve
tion Di�usion Problem

PSfrag repla
ements

�

>

a(x)� > 0 8� 2 R

d

b

g

D

g

D

g

N

�

�

�

+

�

D

�

N

Figure 1.1: Interesting subsets of the boundary.

where a 2 L

1

(
)

d�d

sym

, b(x) 2 W

1;1

(
)

d

,
(x) 2 L

1

(
) and f(x) 2 L

2

(
). We assume

that the prin
ipal part of the partial di�erential operator in (1.13) is nonnegative, i. e.

�

>

a(x)� � 0 8� 2 R

d

and a. e. in
.

Let n denote the unit outward normal ve
tor of � = �
 and de�ne the following

subsets of � (see �gure 1.1):

�

0

=

�

x 2 � : n

>

a(x)n > 0

	

di�usion boundary;

�

�

= fx 2 � n �

0

: b � n < 0g in
ow boundary;

�

+

= fx 2 � n �

0

: b � n � 0g out
ow boundary:

With these de�nitions, we have � = �

0

[�

�

[�

+

. We further de
ompose the di�usion

boundary �

0

into two
onne
ted parts: �

D

, where Diri
hlet boundary
onditions are

imposed, and �

N

, where Neumann boundary
onditions are imposed. Therefore, we
an

supplement (1.13) with the following boundary
onditions:

u = g

D

on �

D

[�

�

;

n

>

aru = g

N

on �

N

:

(1.14)

Remark 1.15 With (1.13) and (1.14) a wide range of physi
ally relevant problems
an

be des
ribed: a mixed boundary value problem for an ellipti
 equation if we
hoose a(x)

positive on the whole domain or a linear transport problem with the
hoi
e a(x) � 0 on

.

5

1 Introdu
tion to DGFEM

1.3.1 Variational Form

The variational form of (1.13) needs to allow for the possibility of a = 0 on the boundary.

Additionally, the Diri
hlet boundary
onditions are weakly enfor
ed, i. e. they are part

of the variational formulation and not of the DGFE-spa
e.

The variational formulation is split into four parts: the di�usion term, the adve
tion

term, the absolute term and a dis
ontinuity penalisation term.

Di�usion Term

We have already introdu
ed E , the set of edges of the elements K 2 T . In addition, we

de�ne the set of interior element edges

E

int

:= fe 2 E : e \ �
 = ;g

and its union

�

int

:=

[

e2E

int

e:

The variational formulation of the left and right hand side are:

B

a

(u; v) =

X

K2T

Z

K

ru � arv dx+

Z

�

D

u

�

(arv) � n

e

�

�

�

(aru) � n

e

�

v ds (1.16)

+

Z

�

int

[u℄ h(arv) � n

e

i � h(aru) � n

e

i [v℄ ds

l

a

(v) =

Z

�

D

g

D

�

(arv) � n

e

�

ds+

Z

�

N

g

N

v ds (1.17)

Adve
tion Term

Similarly to the in
ow boundary of the whole domain, we de�ne the in
ow boundary of

an element K 2 T :

�

�

K := fx 2 �K : b � n

K

< 0g ;

where n

K

denotes the unit outward normal ve
tor on K. In
ontrast to the numbering

dependent jump [v℄, we introdu
e the oriented jump of v over an edge e � �K n �:

bv
 := v

+

� v

�

;

where v

+

is the inner tra
e of v in K. The de�nition on �K n� implies that there exists

an element K

0

sharing e with K. Therefore we
an de�ne the outer tra
e v

�

of v on e

relative to K as the inner tra
e of v on e relative to K

0

.

6

1.3 Adve
tion Di�usion Problem

Remark 1.18 In general, [v℄ will be distin
t from bv
 as the former depends on the

numbering and the latter does not. However, j[v℄j = jbv
j.

B

b

(u; v) =

X

K2T

Z

K

(b � ru)v dx�

X

K2T

Z

�

�

Kn�

�

(b � n

K

) bu
 v

+

ds (1.19)

�

X

K2T

Z

�

�

K\�

�

(b � n

K

)u

+

v

+

ds

l

b

(v) = �

X

K2T

Z

�

�

K\�

�

(b � n

K

)g

D

v

+

ds (1.20)

Absolute Term

B

(u; v) =

X

K2T

Z

K

uv dx (1.21)

l

(u; v) =

X

K2T

Z

K

fv dx (1.22)

Dis
ontinuity Penalisation Term

We de�ne Æ

K

:= h

�1

K

, where h

K

:= diamK, i. e. is element wise
onstant. Æ

K

is a

stabilisation parameter.

B

s

(u; v) =

Z

�

D

Æ

K

uv ds+

Z

�

int

Æ

K

[u℄[v℄ ds (1.23)

l

s

(v) =

Z

�

D

Æ

K

g

D

v ds (1.24)

Remark 1.25 The proof of the exponential
onvergen
e, see se
tion 2.4, relies on this

stabilisation.

The numeri
s in
hapter 5 show that the stabilisation is not ne
essary for the
hosen

model problem.

The variational formulation of (1.13) is then

B

DG

(u; v) := B

a

(u; v) +B

b

(u; v) +B

(u; v) +B

s

(u; v) =

l

a

(v) + l

b

(v) + l

(v) + l

s

(v) =: l

DG

(v): (1.26)

7

1 Introdu
tion to DGFEM

1.3.2 Consisten
y

To show
onsisten
y, we plug the solution of (1.13) and (1.14) into (1.26) and assume

the solution to be di�erentiable and
ontinuous. Therefore, [v℄ = bv
 = 0 and hvi = v.

We start with treating the di�usion term (1.16) with integration by parts:

B

a

(u; v) =

Z

ru � arv dx+

Z

�

D

u

�

(arv) � n

�

�

�

(aru) � n

�

v ds

=

Z

�r(aru)v dx +

Z

�

D

u

�

(arv) � n

�

ds+

Z

�

N

�

(aru) � n

�

v ds;

sin
e a is symmetri
. Together with l

a

(v) from (1.17), the se
ond and third term weakly

ful�ll the boundary
ondition on �

D

and �

N

. What remains is

R

�r(aru)v dx.

Next, we treat the adve
tion term (1.19):

B

b

(u; v) =

Z

(b � ru)v dx�

Z

�

�

(b � n)uv ds:

There is nothing to do sin
e l

b

(v) from (1.20) and the se
ond term weakly ful�ll the

boundary
ondition on �

�

. What remains is

R

(b � ru)v dx.

For B

(u; v) and l

(v) from (1.21) and (1.22) respe
tively, there is nothing to do.

The last term is the dis
ontinuity penalisation term (1.23):

B

s

(u; v) =

Z

�

D

Æ

K

uv ds:

Together with l

s

(v) from (1.24), B

s

(u; v) weakly ful�lls the boundary
ondition on �

D

.

We sum up all the terms whi
h remained:

Z

�r(aru)v dx+

Z

(b � ru)v dx+

Z

uv dx

on the left hand side and

Z

fv dx

on the right hand side, i. e.

Z

[�r(aru) + b � ru+
u� f ℄ v dx = 0:

We therefore
on
lude
onsisten
y of (1.26) with (1.13) and (1.14).

8

2 Exponential Convergen
e in DGFEM

The main result of this
hapter is the exponential
onvergen
e of hp-DGFEM on a

polygon. The model problem presented herein features homogeneous Diri
hlet boundary

onditions whi
h are strongly enfor
ed in the variational formulation (in
ontrast to the

variational formulation presented in se
tion 1.3.1 and implemented in
hapter 4).

Essentially, this
hapter is a summary of [18℄ whi
h provides the theoreti
al proof of

what the
omputations in
hapter 5 show.

2.1 The Model Problem and its Regularity

Let
 � R

2

be a bounded, polygonal domain. We assume that its boundary � = �

is
omposed of a Diri
hlet part �

D

with

R

�

D

ds > 0 and of a Neumann part �

N

: � =

�

D

[�

N

.

We
onsider the model problem

�r(aru) +
u = f in

u = 0 on �

D

(aru) � n = g

N

on �

N

:

(2.1)

Here, the
oeÆ
ients a(x) and
(x) have the following properties:

a(x) = fa

ij

(x)g

2

i;j=1

2 W

1;1

(
)

2�2

sym

and
(x) 2 L

1

(
): (2.2)

Further we assume that
(x) � 0 for all x 2
 and (2.1) is properly ellipti
, i. e.:

9�a; a

0

> 0 : �a j�j

2

� �

>

a(x)� � a

0

j�j

2

8� 2 R

2

; x 2
: (2.3)

We will measure the regularity of (2.1){(2.3) in terms of
ertain weighted Sobolev

spa
es: Let
 � R

2

be a polygonal domain and let A

i

, i = 1; : : : ;M denote its verti
es.

Further let � = (�

1

; : : : ; �

M

), 0 � �

i

< 1, be an M -tuple. For any number k we de�ne

� � k := (�

1

� k; : : : ; �

M

� k).

We de�ne the weight fun
tion �

�

(x) by

�

�

(x) :=

M

X

i=1

r

�

i

(x)

�

i

where r

�

i

(x) := min f1; jx� A

i

jg:

9

2 Exponential Convergen
e in DGFEM

For integers 0 � l � m we introdu
e the semi-norms

juj

2

H

m;l

�

(
)

:=

m

X

k=l

�

�

D

k

u

�

�

�

�+k�l

2

L

2

(
)

:

By H

m;l

�

(
), 0 � l � m, we denote the
ompletion of C

1

(
) with respe
t to the norms

kuk

2

H

m;l

�

(
)

:= kuk

2

H

l�1

(
)

+ juj

2

H

m;l

�

(
)

for l � 1,

kuk

2

H

m

�

(
)

:=

m

X

k=0

�

�

D

k

u

�

�

�

�+k

2

L

2

(
)

for l = 0.

De�nition 2.4 (Countably Normed Spa
e B

l

�

(
)) Fix l � 0 and M-tuple � =

(�

1

; : : : ; �

M

). The
ountably normed spa
e B

l

�

(
)
onsists of all fun
tions u for whi
h

u 2 H

m;l

�

(
) for all m � l and

�

�

D

k

u

�

�

�

�+k�l

L

2

(
)

� Cd

k�l

(k � l)! for k = l; l + 1; : : :

for some
onstants C > 0 and d � 1 independent of k.

We also need
ertain tra
e spa
es of B

l

�

(
). To this end, let M� f1; : : : ; Ng be an

index set and de�ne

 =

[

j2M

�

j

� �:

Then B

l�

1

=2

�

(
) is the set of tra
es from B

l

�

(
) on
.

Now, for the solution of problem (2.1){(2.3) we have the following

Theorem 2.5 (Regularity) Let
 � R

2

be a polygon. Then there exist 0 < �

j

< 1,

j = 1; : : : ; N , su
h that for f 2 B

0

�

(
) and g

N

2 B

1

=2

�

(
) the solution of problem (2.1){

(2.3) exists and belongs to B

2

�

(
).

Proof: See [3℄ and [4℄. �

2.2 hp-DGFEM

We now introdu
e the �nite element spa
es. Note that in this theoreti
al part (as in [18℄)

the homogeneous Diri
hlet boundary
onditions are strongly enfor
ed. For
onvenien
e,

in
hapters 4 and 5, boundary
onditions are weakly enfor
ed, see se
tion 1.3.1.

10

2.3 Stability

2.2.1 Variational Formulation

The variational formulation
an be taken from se
tion 1.3.1 if we take into a

ount that

the Diri
hlet boundary
onditions are strongly enfor
ed and that b = 0:

B(u; v) =

X

K2T

Z

K

ru � a(x)rv +
(x)uv dx

+

Z

�

int

[u℄ h(arv) � n

e

i � h(aru) � n

e

i [v℄ ds (2.6)

+

X

K2T

Æ

K

Z

�Kn�

[u℄[v℄ ds

l(v) =

X

K2T

Z

K

fv dx+

Z

�

N

g

N

v ds: (2.7)

We de�ne the energy norm:

juj

2

DG

:= B(u; u) =

�

X

K2T

p

aru

2

L

2

(K)

+

p

u

2

L

2

(K)

+ Æ

K

k[u℄k

2

L

2

(�Kn�)

�

(2.8)

and

kuk

2

DG

:=

�

X

K2T

kuk

2

H

1

(K)

+ h

�1

K

kuk

2

L

2

(�Kn�)

+ h

K

juj

2

H

1

(�Kn�)

�

Remark 2.9 The proofs of the stability and the exponential
onvergen
e need the sta-

bilisation term in (2.6). In the numeri
al part (in
hapter 5), we will see that the

stabilisation is not needed for the exponential
onvergen
e on the
hosen model problem.

2.3 Stability

In the following se
tion, some result about the stability and
onvergen
e of the hp-

DGFEM are presented.

Let �

p

u

ex

2 S

p

0

(
; T) be an arbitrary interpolant of the solution u

ex

of our model

problem (2.1){(2.3). Further, let u

DG

denote the solution of the DGFEM de�ned by the

bilinear form (2.6) and the linear form (2.7). Then we write

u

ex

� u

DG

= u

ex

� �

p

u

| {z }

=:�

+ �

p

u� u

DG

| {z }

=:�

: (2.10)

In the ensuing Proposition 2.11 we will prove that � may be estimated by �. Hen
e, we

will be able to bound the error u

ex

� u

DG

of the hp-DGFEM by � only.

11

2 Exponential Convergen
e in DGFEM

Proposition 2.11 (Stability) Let G = fT

i

g

i2N

be a shape regular mesh family. Further

let the
onditions (2.2) and (2.3) be be satis�ed.

Then, there exists a
onstant C > 0 depending only on the
onstants in (2.2) and

(2.3) and on the regularity of the mesh su
h that for the hp-DGFEM de�ned by (2.6)

and (2.7) with Æ

K

= h

�1

K

there holds the a-priori estimate

j�j

DG

� Cp

i;max

k�k

DG

8i 2 N ;

where p

i;max

:= max

K2T

i

p

K

.

Proof: See [18℄. �

2.4 Convergen
e

From Proposition 2.11 we know that the error ju

ex

� u

DG

j

DG

of the hp-DGFEM may be

estimated by � = u

ex

��

p

u

ex

in a
ertain way, where �

p

u

ex

2 S

p

0

(
; T) may be arbitrarily

hosen. Therefore, we are interested in hp-approximations of the exa
t solution u

ex

of

the model problem (2.1){(2.3).

We will prove that by a judi
ious
ombination of mesh re�nement towards the singular

points of the polygon (i. e.
orner verti
es and verti
es with
hanging boundary
ondition

type) and in
rease of the polynomial degree p used in the approximation, exponential

onvergen
e may be a
hieved. To do so, we will introdu
e the so-
alled geometri
 meshes

on
.

Ellipti
 regularity states that the solution u

ex

is, for analyti
 data, itself analyti
 in

minus these singularities. Geometri
ally graded meshes therefore ensure the analyti
ity

of the solution restri
ted to ea
h element not abutting at a singular point.

2.4.1 Approximation on the Unit Square

De�nition 2.12 (Geometri
 Mesh Family

^

T

n

�

) On

^

 = (0; 1)

2

we de�ne the geo-

metri
 mesh family

^

T

n

�

with n + 1 layers and grading fa
tor 0 < � < 1 re
ursively as

follows: if n = 0,

^

T

0

�

= f

^

g. Given

^

T

n

�

, n � 0, generate

^

T

n+1

�

by subdividing the element

K

0

abutting at the singular vertex 0 2 K

0

into three smaller re
tangles by diving all but

one of its sides in a � : (1� �) ratio (
. f. Figure 2.1).

Proposition 2.13 (Approximation on

^

) Let

^

 = (0; 1)

2

, 0 < � < 1 and let

^

T

n

�

be

the geometri
 mesh with n + 1 layers de�ned in De�nition 2.12. Then, for u 2 B

2

�

(

^

)

with some 0 < � < 1 and �

�

(x) = jxj

�

, there exists � > 0 su
h that for the following

linear polynomial degree distribution ve
tor with slope �

p =

�

p

ij

= p

i

; i = 0; : : : ; n; j = 1; 2; p

i

= max f1; b�i
g

	

12

2.4 Convergen
e

PSfrag repla
ements

1

1

0

x

1

x

2

K

0

K

11

K

12

K

21

K

22

K

31

K

32

Figure 2.1: Geometri
 mesh

^

T

n

�

for � = 0:5 and n = 3.

there holds:

inf

v2S

p

0

(
;T

n

�

)

ku� vk

DG

� Ce

�b

3

p

N

;

where C; b > 0 do not depend on N = dimS

p

0

(

^

;

^

T

n

�

).

2.4.2 Approximation on a Polygon

We will now establish an exponential
onvergen
e result like Proposition 2.13 on a poly-

gon
. The basi
 idea will be to lo
alize the hp-approximation problem at ea
h singular

point and to use the results in the previous se
tion.

De�nition 2.14 (Geometri
 Meshes on a Polygon) A geometri
 mesh family T

n

�

on a polygon
 is obtained by mapping the basi
 mesh

^

T

n

�

from

^

 linearly to a vi
inity of

ea
h
onvex
orner of
. At reentrant
orners, three and at Diri
hlet/Neumann verti
es

two
opies of

^

T

n

�

(suitably s
aled), are used, see �gure 2.2. The remaining domain

~

 is

meshed with a �xed mesh whi
h is regularly
onne
ted with the geometri
 pat
hes at the

singular points.

In order to
onstru
t a pie
ewise hp-approximation �

p

u 2 S

p

0

(
; T

n

�

) of u 2 B

2

�

(
), we

pro
eed as follows: �rst we
onstru
t �

p

u in ea
h parallelogram pat
h. Then, sin
e u is

analyti
 in

~

, we in
rease the polynomial degree on the �xed mesh in

~

onsistently with

the largest degree in ea
h pat
h (we assume that the degree ve
tors in ea
h geometri

mesh pat
h are identi
al), yielding exponential
onvergen
e also in

~

. Summing up the

lo
al error estimates from the subregions leads to the ensuing result:

13

2 Exponential Convergen
e in DGFEM

Figure 2.2: Polygon with geometri
 meshes in the singular verti
es.

Proposition 2.15 Let
 � R

2

be a polygon and u 2 B

2

�

(
).

Then there holds

inf

v2S

p

0

(
;T

n

�

)

ku� vk

DG

� Ce

�b

3

p

N

;

where C; b > 0 are independent of N = dimS

p

0

(
; T

n

�

).

Proof: In order to prove this proposition, a generalization of Proposition 2.13 to paral-

lelograms is needed. This
an be established similarly to Proposition 2.13. �

2.4.3 Convergen
e on a Polygon

The main result of [18℄ is

Theorem 2.16 Let
 � R

2

be a polygon and let moreover the
onditions (2.2) and

(2.3) be satis�ed. Then, for the hp-DGFEM de�ned by (2.6) and (2.7) on S

p

0

(
; T

n

�

)

with Æ

K

= h

�1

K

there holds the following error estimate:

ju

ex

� u

DG

j

DG

� Ce

�b

3

p

N

;

where C; b > 0 are independent of N = dimS

p

0

(
; T

n

�

).

Proof: See [18℄. �

14

3 Introdu
tion to Con
epts

Con
epts is a library nearly
ompletely written in C++, an obje
t oriented programming

language [16℄. The main bene�ts of C++ are:

� One
an implement very eÆ
ient
ode.

� Compilers are available on almost all platforms [1℄ and C++ is one of the most

widespread obje
t oriented programming languages.

� With the availability of templates, name spa
es and ex
eptions, in addition to the

Standard Template Library [9℄, reusable
ode on a rather high level
an be written.

In [11℄, Lage des
ribes the main design idea behind the design of Con
epts as follows:

Sin
e we are interested in the development of numeri
al software, there is a

spe
ial situation: the
onsidered numeri
al methods are already formulated

in an abstra
t way based on hierar
hi
al stru
tured mathemati
al
on
epts.

This motivates the following approa
h: represent ea
h
on
ept by a module

and
ombine these modules a

ording to the numeri
al algorithm to generate

an implementation.

With this in mind, it is easier to understand the design of Con
epts.

In this
hapter, the main parts of Con
epts are presented. Starting with the se
ond

se
tion, the design prin
iples following the mathemati
al hierar
hy of FEM are explained.

To support this, only
lass hierar
hy diagrams are used. To better understand the

intera
tions of the presented
lasses, the fourth se
tion shows some UML diagrams. The

�fth se
tion explains the element integration of the Lapla
ian in great detail. The �rst

se
tion gives a short overview of the history and the authors of Con
epts.

3.1 History and Authors

The software was mainly written by Dr. Christian Lage. First versions and ideas of

the software appear already in his Ph.D. thesis [10℄. The
urrent version 1.4 was de-

veloped during his post do
toral studies at the Seminar for Applied Mathemati
s of

the Swiss Federal Institute of Te
hnology (ETH), Zuri
h. The design ideas leading the

implementation of Con
epts are presented in [11℄.

15

3 Introdu
tion to Con
epts

Ana-Maria Mata
he is working with the hp-FEM part of Con
epts. She implemented

the quadrilaterals for two dimensional problems together with Lage. She is the one I

have asked if I did not know what happened in the
ode. She also gave me the �rst

introdu
tions to Con
epts.

Re
ently (summer 1999), two students (David Ho
h and Andreas R�uegg) wrote a

semester thesis [15℄ on and with Con
epts-1.4. They implemented mixed and variable

boundary
onditions for hp-FEM. Their work was supervised by Ana-Maria. They both

ontinue to work on Con
epts and have already implemented an interfa
e to a dire
t

sparse solver.

3.2 Main Parts of Con
epts

The library Con
epts implements the
on
epts of both Finite Element Methods and

Boundary Element Methods (BEM). In the following, only the FEM part is treated.

Mu
h of the prin
iples are appli
able to BEM too, tough.

Typography

The following typographi
al
onventions are used:

� Class names are typeset like
lass name.

� Abstra
t
lasses are typeset like abstra
t. An abstra
t
lass is merely an interfa
e

lass, i. e. not all methods have an implementation, they only serve to pres
ribe

the interfa
e of the derived
lasses.

Mathemati
al Con
epts and their Classes

The quotation of Lage above suggests we have a
loser look at the
on
epts of FEM. We

do so by repeating (1.5), the dis
retised formulation of FEM:

Find u

FE

2 S

p;1

0

(
; T) su
h that a(u

FE

; v) = l(v) 8v 2 S

p;1

0

(
; T)

and (1.6), the linear system resulting from (1.5): A

>

u = l. Therefore, we need
on
epts

for:

1. The mesh T on the domain
.

2. The shape fun
tions on

^

 and the element maps F

K

leading to a basis f'

i

g

N

i=1

of

the FE-spa
e S

p;1

0

(
; T).

3. The bilinear form a and the linear form l leading to the matrix A and the ve
tor l.

4. A solver for the linear system.

16

3.2 Main Parts of Con
epts

These
on
epts are implemented in the following
lasses:

1. The domain of interest
 is dire
tly des
ribed by the mesh in a user de�ned
lass,

e. g. geo Quadrat for the unit square. This
lass is derived from geo Mesh2 in the

two dimensional
ase.

2. The spa
e is implemented in hp HP2d. Like the de�nition of S

p;1

0

(
; T) suggests,

it
onsists of elements hp HP2d001 (quadrilaterals). For the sake of eÆ
ien
y, the

elements dire
tly in
orporate the shape fun
tions on the referen
e element. There-

fore, the implementation
an exploit the spe
ial stru
ture of the shape fun
tions.

3. hp Lapla
e and hp Identity are both derived from op BilinearForm. Together, they

form the implementation of a. hp Riesz for l is derived from fn
 LinearForm.

op Operator is the base
lass for all operators. Hen
e, op Matrix for A is derived

from it. The
lass for l is
alled fn
 Ve
tor.

4. The inverse of an operator
an be
omputed by di�erent means: op GMRes imple-

ments the General Minimal Residuals algorithm and op CG the Conjugate Gra-

dients algorithm, op DGESV is an interfa
e to a dire
t solver from LAPACK [2℄.

They are all derived from op Operator .

In the rest of the se
tion, we will look at the di�erent mathemati
al
on
epts and the

a

ording
lasses.

3.2.1 Topology, Geometry and Mesh

Topology

The topology of a mesh is des
ribed by means of
onne
tors. These
onne
tors are

verti
es, edges, fa
es (in three dimensions) and
ells.

Restri
ted to the
ase of two spa
e dimensions, a
ell
onsists of a number of edges|

four in the
ase of a quadrilateral and three in the
ase of a triangle. Furthermore, an

edge
onsists of two verti
es. This is re
e
ted in the
lasses of the geometry pa
kage.

The hierar
hy of the mentioned
lasses is shown in �gure 3.1.

The
lass geo Conne
tor pres
ribes the
ommon interfa
e for all topologi
al elements

(
onne
tors). This interfa
e
onsists of a method to query the attribute of the
onne
tor.

A typi
al appli
ation for the attribute of a
onne
tor are boundary
onditions. Addi-

tional interfa
e methods are pres
ribed on the next level of derivation. The re�nement

of the elements of the topology|i. e. the subdivision|is implemented on the highest

level of derivation, i. e. in geo Edge et
.

17

3 Introdu
tion to Con
epts

geo Conne
tor

geo Conne
tor0 geo Conne
tor1 geo Conne
tor2 geo Conne
tor3

geo Vertex geo Edge geo Quad geo Triangle geo Tetrahedron

Figure 3.1: The
lass hierar
hy in the topologi
al part of the geometry pa
kage. An arrow represents a

\is a" relation.

geo Cell

geo Cell2 geo Cell3

geo Quad2d geo Triangle2d geo Triangle3d

Figure 3.2: The
lass hierar
hy in the geometri
al part of the geometry pa
kage.

Geometry

Until now, we have only seen the topology of the
ells in a meshed domain. With

the
on
ept of geometry, we introdu
e the notion of
oordinates by adding the element

mapping to the
ells of the topology.

A
ell of the topology, e. g. geo Quad, together with the element mapping of this
ell

results in a quadrilateral of the geometry, e. g. geo Quad2d. As one would expe
t, the

lasses on the highest level of derivation have a method to evaluate the element mapping,

i. e. map a point in the referen
e element onto a physi
al point. The hierar
hy of the

abovementioned
lasses is shown in �gure 3.2.

18

3.2 Main Parts of Con
epts

geo Mesh

geo Mesh2 geo Mesh3

geo Square geo Disk geo Quadrat

Figure 3.3: The
lass hierar
hy in the mesh part of the geometry pa
kage. The
lasses geo Square,

geo Disk and geo Quadrat implement examples of meshes. They are sket
hed in �gure 3.4.

Mesh

The topology and geometry as introdu
ed above do not des
ribe a mesh. They only

des
ribe separate
ells in a mesh. The
lasses in the mesh part of the geometry pa
kage

pa
k the
ells together and �nally give an implementation of the mathemati
al notation

T . The
lasses in this part of the geometry pa
kage are shown in �gure 3.3.

Usually, the
lass implementing the mesh has to be user de�ned. Some examples like

geo Square, geo Disk and geo Quadrat are already available,
. f. �gure 3.4.

3.2.2 Shape Fun
tions, Elements and Spa
e

Shape Fun
tions

As stated above, the shape fun
tions are integrated into the
lass for the elements of the

FE-spa
e. The advantages of this Ansatz are that one
an exploit the spe
ial stru
ture

of the
hosen shape fun
tions. The disadvantage: the
lasses for the elements
annot be

reused if one wants to ex
hange the shape fun
tions.

Elements

An element of the FE-spa
e
onsists of the support of the element (in
luding the
oor-

dinates) and of the polynomial degree on this element. In two dimensions, the support

of an element is a derived
lass of geo Cell2 ,
. f. �gure 3.2.

The abstra
t
lass for an element of the FE-spa
e hp HP2dXXX (
. f. �gure 3.5)

pres
ribes the interfa
e to query the polynomial degree and the support of an element.

As stated in the paragraph about shape fun
tions above, these are also in
luded into

the element. Therefore, the
lasses hp HP2d000 and hp HP2d001 both have methods to

evaluate all the ne
essary shape fun
tions at a spe
i�
 point in the referen
e element.

19

3 Introdu
tion to Con
epts

PSfrag repla
ements

1

1

0

x

1

x

2

(a) geo Square

PSfrag repla
ements

1

1

0

x

1

x

2

(b) geo Disk

PSfrag repla
ements

1

1

0

x

1

x

2

(
) geo Quadrat

Figure 3.4: The meshes implemented by the example
lasses. geo Square is the unit square (0; 1)

2

meshed with two triangles. geo Disk is the unit disk

�

x 2 R

2

: jxj < 1

	

initially meshed

with four triangles|the mesh does not really resemble a disk but re�ning the mesh will

improve the situation: the new verti
es on the boundary will lie on the
ir
le. geo Quadrat

meshes the unit square (0; 1)

2

with one quadrilateral.

sp
 Element

hp HP2dXXX

hp HP2d000 hp HP2d001

Figure 3.5: The
lass hierar
hy in the element part of the spa
e pa
kage. hp HP2d000 implements

triangular elements, hp HP2d001 is used for quadrilaterals.

20

3.2 Main Parts of Con
epts

sp
 Spa
e

hp HP2d

Figure 3.6: Class hierar
hy in the spa
e part of

the spa
e pa
kage.

op BilinearForm

hp Lapla
e hp Identity

Figure 3.7: Class hierar
hy in the bilinear forms

part of the operator pa
kage.

The topology des
ribes how the elements are
onne
ted. In FEM, we need to have

a
ontinuous basis of the FE-spa
e. Hen
e, there exist
ertain
onditions whi
h have

to be ful�lled at inter-element boundaries. From the algorithmi
 point of view, this is

a
hieved by globally enumerating the degrees of freedom and then mapping the lo
al

degrees of freedom of ea
h element onto the global ones. A

ording to this mapping, the

global matrix is assembled from the element matri
es. This mapping is stored element

wise in the so-
alled T matri
es.

The interfa
e to a

ess these matri
es is pres
ribed on the level of sp
 Element.

Spa
e

As the mesh in the geometry pa
kage
olle
ts all the
ells in the topology and their geo-

metri
al information to implement the mesh T , the FE-spa
e pa
ks the above-des
ribed

elements together and implements S

p;1

0

(
; T).

The abstra
t
lass sp
 Spa
e pres
ribes the interfa
e to query the dimension and the

number of elements of the spa
e and to get an iterator (a so-
alled s
anner) of the spa
e.

With su
h a s
anner one
an iterate over all elements of the spa
e (in no parti
ular order,

tough).

The
lass hp HP2d, derived from sp
 Spa
e (
. f. �gure 3.6), implements these

mandatory methods. Additionally, there are methods to set re�nement requirements

on the elements of the spa
e and to �nally re�ne and rebuild the spa
e. During this

pro
ess, the T matri
es of the elements are
omputed and stored.

3.2.3 Bilinear Forms and Operators

Bilinear Forms

A bilinear form is evaluated for two fun
tions of the basis of S

p;1

0

(
; T), the result is

stored in the global matrix: A = fa('

i

; '

j

)g

N

i;j=1

. Algorithmi
ally, it is evaluated for all

shape fun
tions on all elements to form the element matri
es.

The abstra
t fun
tion
lass op BilinearForm pres
ribes the interfa
e to evaluate a bi-

linear form on two elements, i. e. to
ompute A

KK

0

=

�

a('

K

i

; '

K

0

j

)

	

where i = 1; : : : ; N

K

and j = 1; : : : ; N

K

0

are the indi
es of the shape fun
tions on the elements K and K

0

21

3 Introdu
tion to Con
epts

op Operator

op Lo
al op Matrix op LiCo op CG op GMRes op DGESV

Figure 3.8: Class hierar
hy in the matri
es and solver part of the operator pa
kage.

respe
tively. A fun
tion
lass is a
lass whose main usage is through the parenthesis

operator (
alled appli
ation operator). op BilinearForm pres
ribes the interfa
e for the

appli
ation operator.

The derived
lass hp Lapla
e (
. f. �gure 3.7) implements an appli
ation operator

a

ording to the interfa
e pres
ribed by op BilinearForm whi
h evaluates the variational

form of the Lapla
ian, i. e.

R

K

ru �rv dx for the shape fun
tions u and v on element K:

A

K

=

�

a('

K

i

; '

K

j

)

	

N

K

i;j=1

;

where

�

'

K

i

	

N

K

i=1

are the shape fun
tions on element K.

Similarly to hp Lapla
e, hp Identity evaluates

R

K

uv dx on a given element K.

Operators

To form the global matrix, the element matri
es have to be
omputed and then assembled

into the global matrix. This is done in a op Lo
al or op Matrix
lass,
. f. �gure 3.8. The

abstra
t base
lass op Operator pres
ribes the interfa
e for an operator
onsisting of an

appli
ation operator whi
h
omputes the appli
ation of an operator on a ve
tor.

The
lass op Matrix implements a dense matrix and op Lo
al a matrix in sparse nota-

tion: only the non-zero entries have to be stored. op LiCo stands for a linear
ombination

of two operators.

3.2.4 Linear Forms and Ve
tors

Linear Forms

A linear form l(v) is evaluated for ea
h basis fun
tion of S

p;1

0

(
; T) and the result is

stored in the load ve
tor. As for bilinear forms, algorithmi
ally, it is evaluated for all

shape fun
tions on all elements to form the element load ve
tors.

The abstra
t fun
tion
lass fn
 LinearForm (see �gure 3.9) pres
ribes the interfa
e of

a linear form: the appli
ation operator
omputes and returns the lo
al load ve
tor for a

22

3.3 Main Steps in a Con
epts Appli
ation

fn
 LinearForm

hp Riesz

Figure 3.9: Class hierar
hy in the linear forms

part of the fun
tion pa
kage.

fn
 Fun
tion

fn
 Ve
tor

Figure 3.10: Class hierar
hy in the ve
tor part

of the fun
tion pa
kage.

given element of the spa
e:

l

K

=

�

l('

K

j

)

	

N

K

j=1

:

The element load ve
tor is returned as a N

K

� 1 matrix.

Ve
tors

The ve
tor
lass fn
 Ve
tor,
. f. �gure 3.10, is de
lared similarly to the
lass for matri
es

(see the se
tion about operators above). The element load ve
tors are
omputed using

a given linear form and are then assembled into the global load ve
tor.

The biggest di�eren
e to the matrix
lasses op Matrix and op Lo
al: as the ve
tors

are not stored in sparse notation, they support a wide variety of operations (su
h as

addition, subtra
tion and s
aling).

3.2.5 Solver

Solving a linear system is nothing more than
omputing the inverse of the matrix and

applying the right hand side to it. Therefore, a solver is an operator whi
h takes a

matrix and a ve
tor and
al
ulates the result.

There are several di�erent solvers implemented: Conjugate Gradients in op CG, Gen-

eral Minimal Residuals in op GMRes or a dire
t solver from LAPACK [2℄ in op DGESV.

As these are all operators, they are derived from op Operator , see �gure 3.8.

3.3 Main Steps in a Con
epts Appli
ation

The main steps in a Con
epts appli
ation are:

1. Create the mesh.

2. Create the spa
e.

3. (Re�ne the mesh.)

23

3 Introdu
tion to Con
epts

4. Create the bilinear forms and the a

ording matri
es and
ombine them to form

the sti�ness matrix.

5. Create the linear forms and the a

ording ve
tors and
ombine them to form the

load ve
tor.

6. Create a Solver and solve the linear system.

7. (Analyse the error and pro
eed with step 3 if the error is too large.)

8. Post pro
essing: plots, error
omputation et
.

9. Remove the matri
es, ve
tors, the spa
e and the mesh.

The steps in parenthesis are optional.

3.4 Some UML Diagrams of Con
epts

Until now, we have only seen
lass hierar
hies. They don't present very mu
h information

about the intera
tions of the
lasses. In most obje
t oriented
odes, these intera
tions

are very
omplex|Con
epts is no ex
eption.

The graphi
al representation of
omplex
orrelations gives a mu
h faster and better

overview than a des
ription in a text. Sin
e this is not really new, the Uni�ed Modeling

Language (UML) was developed [12, 13, 14℄ and [7℄ for a short introdu
tion. It de�nes

nine di�erent diagrams for the graphi
al des
ription of obje
t oriented designs.

I have
hosen three of those nine diagrams as suitable to des
ribe the stru
ture of

Con
epts: the Class, Obje
t and Sequen
e Diagram.

3.4.1 Class Diagram

The Class Diagram des
ribes states of a data stru
ture in a general form
hara
terizing

a set of allowed states. To a
hieve this,
lasses and their member relations are shown.

An arrow in a Class Diagram des
ribes a member relation, i. e. the
lass at the tail of an

arrow has as member a referen
e to an obje
t of the
lass at the head of the arrow. The

label of the arrow is the name of the member obje
t. The number on the head
ounts

the number of referen
es whi
h are needed by the \tail
lass", in most
ases they don't

need to be distin
t, e. g. spa
eX and spa
eY in �gure 3.11 may be identi
al. The number

on the tail
ounts the number of
lasses whi
h have a referen
e to the same obje
t (n

means \arbitrary").

The Class Diagram in �gure 3.11 shows the main
lasses whi
h take part in
omputing

the sti�ness matrix and the load ve
tor for a Lapla
e equation on the unit square (0; 1)

2

meshed with geo Quadrat (see �gure 3.4(
) on page 20).

24

3.4 Some UML Diagrams of Con
epts

dg BoundaryCond

geo Vertex geo Edge geo Quad

geo Quad2dgeo Quadrat

hp HP2d hp HP2d001

op Lo
al hp Lapla
e

fn
 Ve
tor

hp Riesz

spa
eX, spa
eY

2

n

msh

1

n

elm

n

1

ell

1

1

diri
hlet, neumann

2

1

vtx

4

1

edg

4

1

quad

1

1

ell

1

1

ntr

1

1

edg
4

1

vtx

2

2

attrib

n

1

spa
e

1

n

Figure 3.11: Class Diagram of ve
tor, matrix, spa
e and topology. The bilinear form hp Lapla
e and

the linear form hp Riesz are only used temporarily by op Lo
al and fn
 Ve
tor respe
tively.

Arrows whi
h would des
ribe a loop, i. e. have the same head and tail, are not shown.

3.4.2 Obje
t Diagram

Like the Class Diagram, the Obje
t Diagram des
ribes states of a data stru
ture. Not

in general tough, but for one
on
rete state, i. e. like a snapshot of the stru
ture. To

a
hieve this, the obje
ts and their member relations are shown. An arrow in a Obje
t

Diagram des
ribes a member relation, i. e. the obje
t at the tail of an arrow has as

member a referen
e to the obje
t at the head of the arrow.

The most
ompli
ated part of the stru
ture in Con
epts is the geometry and topology,

above all, when the mesh is re�ned. Figure 3.12 shows as the initial mesh the unit square

(0; 1)

2

and then the re�nement of the square into four smaller squares. Figures 3.13 and

3.14 show the data stru
ture of the initial and the re�ned mesh respe
tively.

Initial Mesh

In �gure 3.13, from left to right are the arrays for the verti
es (type geo Vertex), the edges

(type geo Edge), the quadrilateral (of the topology, type geo Quad) and the
ell (type

geo Quad2d). One
an easily see that ea
h edge has two referen
es to verti
es and the

quadrilateral has four referen
es to edges (see also the Class Diagram in �gure 3.11). The

arrow on the left
rossing many others indi
ates that the edges are arranged
ir
ularly.

25

3 Introdu
tion to Con
epts

0 1

3 2

0

1

2

3

(a) Initial mesh.

0 1

3 2

A C

G E

B

F

H

DI

(b) Re�ned mesh.

Figure 3.12: The initial mesh and the re�ned mesh. The numbers indi
ate the indi
es of the verti
es

and the edges in the vtx and edg array respe
tively. Topologi
ally, the verti
es 0 and A are

identi
al, but in the data stru
ture, they are two di�erent obje
ts.

geo Quadrat

0

1

2

3

0

1

2

3

0 0

vtx

edg

quad

ell

Figure 3.13: The Obje
t Diagram of the initial mesh (
. f. �gure 3.12(a)). The numbers indi
ate the

indi
es of the entries in the vtx, edg, quad and
ell arrays of the mesh obje
t (symbolized

by geo Quadrat).

26

3.4 Some UML Diagrams of Con
epts

vtx

edg

geo Vertex geo Edge

hld
hld

vtx

0

1

2

3

A

B

C

D

E

F

G

H

I

0

1

2

3

AB

BC

CD

DE

EF

FG

GH

HA

BI

DIj

FI

HI

Figure 3.14: The Obje
t Diagram of the re�ned mesh (
. f. �gure 3.12(b)). Only the obje
ts of type

geo Vertex (on left) and geo Edge (on the right) are displayed. The numbered obje
ts are

the same as in �gure 3.13. The members of geo Edge indi
ated by are
alled lnk.

27

3 Introdu
tion to Con
epts

geo Quadrat

0

ABIH BCDI IDEF HIFG

quad

hld

lnk lnk lnk

Figure 3.15: Obje
t diagram of the
hildren of the geo Quad obje
t in the re�ned mesh: all obje
ts

ex
ept the one labeled geo Quadrat are of the type geo Quad.

Re�ned Mesh

The data stru
ture of the re�ned mesh (
. f. �gure 3.12(b)) is already quite
ompli
ated.

Therefore, only parts of it (only the obje
ts of type geo Vertex and geo Edge) are shown

in �gure 3.14.

Ea
h obje
t whi
h was already present in the initial mesh has got one or more

hildren in the re�ned mesh. A vertex has only one
hild, an edge has two
hildren and

a quadrilateral has four
hildren (see �gure 3.12(b)). This is also visible in �gure 3.14:

the geo Vertex obje
ts on the left have one
hld arrow pointing to a letter-labeled vertex.

The geo Edge obje
ts on the left also have a
hld arrow point to a letter-labeled edge.

This letter-labeled edge has an additional lnk arrow. The
hildren of a topologi
al obje
t

are not stored in an array but in a linked list. For the
hildren of the geo Quad obje
t

this would look like in �gure 3.15.

3.4.3 Sequen
e Diagram

A Sequen
e Diagram pi
tures the intera
tion among obje
ts. It shows the parti
ipat-

ing obje
ts together with a life line (the long re
tangle beneath the obje
t's name).

The messages the obje
ts ex
hange (symbolized by arrows) are ordered on the life line

with respe
t to their o

urren
e in time. The numbers of the phases
orrespond to the

numbers in se
tion 3.3.

Mesh Creation

Figure 3.16 shows the sequen
e of major operations to
reate the mesh (phase 1). The

onstru
tor of the mesh
lass is
alled from the main program and then all the obje
ts

whi
h form the topology (see �gure 3.13) are
reated and properly arranged. The order

of
reation of these obje
ts is: verti
es, edges, quadrilateral,
ell. The new
all to msh

only returns after the new
all to
ell, i. e. one
all from the main program is enough to

reate the mesh. The same holds for the destru
tion of the mesh: one
all suÆ
es.

28

3.4 Some UML Diagrams of Con
epts

PSfrag repla
ements

main

dg BCond

neumann

diri
hlet

msh

geo Quadrat

geo Vertex

geo Edge

geo Quad

geo Quad2d

vertex

edge

quad

ell

new

new

new

new

new

new

delete

delete

delete

delete

delete

delete

Phase 1

Phases 2{8

Phase 9

Figure 3.16: Sequen
e Diagram of the mesh
reation: in phase 1, the mesh is
reated. In the phases 2{8

the
al
ulations are performed (starting with the
reation of the spa
e)|this is not shown

here. In phase 9, the mesh is removed as one of the last steps in the main program.

PSfrag repla
ements

main

new

new

new

delete

delete

delete

msh

hp Spa
e

hp Element

adjust

adjust

Rebuild

Rebuild

Phase 2

Phases 3{7

Phase 9

Figure 3.17: Sequen
e Diagram of the spa
e
reation: in phase 2, the spa
e is
reated. In the phases 3{8

the
al
ulations are performed and the spa
e is re�ned (on
e in this example). In phase 9,

the spa
e is removed. In this diagram, the rebuild pro
ess is triggered twi
e.

29

3 Introdu
tion to Con
epts

PSfrag repla
ements

main

new

new

deletedelete

delete

lf

f

u

fn
 Ve
tor fn
 Ve
tor

hp Riesz

operator()

Phase 5

Phases 6{8

Phase 9

Figure 3.18: Sequen
e Diagram of the
reation of the ve
tors: in phase 5, the linear forms and the

a

ording ve
tors are
reated. In the phases 6{8 the
al
ulations are performed|this is

not shown here. In phase 9, the linear form and the ve
tors are removed.

Creation of the Spa
e

Figure 3.17 shows the sequen
e of operations to
reate the spa
e (phase 2). The main

parameter of the
onstru
tor of the spa
e is the mesh whi
h was
reated in phase 1.

The spa
e is only prepared in the
onstru
tor, but the elements of the spa
e are not

onstru
ted yet. As long as the elements or some other information like number of

elements or dimension is not needed, the elements are not
onstru
ted. In this phase,

the adjustment information
an be set, i. e. whi
h elements should be re�ned and what

polynomial degree they should have.

Then, when the elements are eventually ne
essary, they are
onstru
ted in two steps

by the so-
alled rebuild pro
ess. In the �rst step, the topology is re�ned if needed and

prepared for the se
ond step whi
h
reates the elements,
ounts the degrees of freedom

and
al
ulates the mapping from the lo
al to the global degrees of freedom (stored in

the T matri
es of the elements).

Linear Forms and Ve
tors

Figure 3.18 shows the sequen
e of operations to
reate a linear form, its ve
tor f and the

solution ve
tor u (phase 5).

Bilinear Forms and Matri
es, Solve

Figure 3.19 shows the sequen
e of operations to
reate the sti�ness matri
es from the

bilinear forms (phase 4) and then the solver operator Linv. The appli
ation operator

operator() of Linv is then
alled with two ve
tors: the right hand side and the empty

solution ve
tor whi
h is then �lled with the solution of the linear system (phase 6).

30

3
.
4

S
o
m
e
U
M
L
D
i
a
g
r
a
m
s
o
f
C
o
n

e
p
t
s

PSfrag repla
ements

main

new

new

new

new

new new

delete

delete

delete

delete

hp Lapla
e

hp Identity

op Lo
al

op LiCo

op CG

fn
 Ve
torfn
 Ve
tor

operator()

operator()operator()operator()

operator()operator()

a

A

id

I

L

Linv

u

f

Phase 4

Phase 6

Phase 9

Figure 3.19: Sequen
e Diagram of the
reation of the matri
es and the solution: in phase 4, the bilinear forms and the

matri
es are
reated. In the phase 6 the solution of the linear system is
omputed. In phase 9, all data

stru
tures are removed. operator() is the C++ notation for the appli
ation operator.

3
1

3 Introdu
tion to Con
epts

3.5 Element Integration

In this se
tion, the element integration algorithm as it is used in the appli
ation operator

for quadrilaterals of hp Lapla
e is dis
ussed in greater detail.

The appli
ation operator has to
ompute

Z

K

r

x

'

K

i

r

x

'

K

j

dx =

Z

^

r

x

N

i

r

x

N

j

� jF

0

K

j d�; (3.1)

where � are the
oordinates in the referen
e element

^

, jF

0

K

j is the Ja
obian of the element

mapping F

K

, '

K

i

are the shape fun
tions on element K, N

i

are the shape fun
tions on

^

: '

K

i

Æ F

K

= N

i

. Therefore,

r

x

N

i

=

�

�N

i

�x

1

�N

i

�x

2

�

; where

�N

i

�x

1

=

�N

i

��

1

��

1

�x

1

+

�N

i

��

2

��

2

�x

1

: (3.2)

In Con
epts,
urrently only bilinear elements are used. Therefore, the element map

of element K 2 T is

F

K

:

^

!
; � 7!

4

X

i=1

x

i

�N

i

(�);

where fx

i

g

4

i=1

are the verti
es of the quadrilateral K. The derivatives of the element

mapping are therefore

�F

K

��

1

=

1

=2

�

�x

1

(1� �

2

) + x

2

(1� �

2

) + x

3

�

2

� x

4

�

2

�

=

�x

1

��

1

�x

2

��

1

!

=:

1

=2s;

�F

K

��

2

=

1

=2

�

�x

1

(1� �

1

)� x

2

�

1

+ x

3

�

1

+ x

4

(1� �

1

)

�

=

�x

1

��

2

�x

2

��

2

!

=:

1

=2t:

Hen
e, jF

0

K

j =

�F

K

��

2

^

�F

K

��

2

=

s^t

=4.

The integrand in (3.1) is (using (3.2))

r

x

N

i

r

x

N

j

=

�

�N

i

��

1

��

1

�x

1

+

�N

i

��

2

��

2

�x

1

�

�

�

�N

j

��

1

��

1

�x

1

+

�N

j

��

2

��

2

�x

1

�

+

�

�N

i

��

1

��

1

�x

2

+

�N

i

��

2

��

2

�x

2

�

�

�

�N

j

��

1

��

1

�x

2

+

�N

j

��

2

��

2

�x

2

�

=

�N

i

��

1

�N

j

��

1

�

"

�

��

1

�x

1

�

2

+

�

��

1

�x

2

�

2

#

+

�

�N

i

��

1

�N

j

��

2

+

�N

i

��

2

�N

j

��

1

�

�

�

��

1

�x

1

��

2

�x

1

+

��

1

�x

2

��

2

�x

2

�

+

�N

i

��

2

�N

j

��

2

�

"

�

��

2

�x

1

�

2

+

�

��

2

�x

2

�

2

#

:

32

3.5 Element Integration

We use s; t and jF

0

K

j to
ompute the terms in square bra
kets above:

(F

0

K

)

�1

=

�

1

=2s

1

=2t

�

�1

=

4

=s^t �

�

t

2

�t

1

�s

2

s

1

�

=

�

��

1

�x

1

��

1

�x

2

��

2

�x

1

��

2

�x

2

�

:

Hen
e

�

��

1

�x

1

�

2

+

�

��

1

�x

2

�

2

=

t

2

1

+ t

2

2

jF

0

K

j

2

=:

tt

jF

0

K

j

;

��

1

�x

1

��

2

�x

1

+

��

1

�x

2

��

2

�x

2

= �

s � t

jF

0

K

j

2

=:

st

jF

0

K

j

;

�

��

2

�x

1

�

2

+

�

��

2

�x

2

�

2

=

s

2

1

+ s

2

2

jF

0

K

j

2

=:

ss

jF

0

K

j

:

Plugging all into (3.1):

Z

^

�

�N

i

��

1

�N

j

��

1

� tt+

�

�N

i

��

1

�N

j

��

2

+

�N

i

��

2

�N

j

��

1

�

� st +

�N

i

��

2

�N

j

��

2

� ss

�

�

jF

0

K

j

jF

0

K

j

d�:

All derivatives to x have vanished and are repla
ed by derivatives to �. These derivatives

are de�ned on the referen
e element

^

 and no longer on the element K|they are easily

omputable.

The same method is also appli
able to integrate the adve
tion term, where only one

of the two shape fun
tion has a derivative.

33

4 Extensions to Con
epts for DGFEM

The present
hapter des
ribes the extensions of Con
epts whi
h were ne
essary for DG-

FEM to work. The �rst se
tion des
ribes the new
lasses whi
h implement the DGFEM.

In the se
ond se
tion, the really new ideas (new to Con
epts), whi
h were introdu
ed,

are presented. The third se
tion des
ribes the other extensions whi
h were not really

ne
essary but proved quite useful. The last se
tion gives some ideas what
ould be done

next as it lists possible dire
tions of development.

4.1 New Classes for DGFEM

Most of the extension were done in new
lasses, dire
tly derived from the base
lasses

or from the
lasses in the hp-FEM pa
kage. The �gures 4.1{4.6 show these relations.

dg HP2d001 in �gure 4.1
ontains nothing new whi
h would be absolutely ne
essary

for DGFEM, but some of the
hanges made my life as programmer somewhat easier (see

se
tion 4.3.2). The
hanges leading to dg HP2d (�gure 4.2) are des
ribed in se
tion 4.2.1.

The new
lass dg Edge (�gure 4.3) was ne
essary to dete
t elements sharing an edge,

see se
tion 4.2.2. dg BoundaryCond (�gure 4.4) is used to spe
ify non-homogeneous

boundary
onditions of Diri
hlet or Neumann type, see se
tion 4.3.1. The abstra
t
lass

dg BForm in �gure 4.5 provides a few auxiliary
omputation methods for the derived

lasses. The
lasses on the highest level of derivation in �gures 4.5 and 4.6 implement

the bilinear and linear forms of the variational formulation presented in se
tion 1.3.1.

hp HP2d001

dg HP2d001

Figure 4.1: dg HP2d001 is the new quadrilateral

element for DGFEM extending the

lasses shown in �gure 3.5.

hp HP2d

dg HP2d

Figure 4.2: The new spa
e
lass for DGFEM

extending the
lasses shown in �g-

ure 3.6: dg HP2d.

35

4 Extensions to Con
epts for DGFEM

geo Edge

dg Edge

Figure 4.3: The new topologi
al edge dg Edge

for DGFEM extending the
lasses

shown in �gure 3.1.

geo Attribute

dg BoundaryCond

Figure 4.4: The new boundary
ondition
lass

dg BoundaryCond.

op BilinearForm

dg BForm

dg BDi�usion dg BAdve
tion dg Identity dg BDis
ont

Figure 4.5: The new bilinear forms dg BDi�usion, dg BAdve
tion, dg Identity and dg BDis
ont imple-

menting the bilinear forms from se
tion 1.3.1.

fn
 LinearForm

hp Riesz dg LDi�usion dg LAdve
tion dg LDis
ont

Figure 4.6: The new linear forms dg LDi�usion, dg LAdve
tion and dg LDis
ont and the old hp Riesz

implementing the linear forms from se
tion 1.3.1.

36

4.2 New Ideas for Con
epts

Algorithm 4.1 The
ontrolling method rebuild of the rebuild pro
ess.

� Remove all old elements and the
ontrol information of their edges and verti
es from the spa
e.

The
ontrol information of the
ells is retained.

� Get a s
anner over the initial mesh and for ea
h
ell in the initial mesh:

{ Call rebuild0 on level 0 with desired level �1 and desired polynomial degree �1.

� Get another s
anner over the initial mesh and for ea
h
ell in the initial mesh:

{ Call rebuild1.

� Remove the adjustment information whi
h was applied during this rebuild pro
ess.

4.2 New Ideas for Con
epts

4.2.1 Dis
ontinuous Elements

When I started my diploma thesis, only FEM were implemented. The FEM use a

ontinuous dis
retization whi
h is not suitable for DGFEM.

Problem

The
ontinuity of the basis fun
tions of the FE-spa
e is enfor
ed in the rebuild pro
ess

of the spa
e (
. f. se
tion 3.4.3). So I looked somewhat deeper into this rebuild pro
ess.

The whole pro
ess is
ontrolled by the method rebuild in the
lass hp Spa
e. The

sequen
e of operations is shown in algorithm 4.1. The main thing it does: loop twi
e

over all
ells in the initial mesh and
all the methods rebuild0 and rebuild1 for ea
h
ell.

The method rebuild0 works re
ursively and determines whi
h
ells in the topology

should be the support for an element in the spa
e and what their polynomial degree

should be. See algorithm 4.2 for the sequen
e of operations. The level of an element is

the level of re�nement in the topology. An element in the initial mesh is on level 0. One

re�nement step on su
h an element
reates four elements on level 1 (
. f. �gure 3.12 on

page 26).

The method rebuild1 also works re
ursively. In rebuild1, the degrees of freedom are

ounted, the T matri
es are
omputed and the elements are
reated, see algorithm 4.3.

The
ontinuity is enfor
ed where the degrees of freedom for the verti
es and edges are

marked as
ounted.

Solution

Essentially, the only thing I had to do was remove this marking operation. In rebuild0,

the
hanges are too small to show them with help of algorithm 4.2: on irregular edges,

the larger edge is allowed to have a polynomial degree di�erent from the smaller edges.

37

4 Extensions to Con
epts for DGFEM

Algorithm 4.2 Sequen
e of operations for rebuild0: updating the information in the

topology.

l =
urrent level, L = desired level, P = desired polynomial degree.

� If L = �1 and this
ell belonged to an element in the spa
e:

{ Get the adjustment information for the level l

adj

and the polynomial degree p

adj

.

{ L = l + l

adj

.

{ P = previous polynomial degree +p

adj

.

{ If L or P are still negative, then let L = 0 or P = 1 respe
tively.

� If we have to re�ne the
urrent
ell (l < L) or if the
urrent
ell did not belong to an element in

the spa
e:

{ For ea
h
hild of the
urrent
ell:

. Call rebuild0 on level l+ 1, with desired level L and desired polynomial degree P .

If a
hild of a
ell is a

essed for the �rst time and is not yet present in the topology, the

a

ess triggers its
reation.

� If we have to re�ne the
urrent
ell (l < L):

{ Update the information on the
ell and its edges regarding the polynomial degree.

� otherwise (i. e. no re�nement):

{ Update the information on the
ell and its edges regarding the polynomial degree.

{ Set the
ell, its edges and verti
es as \member of the spa
e", i. e. their degrees of freedom

will be
ounted and there will be an element belonging to this
ell.

38

4.2 New Ideas for Con
epts

Algorithm 4.3 Sequen
e of operations for rebuild1:
ount degrees of freedom,
ompute

T matri
es and
reate elements.

� Loop over all verti
es of the
ell:

{ If this vertex is member of the spa
e:

. If the global degree of freedom of this vertex was not yet
ounted:

� Count the degree of freedom of vertex and mark it as
ounted. The number of

the global degree of freedom of the vertex is stored in its
ontrol information.

. Add the mapping of the lo
al to the global degree of freedom to the T matrix.

� Loop over all edges of the
ell and do the same degree of freedom
ounting as for the verti
es.

� If the
ell is member of the spa
e:

{ Count the degrees of freedom and mark them as
ounted. The degrees of freedom of the

ell are stored in its
ontrol information.

{ Add the mapping of the lo
al to the global degrees of freedom to the T matrix.

{ Create the element for the
ell and add it to the spa
e.

� otherwise (i. e. the
ell is not member of the spa
e):

{ For ea
h
hild of the
urrent
ell:

. Re
ompute the T matrix for the already
omputed degrees of freedom of the edges

and verti
es.

. Call rebuild1.

39

4 Extensions to Con
epts for DGFEM

Algorithm 4.4 Sequen
e of operations to assemble a symmetri
 sti�ness matrix.

� Loop over all elements K of the spa
e:

{ Compute A

K

by using the appli
ation operator of the bilinear form.

{ Get the T matrix T

K

of K.

{ Transform the lo
al degrees of freedom into global ones by

�

(A

K

T

K

)

>

� T

K

�

>

= T

>

K

A

K

T

K

.

{ Add T

>

K

A

K

T

K

entry by entry into the global sti�ness matrix.

In rebuild1 the
hanges were only minor too: I removed the
he
k if a degree of

freedom was already
ounted. The result is that a vertex is
ounted on
e for every

element it is in. The same for the edges. Therefore, the shape fun
tions are no longer

assembled in su
h a way that the resulting basis fun
tions are
ontinuous.

4.2.2 Integration over an Edge

Many integrals in the variational formulation in se
tion 1.3.1 are over an edge and not

over a whole element like in FEM (se
tion 1.1). This is a new idea in Con
epts as until

now, all integrals were
omputed over whole elements and not over an element boundary

like an edge.

Problems

More than one problem arises if integration over an edge is required:

1. Not only the shape fun
tions on the same element intera
t with ea
h other but

also those on neighbouring elements have intera
tions.

The evaluation of e. g. [u℄ h(arv) � n

e

i like in (1.16) on an edge requires the values

of u and v from both sides of the edge. The interfa
e of a bilinear form pres
ribed

by op BilinearForm (se
tion 3.2.3) is su
h that the method
omputing the bilinear

form gets two elements on whi
h the
onsidered shape fun
tions for u and v have

their support. Hen
e, means to �nd out if two elements share an edge are needed.

This is not always very simple sin
e these two elements
an be lo
ated on di�erent

levels of the topology and there are no possibilities to
ompare them or their edges

dire
tly.

2. In the FEM problems solved until now, only symmetri
 sti�ness matri
es were

omputed.

These were sti�ness matri
es where the elements intera
ted only with themselves

and not with their neighbours. Therefore, the
onstru
tor of op Lo
al or op Matrix

assembling the matrix only
alled the appli
ation operator of the given bilinear

form like shown in algorithm 4.4.

40

4.2 New Ideas for Con
epts

Algorithm 4.5 Sequen
e of operations in
ontained: is the edge e
ontained in e

0

or

vi
e-versa?

Called on edge e with edge e

0

as argument.

� If e = e

0

, return 1.

� If level of e < level of e

0

:

{ Coarsen edge e

0

(level of e

0

� level of e) times, if possible. Otherwise, return 0.

{ If e = e

0

, return 2.

� If level of e

0

< level of e:

{ Coarsen edge e (level of e� level of e

0

) times, if possible. Otherwise, return 0.

{ If e = e

0

, return 3.

� Return 0.

There already existed a
onstru
tor whi
h
omputed all the ne
essary element

matri
es but it did not take into a

ount that the resulting global sti�ness matrix

was not symmetri
.

Solutions

The problems shown above were not equally diÆ
ult to solve:

1. To solve this problem, I wrote a new method
ontained in the
lass dg Edge derived

from geo Edge whi
h dete
ts if an edge is
ontained in another one or vi
e-versa.

The method
alled on edge e needs as argument an edge e

0

. The method returns:

0 if e \ e

0

= ;.

1 if e = e

0

.

2 if e � e

0

.

3 if e � e

0

.

The dete
tion of e = e

0

is easy as ea
h edge has a unique key. Therefore, e = e

0

,

the key of e and e

0

are equal. To dete
t either e � e

0

or e � e

0

, I introdu
ed a level

for ea
h edge. This level indi
ates on whi
h level of the topology the edges lives.

If an edge is a
hild of an other edge (it was
reated in a re�nement pro
ess of an

edge), then there is a referen
e to the father of the edge. Otherwise, there is no

father.

With these means, on
an implement algorithm 4.5.

The referen
e to the father and the level
ounter make the memory footprint of

the topology somewhat larger. There would be a possibility to get the same result

without a referen
e to the father. One
ould re�ne the edge with the lower level

41

4 Extensions to Con
epts for DGFEM

Algorithm 4.6 Sequen
e of operations to assemble a non-symmetri
 sti�ness matrix.

� Loop over all elements K of the spa
e:

{ Get the T matrix T

K

of K.

{ Loop over all elements K

0

of the spa
e:

. Compute A

KK

0

by using the appli
ation operator of the bilinear form.

. Get the T matrix T

K

0

of K

0

.

. Transform the lo
al degrees of freedom into global ones by

�

(A

KK

0

T

K

0

)

>

� T

K

�

>

=

T

>

K

A

KK

0

T

K

0

.

. Add

�

T

>

K

A

KK

0

T

K

0

�

>

entry by entry into the global sti�ness matrix (whi
h will be the

transposed global sti�ness matrix).

as many times until it has the same level as the other edge. But this idea has two

drawba
ks:

� Re�ning an edge
reates two new edges whi
h have to be
he
ked, i. e. a lot

of
ases arise.

� Re�ning an edge
reates two new edges in the topology, if they are not al-

ready present. During the
omputation of the sti�ness matri
es, all edges are

ompared with ea
h other. For a geometri
 mesh, this means a lot of useless

edges would be
reated in the topology and would not be removed afterwards.

2. The non-symmetri
 sti�ness matri
es should be available in transposed form as

(1.6) suggests. Algorithm 4.6 does exa
tly that.

4.3 Other Extensions

4.3.1 Boundary Conditions

During my investigation of the present
ode of Con
epts, I did not �nd any means

to implement variable boundary
onditions. Ho
h and R�uegg implemented mixed and

variable boundary
onditions in [15℄ but this implementation did not suit my needs.

Therefore, I did my own implementation of boundary
onditions by
reating a
lass

dg BoundaryCond, derived from geo Attribute (
. f. �gure 4.4).

Until now, boundary
onditions were only a type,
oded as an integer, i. e. the
lass

geo Attribute represents essentially only a number. Hen
e, it was possible to in
lude

a
opy of the boundary
ondition obje
t in ea
h topologi
al obje
t needing boundary

onditions. As I needed at least a fun
tion for ea
h boundary
ondition type, these

obje
t would have been signi�
antly too large to be in
luded in every topologi
al obje
t.

That's why I
hanged the whole idea of boundary
onditions in the topology. Now,

there is only a referen
e to a boundary
ondition stored in ea
h topologi
al obje
t whi
h

42

4.3 Other Extensions

needs boundary
onditions. The boundary
ondition obje
t itself is only needed on
e

for ea
h boundary
ondition and is
reated at the beginning of the mesh
reation and

destroyed at the end of the mesh removal (
. f. �gure 3.16).

The
lass dg BoundaryCond takes a type and a fun
tion as
onstru
tor arguments

and has methods to query the type and to
ompute the value of the fun
tion at a
ertain

physi
al point.

4.3.2 Graph of a Solution

Developing new bilinear and linear forms for Con
epts is rather dire
t and straight

forward from the algorithmi
 point of view. But if you have to
ode these new bilinear

and linear forms, there are many possibilities to make mistakes. Most of the new
ode

I had to write has to do with integration over edges.

When I started my diploma thesis, the only available output was the whole sti�ness

matrix or the L

2

error at the end of the
omputation. Whereas the former provides too

mu
h, the latter does not provide enough information. On the other hand, a graphi
al

interpretation of the solution ve
tor would be the ideal mean to dis
over mistakes in the

integration over an edge as they show up as large jumps although the solution is smooth

and well behaved.

To
reate su
h a graphi
al interpretation of the solution ve
tor there were di�erent

things to do:

1. As the elements have the information about the shape fun
tions and
an evaluate

the solution ve
tor, the solution ve
tor has to be stored in the elements.

I wrote a new method for the spa
e
lass dg HP2d: storeSolution whi
h
alls store-

Solution on ea
h element. The method storeSolution of an element takes the ne
es-

sary
oeÆ
ients out of the solution ve
tor (using the information in the T matri
es)

and stores them lo
ally.

2. Evaluate the solution in a mesh of points and
reate a pi
ture of the data.

I wrote a new method for the element
lass dg HP2d001: solutionInPoint whi
h

omputes the value of the solution in a given point. The method drawGraph in the

spa
e
lass
alls this method for the points of a mesh and stores the data in a �le

whi
h
an be read by Gnuplot [19℄.

The methods as des
ribed above
an also be used to draw a pi
ture of the error on

the domain
 if the exa
t solution is known. The
oeÆ
ients of the exa
t solution are

omputed by a L

2

proje
tion and a simple subtra
tion gives the
oeÆ
ients of the error.

4.3.3 Sort of Adaptivity

With the linear polynomial degree distribution ve
tor as des
ribed in proposition 2.13,

most graphs of the error show that the error was not distributed in su
h a way that the

43

4 Extensions to Con
epts for DGFEM

Algorithm 4.7 Sequen
e of operations for a geometri
 mesh in an adaptive algorithm.

� Compute the exa
t solution and the DGFE-solution.

� Store the solution and the weights to
ompute the error from the solution ve
tor in the elements.

� Loop over all elements and get the maximal element error e

max

.

� Loop over all elements K 2 T :

{ If the element error e

K

> � � e

max

then:

. If the origin is in the element K, then re�ne it (i. e. subdivide it). Otherwise: raise

the polynomial degree by 1.

� Start again with the
omputation on top.

linear degree ve
tor is the ideal way of re�nement. This raised the idea of an adaptive

algorithm.

To make this possible I wrote another set of methods to store the weights to
ompute

the L

2

error. With this, it is possible to
ompute the element error by a simple s
alar

produ
t between the
oeÆ
ients of the solution ve
tor and the weights. This easy way

of
omputing the lo
al error is only possible, if the exa
t solution is known.

Algorithm 4.7 shows an hp-re�nement algorithm to
reate a geometri
 mesh towards

the origin (where the singularity of the exa
t solution lies).

4.3.4 Debugging Te
hniques

Debugging a large library like Con
epts is sometimes painful. I developed some te
h-

niques whi
h I des
ribe in this se
tion.

Using a Debugger

I
hose DDD|Data Display Debugger [20℄ as my favorite debugger be
ause of its ex
el-

lent way to graphi
ally display
ompli
ated data stru
tures.

Using a debugger is not always the best
hoi
e. Above all, if you want to have a

qui
k overview what happens at a
ertain point in the
ode in a large loop, sele
tive

output on s
reen is mu
h better suited.

Output on S
reen

To handle output on s
reen eÆ
iently, I introdu
ed two
ompiler ma
ros in the top level

in
lude �le debug.h: DP and DPL. The �rst one stands for \debug print"and the se
ond

stands for \debug print line". Pristinely, these are not my idea but are inspired by Rolf

Negri, an assistant at the Institute for Operations Resear
h at the ETH.

44

4.4 Wish List for Extensions

These ma
ros both have three arguments: an integer to turn the output on and o�,

a text and an arbitrary variable. De�ning the integer in a pa
kage level in
lude �le (e. g.

dgDebug.h for the DGFEM pa
kage) gives an as �ne grained
ontrol over the debugging

messages as one wishes to have.

For a produ
tion build of the library, the
ompiler de�ne DEBUG
an be omitted and

all ma
ros DP and DPL are ignored.

Assertions

A third mean to debug a
ode is to use assertions. If an assertion fails, the exe
ution of

the program is immediately terminated with a verbose error message des
ribing the �le

and the line in the �le where the assertion failed. These assertions are only a
tive in a

debugging build of the library and don't slow the exe
ution in a produ
tion build.

Assertions should be used to
he
k the prerequisites of a method, e. g. the range of

parameters.

4.4 Wish List for Extensions

The �rst paragraph lists some possible te
hni
al extensions to Con
epts whi
h do not

really extend the fun
tionality but rather make it easier to add new
omponents. The

se
ond paragraph lists some wishes whi
h arose during my diploma thesis.

4.4.1 Te
hni
al Extensions

Lage, the main author of Con
epts, who is still a
tively developing and maintaining it,

plans to use more C++ features whi
h were not stable when he started the development

of Con
epts. Namely, these are ex
eptions (error handling), name spa
es (to remove the

ugly geo , hp et
. pre�xes) and templates (i. e. parametrized
lasses).

4.4.2 Algorithmi
 and Fun
tional Extensions

The extensions to Con
epts I des
ribed in this
hapter are by far not
omplete:

� The bilinear and linear forms des
ribed in se
tion 4.1
an only
ope with problems

with
onstant
oeÆ
ients. Therefore, a next step
ould be to implement non-

onstant
oeÆ
ients for the di�usion, adve
tion and the absolute term.

For the di�usion term, even a symmetri
 matrix of
oeÆ
ients would be desirable.

� The theoreti
al proof of the exponential
onvergen
e in
hapter 2 uses strongly

enfor
ed Diri
hlet boundary
onditions whereas the variational formulation in se
-

tion 1.3.1 used as the basis for the implementation of DGFEM uses weakly enfor
ed

45

4 Extensions to Con
epts for DGFEM

Diri
hlet boundary
ondition. The best solution would be, if the user
ould
hose

between weakly and strongly enfor
ed boundary
onditions.

Be
ause of this di�eren
e, the results presented in the next
hapter are not as sig-

ni�
ant as they
ould be if the boundary
onditions were implemented di�erently.

But implementing strongly enfor
ed boundary
onditions takes more time than

there is for a diploma thesis.

� The graphi
s of the mesh (whi
h are already part of the
lass hp HP2d) are not

very good looking. The graph of the solution des
ribed in this
hapter does not

show the mesh at all. More sophisti
ated graphi
s should in
lude the mesh and

the solution in one image.

Another enhan
ement whi
h also belongs to the domain of user interfa
e is a mesh

generator. Currently, the meshes are
oded by hand in a spe
ialized
lass, for

instan
e dg LShape in the appendix on page 78 and following.

� The element
lass dg HP2d001 is derived from the FE-
lass hp HP2d001. There-

fore, it uses the same shape fun
tions as the FE-
ode. This is not really a sensi-

ble
hoi
e, sin
e the terms with the normal derivative in the bilinear form (1.16)

make all shape fun
tions exterior shape fun
tions, i. e. they all intera
t with the

neighbouring elements. Choosing doubly integrated Legendre polynomials as shape

fun
tions results in only 16 exterior shape fun
tions, the rest are internal shape

fun
tions. The degrees of freedom asso
iated with internal shape fun
tions
an be

eliminated with stati

ondensation. On the other hand, this
hoi
e implies that

the polynomial degree is at least three.

The ne
essary
hanges to implement these shape fun
tions would a�e
t the rebuild

pro
ess in the spa
e
lass (where the degrees of freedoms are
ounted) and the

element
lass (where the shape fun
tions and their derivatives are evaluated).

See [8℄ for a short summary on shape fun
tions based on the doubly integrated

Legendre polynomials.

� Implementing better suited shape fun
tions would have the bene�t that stati

ondensation was possible. This idea is
ompletely missing in Con
epts right now,

also in the FEM
ode.

� The shape fun
tions on the quadrilaterals have a tensor produ
t Ansatz:

N

i

(�) = N

i

(�

1

; �

2

) =M

k

(�

1

) �M

l

(�

2

);

where fM

K

g

k

are one dimensional shape fun
tions on (0; 1). This property
an

be exploited during the element
omputations with so
alled sum fa
torization [6℄.

The bene�t is signi�
antly redu
ed
omputation time for the element matri
es for

high polynomial degrees.

46

4.4 Wish List for Extensions

In Con
epts, the shape fun
tions in hp HP2d001 are
urrently not available as fa
-

torsM

k

andM

l

but only as produ
tN

i

. This has to be
hanged if sum fa
torization

should be implemented.

� If only few elements are
hanged, the new solution should be not so far from the

old solution|at least in the elements whi
h have not
hanged. Therefore, saving

the old solution and taking it as a starting value for an iterative solve for the new

solution should save some
omputation time. This is would be a �rst step towards

a multi grid algorithm.

For a true multi grid algorithm, the new solution on
hanged elements has to be

approximated by an interpolation of the old solution. Then the solver itself works

iteratively on di�erent meshes to approximate the solution of the linear system.

47

5 Numeri
al Results

In this
hapter, the numeri
al results whi
h should provide the eviden
e of the theoreti
al

results in
hapter 2 are presented. The model problem is introdu
ed in the �rst se
tion.

The results on the unit square and on a L shaped domain are given in the
onse
utive

se
tions. In the last se
tion, the
on
lusions are drawn from the
omputations: does the

implemented variational formulation from se
tion 1.3.1 provide exponential
onvergen
e?

Also in the last se
tion of this
hapter: the impa
t of the stabilisation on the error and

the
ondition number of the sti�ness matrix.

All
omputations in the se
ond and third se
tion have been done without stabilisa-

tion. The error of the numeri
al solution is shown in two di�erent norms:

� The error in the energy norm: ju� u

DG

j

2

DG

= B(u� u

DG

; u� u

DG

). Observe that

this norm is not the same for the stabilised version and the version without stabili-

sation: the bilinear form B is taken from (1.26) with and without the stabilisation

term respe
tively.

� The error in the L

2

-norm: ku� u

DG

k

2

0

=

R

ju� u

DG

j

2

dx. This norm does not

depend on the stabilisation.

5.1 Model Problem

In order be able to
ompute the error without
ompli
ated error estimation, I
hose the

exa
t solution and
al
ulated the a

ording right hand side. The exa
t solution should

have some sort of singularity at one point. There are many di�erent possibilities, e. g.

u =

p

r, where r

2

= (x

1

)

2

+ (x

2

)

2

, i. e. r is the distan
e from the origin.

The domains of interest are the unit square and an L shaped domain (see �gures 5.6

and 5.7 on page 52 respe
tively). The exa
t solutions are shown in �gure 5.1 and

�gure 5.2 for the unit square and the L shaped domain respe
tively.

Inserting a = 1, b = (0; 0),
 = 1 and u =

p

r into (1.13) gives:

3(x

1

)

2

4

p

r

7

+

3(x

2

)

2

4

p

r

7

�

1

p

r

3

+

p

r = f: (5.1)

49

5 Numeri
al Results

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

PSfrag repla
ements

x

1

x

2

Figure 5.1: The exa
t solution on the unit

square (0; 1)

2

.

-1
-0.5

0
0.5

1 -1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

PSfrag repla
ements

x

1

x

2

Figure 5.2: The exa
t solution on the L shaped

domain.

The boundary
onditions on the unit square are of Diri
hlet type on the
oordinate

axes and of Neumann type otherwise. Hen
e, the Diri
hlet boundary
onditions are

uj

x

1

=0

=

p

x

2

and uj

x

2

=0

=

p

x

1

and the Neumann boundary
onditions are

�u

�n

�

�

�

�

x

1

=�1

=

1

2(1 + (x

2

)

2

)

3

=4

=

x

1

2

p

r

3

and

�u

�n

�

�

�

�

x

2

=�1

=

1

2(1 + (x

1

)

2

)

3

=4

=

x

2

2

p

r

3

:

5.2 Results on the Unit Square

The results on the unit square (0; 1)

2

for u =

p

r are presented in the following.

The meshes in pi
tures like �gure 5.3 or 5.4 show the element boundaries and ea
h

element is
oloured a

ording to its polynomial degree: the darker an element the higher

its polynomial degree.

h-version DGFEM

In the h-version DGFEM, only the mesh is re�ned and the polynomial degree is kept

onstant.

There are basi
ally two methods to perform the mesh re�nement: uniformly on the

whole domain of interest or adaptively on the elements with the highest error. The

uniform re�nement is easy to implement, be
ause all elements
an be treated in the

same way. The adaptive re�nement is not mu
h harder be
ause the exa
t solution is

known. Algorithm 4.7 shows an adaptive algorithm to
reate a geometri
 mesh towards

the origin in the unit square. This algorithm
an also be used to perform an adaptive

h-re�nement if every element with a large error is subdivided.

Figure 5.5 shows the results of some
al
ulations on the unit square. Figure 5.3 shows

the mesh after �ve adaptive h-re�nement steps with p = 1.

50

5.2 Results on the Unit Square

PSfrag repla
ements

Figure 5.3: The mesh on the unit square after

�ve adaptive h-re�nement steps.

PSfrag repla
ements

Figure 5.4: The mesh on the unit square after

�ve adaptive p-re�nement steps on

an initial mesh with 16 elements.

PSfrag repla
ements

e

n

e

r

g

y

e

r

r

o

r

2

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�7

0 200 400 600 800 1000 1200 1400 1600

1800

uniform h-re�nement

adaptive h-re�nement, p = 1

uniform p-re�nement

adaptive p-re�nement, 16 elements

Figure 5.5: The error ju� u

DG

j

2

DG

of the h- and the p-version DGFEM on the unit square.

51

5 Numeri
al Results

PSfrag repla
ements

0

1

1

x

1

x

2

Figure 5.6: The unit square (0; 1)

2

.

PSfrag repla
ements

0

1

1

x

1

x

2

Figure 5.7: An L shaped domain.

p-version DGFEM

In the p-version DGFEM, only the polynomial degree is raised and the mesh is left

unre�ned.

As in the h-version DGFEM, there are two methods to re�ne the mesh: uniformly on

all elements or adaptively depending on the element error. The uniform re�nement was

performed on a one-element-mesh, the adaptive re�nements on a mesh with 16 elements.

Figure 5.4 shows the mesh with 16 elements after four re�nement steps. Figure 5.5 shows

the results of the p-version DGFEM. The
urves don't go further be
ause the maximal

polynomial degree of 15 was rea
hed during the
omputations.

hp-version DGFEM

In the hp-version DGFEM, the polynomial degree is raised and the mesh is re�ned at

the same time (but not ne
essarily on the same element).

Again, there are two methods to re�ne the mesh: adaptively (
. f. algorithm 4.7) or

with a linear degree ve
tor (
. f. proposition 2.13).

Figure 5.8 shows the results of the hp-version DGFEM with the linear degree ve
tor.

The
urve for � = 2 stops early be
ause the maximal polynomial degree of 15 was

rea
hed, whereas the
urve for � =

1

=2 stops early be
ause the error was growing instead

of falling for more than 800 degrees of freedom.

Figure 5.9 shows the results of the hp-version DGFEM with the adaptive algo-

rithm 4.7. Whereas for the linear degree ve
tor above, I only re�ned towards the origin,

I made some more experiments with the adaptive algorithm. I re�ned towards one and

three
orners (see �gure 5.10 for an idea of the meshes) and modi�ed the parameter

52

5.2 Results on the Unit Square

PSfrag repla
ements

e

n

e

r

g

y

e

r

r

o

r

2

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�8

10

�10

10

�12

10

�14

0 200 400 600 800 1000 1200 1400 1600 1800

� =

1

=2

� = 1

� = 2

1
orner

3
orners

1
orner, � =

1

=5

Figure 5.8: The error of the hp-version DGFEM with the linear degree ve
tor on the unit square.

PSfrag repla
ements

e

n

e

r

g

y

e

r

r

o

r

2

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�8

10

�10

10

�12

10

�14

0 200 400 600 800 1000 1200 1400 1600 1800

� =

1

=2

� = 1

� = 2

1
orner

3
orners

1
orner, � =

1

=5

Figure 5.9: The error of the hp-version DGFEM with the adaptive algorithm on the unit square. Nor-

mally, � =

1

=2 unless stated otherwise.

53

5 Numeri
al Results

PSfrag repla
ements

(a) Re�nement towards one
orner in (0; 1)

2

.

PSfrag repla
ements

(b) Re�nement towards three
orners in

(0; 1)

2

: towards all
orners but (1; 1).

Figure 5.10: Re�nement towards
orners of the unit square.

� whi
h
ontrols how large the error of an element is allowed to be in order that the

element is not
hanged (i. e. is not re�ned and the polynomial degree is not
hanged),

see algorithm 4.7 for details. All
urves rea
hed the maximal polynomial degree of 15.

For the
urves in the �gures above, if not already stated otherwise, only
omputation

time and memory demand were a problem, i. e. the matri
es grew too large to be solved

in a

eptable time.

Comparison

The
omparisons in �gure 5.11 and 5.12 show that the hp-version is far superior
ompared

to the h- or the p-version DGFEM. It does not matter mu
h if with an adaptive algorithm

or with a linear degree ve
tor, tough.

5.3 Results on an L Shaped Domain

The results in this se
tion are not as detailed as those in the previous se
tion be
ause

we already have an idea whi
h parameters give good
onvergen
e.

The results of the hp-version DGFEM with the linear degree ve
tor and the adaptive

algorithm are shown in �gure 5.13. To get an idea of the used meshes during the

omputations, see �gure 5.14.

54

5.3 Results on an L Shaped Domain

PSfrag repla
ements

L

2

-

e

r

r

o

r

2

energy error

2

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�8

10

�10

10

�12

10

�14

0 200 400 600 800 1000 1200 1400 1600 1800

� =

1

=2

� = 1

� = 2

� = 3

adaptive h-re�nement, p = 1

uniform p re�nement, 1 element

linear degree ve
tor, � = 1

adaptive, 1
orner, � =

1

=5

Figure 5.11: The error of the h-, p- and hp-version DGFEM on the unit square in the L

2

-norm.

PSfrag repla
ements

L

2

-error

2

e

n

e

r

g

y

e

r

r

o

r

2

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�8

10

�10

10

�12

10

�14

0 200 400 600 800 1000 1200 1400 1600 1800

� =

1

=2

� = 1

� = 2

� = 3

adaptive h-re�nement, p = 1

uniform p re�nement, 1 element

linear degree ve
tor, � = 1

adaptive, 1
orner, � =

1

=5

Figure 5.12: The error of the h-, p- and hp-version DGFEM on the unit square in the energy norm.

55

5 Numeri
al Results

PSfrag repla
ements

e

n

e

r

g

y

e

r

r

o

r

2

degrees of freedom

1

0.1

0.01

0.001

0 200 400 600 800 1000 1200 1400 1600 1800

linear degree ve
tor, � = 1

adaptive, � =

1

=5

Figure 5.13: The error of the hp-version DGFEM on the L shaped domain.

PSfrag repla
ements

(a) Re�nement of the L shaped domain with

the adaptive algorithm.

PSfrag repla
ements

(b) Re�nement of the L shaped domain with

the linear degree ve
tor.

Figure 5.14: Re�nement of the L shaped domain.

56

5.4 Con
lusions

Problem 2b C

2

Fit

unit square, linear degree ve
tor, � = 1 0.87072 2.2937 yes

unit square, adaptive, 1
orner, � =

1

=5 1.17860 8.2348 no

L shape, linear degree ve
tor, � = 1 0.46106 1.1255 yes

L shape, adaptive, � =

1

=5 0.78555 4.1134 no

Table 5.1: Parameters of the interpolating
urves in �gure 5.15.

5.4 Con
lusions

5.4.1 Exponential Convergen
e

The results in
hapter 2 predi
t exponential
onvergen
e for the linear degree ve
tor,

i. e.

ju

ex

� u

DG

j

DG

� Ce

�b

3

p

N

:

All
onvergen
e plots in this
hapter are semi-logarithmi
 be
ause one
an see exponen-

tial
onvergen
e of the form error � Ce

�bN

quite
learly as a straight line, sin
e

error � Ce

�bN

ln(error) � lnC � bN;

where N stands for the degrees of freedom. Unfortunately, the predi
ted error bound

has got this

3

p

N whi
h results in

ju

ex

� u

DG

j

DG

� Ce

�b

3

p

N

ln(ju

ex

� u

DG

j

DG

) � lnC � b

3

p

N

whi
h
annot be identi�ed easily in su
h a plot. Plotting the error against

3

p

N makes

this easier: the
urve should be a straight line there.

To make the identi�
ation even easier, I have
al
ulated the parameters b and C

from two points in the plots and in
luded the resulting graphs in �gure 5.15 for both

the L shaped domain and the unit square. All plots are against the square of the error,

therefore

ln(ju

ex

� u

DG

j

2

DG

) � lnC

2

� 2b

3

p

N

b

=2

3

p

N

The results of the interpolation are summed up in table 5.1. Although the meshes

in the proof in
hapter 2 and in Con
epts are slightly di�erent, the method using the

linear degree ve
tor yields exponential
onvergen
e like predi
ted.

The adaptive method (
. f. algorithm 4.7) does not yield exponential
onvergen
e

but a

ording to �gure 5.15, they rea
h the same absolute error with mu
h less degrees

of freedom up to a
ertain bound. May be, there is more sophisti
ated algorithm whi
h

keeps the
onvergen
e rate from
attening for growing number of degrees of freedom.

57

5 Numeri
al Results

PSfrag repla
ements

e

n

e

r

g

y

e

r

r

o

r

2

3

p

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

2 4 6 8 10 12

interpolation

interpolation

interpolation

interpolation

unit square, linear degree ve
tor, � = 1

unit square, adaptive, 1
orner, � =

1

=5

L shape, linear degree ve
tor, � = 1

L shape, adaptive, � =

1

=5

Figure 5.15: Con
lusion on the unit square and on the L shaped domain. The interpolation
urve is

drawn without points interpolating the
urve just above in the legend of the plot.

58

5.4 Con
lusions

PSfrag repla
ements

o

n

d

i

t

i

o

n

n

u

m

b

e

r

degrees of freedom

1

10

100

1000

10000

10

5

10

6

0 200 400 600 800 1000

1000

1200 1400 1600 1800

stabilisation

stabilisation

unit square, linear degree ve
tor, � = 1

unit square, adaptive, 1
orner, � =

1

=5

L shape, linear degree ve
tor, � = 1

L shape, adaptive, � =

1

=5

Figure 5.16: The impa
t of stabilisation on the
ondition number of the sti�ness matrix. The stabilised

version of a
urve is the one just below in the legend of the plot.

5.4.2 Stabilisation

Up to here, all
omputations were done without the stabilisation from (1.23) or (2.6).

Nevertheless, �gure 5.15 shows exponential
onvergen
e.

The
ondition number of the stabilised sti�ness matri
es does not improve
ompared

to the non-stabilised matri
es. Figure 5.16 shows the impa
t of stabilisation on the

ondition number of the sti�ness matri
es.

The �gures 5.17 (for the L

2

-error) and 5.18 (for the energy error) show the impa
t

of stabilisation on the error. Both on the unit square and on the L shaped domain and

both for the L

2

-error and the energy error, the stabilised method is somewhat better.

The improvement is not in the
onvergen
e rate b but only in the
onstant C, tough.

This
on
lusion
an be drawn without
omputing the parameters b and C: the respe
tive

lines in the plots are parallel.

59

5 Numeri
al Results

PSfrag repla
ements

L

2

-

e

r

r

o

r

2

energy error

2

3

p

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

2 4 6 8 10 12

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�8

10

�10

10

�12

10

�14

stabilisation

stabilisation

unit square, linear degree ve
tor, � = 1

L shape, linear degree ve
tor, � = 1

Figure 5.17: The impa
t of stabilisation on the L

2

-error. The stabilised version of a
urve is the one

just below in the legend of the plot.

PSfrag repla
ements

L

2

-error

2

e

n

e

r

g

y

e

r

r

o

r

2

3

p

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

2 4 6 8 10 12

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�8

10

�10

10

�12

10

�14

stabilisation

stabilisation

unit square, linear degree ve
tor, � = 1

L shape, linear degree ve
tor, � = 1

Figure 5.18: The impa
t of stabilisation on the energy error. The stabilised version of a
urve is the

one just below in the legend of the plot.

60

Closing Remarks

The theoreti
al part in
hapter 2 proofs the exponential
onvergen
e of the hp-version of

the DGFEM with a linear degree ve
tor [18℄, i. e. the ve
tor of polynomial degrees on

the mesh is given by

p =

�

p

ij

= p

i

; i = 0; : : : ; n; j = 1; 2; p

i

= max f1; b�i
g

	

;

where p

ij

is the polynomial degree of the j

th

element on level i of the mesh, see �gure 2.1

on page 13 and proposition 2.13 on page 12. This de�nes the standard mesh on the

referen
e element

^

 (the unit square (0; 1)

2

). On a polygon, near ea
h vertex of the

polygon, the mesh is
onstru
ted in the same way as on the referen
e element: see

de�nition 2.14 on page 13. With su
h a mesh, the
onvergen
e is exponential:

ju

ex

� u

DG

j

DG

� Ce

�b

3

p

N

;

where N is the number of degrees of freedom, u

ex

the exa
t solution of the problem and

u

DG

the DGFEM-approximation. The problem in this
ase is of the form

�r(aru) +
u = f in
; u = 0 on �

D

and (aru) � n = g

N

on �

N

:

In the pra
ti
al part in
hapter 5, I found the same
onvergen
e rate for the model

problem u

ex

=

p

r on the unit square (0; 1)

2

and on an L shaped domain (
. f. �gure 5.7

on page 52), no matter if stabilised or not. These results are presented in se
tion 5.4.

The equations whi
h I implemented are not exa
tly the same as in the theoreti
al part,

though. These di�eren
es are summarized in the following table:

Theory Pra
ti
e

Mesh �gure 2.1, page 13 �gure 5.10, page 54

Diri
hlet boundary
onditions strongly enfor
ed weakly enfor
ed

Note of Thanks

I would like to thank the following people for helping me with my diploma thesis: Ana-

Maria Mata
he (she helped me to understand the software Con
epts), Thomas Wihler

(he
he
ked some of my
omputations and he and Prof. S
hwab are writing the paper

[18℄ from whi
h I took the theoreti
al part) and Prof. S
hwab (despite he had to instru
t

me, he had a lot of
on�den
e in me).

61

A Do
umented Sour
e Code of the

Extensions to Con
epts

A.1 Integration over an Edge

As des
ribed in se
tion 4.2.2, to dete
t
ommon edges of two elements, I wrote the
lass

dg Edge. The header and the implementation �le for dg Edge are printed below.

In addition to the
lass dg Edge, the
lass dg Quad was needed for two reasons:

� When re�ning a quadrilateral, all new edges have to be of the type dg Edge.

� The implementation of the linear polynomial degree distribution ve
tor des
ribed

in
hapter 2 needs the level of ea
h element. This level information is added in

dg Quad.

dgTopology.h

/* -*-
++ -*-

* Topology for DG FEM

*
onne
tivity informations

*/

#ifndef dgTopology h

#de�ne dgTopology h

#in
lude <iostream.h>

#in
lude <typeinfo>

#in
lude "../
on
epts.h"

#in
lude "../geometry/geoTopology.h"

// *** dg Edge **

/** An edge in the topology of DGFEM. Additional level and father

information to dete
t elements whi
h share
ommon edges. */

lass dg Edge : publi
 geo Edge f

publi
:

63

A Do
umented Sour
e Code of the Extensions to Con
epts

/** Constru
tor. Creates an edge out of two verti
es. The
onstru
tor of

geo Edge is
alled to
reate the edge. Then, the level and father

information is stored. */

dg Edge(geo Vertex& vtx0, geo Vertex& vtx1,

geo Attribute* attrib = 0,

onst dg Edge* father = 0,
onst uint level = 0);

virtual ~dg Edge() fg

/** Returns a
hild. If no
hild exists, two new
hildren are

reated (with the same attributes as this one). The new edges all

have a level whi
h is in
reased by one. Their father pointer is

also initialized with the right value. */

virtual geo Edge*
hild(uint i);

/// Returns information in an output stream

virtual ostream& info(ostream& os)
onst;

/** Returns a pointer to the father. */

inline
onst dg Edge* father()
onst f

return father ;

g

/** Returns the relation of the two edges, ie. if one is
ontained in

the other.

This method is new and not yet

fully stable, ie. it
an move or
hange its name. Better suited

would be one level up in the hierar
hy (ie. geo Conne
tor1).

�return nbeginfitemizeg

nitem 0: Neither of the edges is
ontained in the other

nitem 1: The edges are equal

nitem 2: The other edge is
ontained in this edge

nitem 3: This edge is
ontained in the other edge

nendfitemizeg

�param other The other edge */

onst uint
ontained(
onst dg Edge& other)
onst;

private:

/** Pointer to the father edge. The father information is stored

on
reation and not
hanged afterwards. */

onst dg Edge* father ;

/** The level of the edge. The level information is stored

on
reation and not
hanged afterwards. */

onst uint level ;

geo Edge*& getLnk () f

return lnk ;

g

64

A.1 Integration over an Edge

g;

// *** dg Quad **

/** A quadrilateral in the topology. Additional level information to

make meshes with linear polynomial degree destribution ve
tor

possible. */

lass dg Quad : publi
 geo Quad f

publi
:

/** Constru
tor. Creates a quadrilateral out of four edges.

The
onstru
tor of geo Quad is
alled to
reate the quadrilateral,

then the level information is stored. */

dg Quad(geo Edge& edg0, geo Edge& edg1, geo Edge& edg2, geo Edge& edg3,

geo Attribute* attrib = 0,
onst uint level = 0);

virtual ~dg Quad() fg

/** Returns a
hild. If no
hilds exist, four new
hildren are
reated

(with the same attributes as this one). All edges of the quadrilateral

are re�ned and four new edges introdu
ed. The new quadrilaterals

all have a level whi
h is in
reased by one. */

virtual geo Quad*
hild(uint i);

/** Returns the level of the quadrilateral. */

inline
onst uint level()
onst f

return level ;

g

private:

/** The level of the quad. The top level in the inital mesh is 0,

the next �ner level is 1 et
. The level information is stored

on
reation and not
hanged afterwards. */

onst uint level ;

geo Quad*& getLnk () f

return lnk ;

g

g;

#endif // dgTopology h

dgTopology.

/* Topology for DG FEM

*
onne
tivity information

*/

#in
lude "dgTopology.h"

#in
lude "dgDebug.h"

65

A Do
umented Sour
e Code of the Extensions to Con
epts

// *** dg Edge **

dg Edge::dg Edge(geo Vertex& vtx0, geo Vertex& vtx1,

geo Attribute* attrib = 0,

onst dg Edge* father = 0,
onst uint level = 0) :

geo Edge::geo Edge(vtx0, vtx1, attrib), father (father), level (level) f

DPL(dgEdgeConstr D, "[" << FILE << ", line " << LINE

<< "℄ dg_Edge::dg_Edge -- new", *this);

g

geo Edge* dg Edge::
hild(uint i) f

if (i > 1) return NULL;

if (
hld == NULL) f

DPL(dgEdgeChild D, "[" << FILE << ", line " << LINE

<< "℄ dg_Edge::
hild -- refining", *this);

geo Vertex* vtx = new geo Vertex(attrib);

hld = new dg Edge(*vtx [0℄�>
hild(0), *vtx, attrib ,

this, level +1);

dg Edge*
hld = (dg Edge*)
hld ;

hld�>getLnk () = new dg Edge(*vtx, *vtx [1℄�>
hild(0), attrib ,

this, level +1);

g

if (i == 0)

return
hld ;

else f

dg Edge*
hld = dynami

ast<dg Edge*>(
hld);

if (
hld)

return
hld�>getLnk ();

else f

// *** ex
eption ***

err << '[' << FILE << ", line " << LINE ;

err << "℄ dg_Edge::
hild() -- edge not supported\n";

err << " type of
hild: " << typeid(*
hld).name() << endl;

exit(1);

g

g

g

ostream& dg Edge::info(ostream& os)
onst f

os << "Edge(" << key << ", (";

os << *vtx [0℄ << ", " << *vtx [1℄ << ", Level=" << level << ')';

return os;

g

66

A.1 Integration over an Edge

onst uint dg Edge::
ontained(
onst dg Edge& other)
onst f

if (*this == other)

return 1;

uint i;

onst dg Edge* me = this;

onst dg Edge* you = &other;

DPL(dgEdgeContained D, "[" << FILE << ", line " << LINE

<< "℄ dg_Edge::
ontained -- me: " << *me << " at level " << level

<< ", you: " << *you << " at level", you�>level);

//
ompare the levels of the two edges

if (other.level < level) f

DPL(dgEdgeContained D, "[" << FILE << ", line " << LINE

<< "℄ dg_Edge::
ontained --
oarsening " << *me << " "

<< level � other.level << " times.", " ");

for (i = 0; i < (level � other.level); ++i) f

if (me)

me = me�>father();

else

return 0;

g

if (me && you && (*me == *you))

return 3;

g else

if (level < other.level) f

DPL(dgEdgeContained D, "[" << FILE << ", line " << LINE

<< "℄ dg_Edge::
ontained --
oarsening " << *you << " "

<< other.level � level << " times.", " ");

for (i = 0; i < (other.level � level); ++i) f

if (you)

you = you�>father();

else

return 0;

g

if (me && you && (*me == *you))

return 2;

g

return 0;

g

// *** dg Quad **

dg Quad::dg Quad(geo Edge& edg0, geo Edge& edg1, geo Edge& edg2,

geo Edge& edg3, geo Attribute* attrib = 0,

onst uint level = 0) :

geo Quad::geo Quad(edg0, edg1, edg2, edg3, attrib), level (level) f

67

A Do
umented Sour
e Code of the Extensions to Con
epts

DPL(dgQuadConstr D, "[" << FILE << ", line " << LINE

<< "℄ dg_Quad::dg_Quad --", "new quad");

g

geo Quad* dg Quad::
hild(uint i) f

dg Quad*
hld;

if (i > 3) return NULL;

if (
hld == NULL) f

geo Edge* edgA = edg [0℄�>
hild(rho [0℄);

geo Edge* edgB = edg [0℄�>
hild(rho [0℄.su

());

geo Edge* edgC = edg [1℄�>
hild(rho [1℄);

geo Edge* edgD = edg [1℄�>
hild(rho [1℄.su

());

geo Edge* edgE = edg [2℄�>
hild(rho [2℄);

geo Edge* edgF = edg [2℄�>
hild(rho [2℄.su

());

geo Edge* edgG = edg [3℄�>
hild(rho [3℄);

geo Edge* edgH = edg [3℄�>
hild(rho [3℄.su

());

geo Vertex* vtx4 = edgB�>vertex(rho [0℄);

geo Vertex* vtx5 = edgD�>vertex(rho [1℄);

geo Vertex* vtx6 = edgF�>vertex(rho [2℄);

geo Vertex* vtx7 = edgH�>vertex(rho [3℄);

geo Vertex* vtx8 = new geo Vertex(attrib);

dg Edge* edgI = new dg Edge(*vtx4, *vtx8, attrib , 0, level +1);

dg Edge* edgJ = new dg Edge(*vtx5, *vtx8, attrib , 0, level +1);

dg Edge* edgK = new dg Edge(*vtx6, *vtx8, attrib , 0, level +1);

dg Edge* edgL = new dg Edge(*vtx7, *vtx8, attrib , 0, level +1);

geo Quad** qd = &
hld ;

*qd = new dg Quad(*edgA, *edgI, *edgL, *edgH, attrib , level +1);

hld = (dg Quad*)(*qd);

qd = &(
hld�>getLnk ());

*qd = new dg Quad(*edgB, *edgC, *edgJ, *edgI, attrib , level +1);

hld = (dg Quad*)(*qd);

qd = &(
hld�>getLnk ());

*qd = new dg Quad(*edgJ, *edgD, *edgE, *edgK, attrib , level +1);

hld = (dg Quad*)(*qd);

qd = &(
hld�>getLnk ());

*qd = new dg Quad(*edgL, *edgK, *edgF, *edgG, attrib , level +1);

g

68

A.1 Integration over an Edge

dg Quad* qd = dynami

ast<dg Quad*>(
hld);

if (! qd) f

// *** ex
eption ***

err << '[' << FILE << ", line " << LINE ;

err << "℄ dg_Quad::
hild() -- quad not supported\n";

exit(1);

g

while (i��) f

qd = dynami

ast<dg Quad*>(qd�>getLnk ());

if (! qd) f

// *** ex
eption ***

err << '[' << FILE << ", line " << LINE ;

err << "℄ dg_Quad::
hild() -- quad not supported\n";

err << " type of
hild: " << typeid(*qd�>getLnk ()).name() << endl;

exit(1);

g

g

return qd;

g

Edge Integration Subroutine

The following subroutine shows how the integral

Z

e

u

�

(arv) � n

e

�

ds

is
omputed. This subroutine is part of the
lass dg BDi�usion. The parameters have

the following meaning:

elmX The �rst element, the shape fun
tions u have their support in elmX.

i Number of the edge in elmX over whi
h has to be integrated.

elmY The se
ond element, the shape fun
tions v have their support in elmY.

j Number of the edge in elmY over whi
h has to be integrated.

em The element matrix.

signa An arbitrary
onstant whi
h
an be given for the integration. Values of 1 (for

e � �

int

) and 2 (for e � �

D

) o

ur.

relation The relation of edge i of elmX to edge j of elmY. The following values are

possible:

0 if e \ e

0

= ;, the subroutine is not
alled if relation is 0.

69

A Do
umented Sour
e Code of the Extensions to Con
epts

1 if e = e

0

.

2 if e � e

0

.

3 if e � e

0

.

To get an idea what happens in the
ode, see se
tion 3.5, where the integration of

R

K

rurv dx is explained, espe
ially the
al
ulation of the derivatives and the Ja
obian.

The variables p = x

2

� x

1

, q = x

4

� x

1

and r = x

2

� x

1

+ x

4

� x

3

are used to
ompute

the Ja
obian jF

0

K

j =

s^t

=4: s = p� �

1

r and t = q � �

2

r, where �

1

= qxi and �

2

= qyi are

the
urrent
oordinates in the referen
e element.

void dg BDi�usion::integrateEdgeA (
onst dg HP2d001& elmX,
onst uint i,

onst dg HP2d001& elmY,
onst uint j,

sp
 ElementMatrix<real>& em,

onst real signa,
onst uint relation) f

// quadrature points

real qxi = 0.0, qyi = 0.0, qxj = 0.0, qyj = 0.0;

// Ja
obian

real dx;

// the derivatives wrt. nxi and x

Real2d s, t, u, v;

// pointer into the arrays of the shape fun
tions

real* bk;

Real2d* blx;

// p, q and r are used to
al
ulate the Ja
obian

Real2d p, q, r;

pqr (elmY, p, q, r);

//
al
ulate the displa
ement and ratio of one edge wrt. the other

real adjust1, adjust2;

Real2d e;

getAdjust (elmX, elmY, i, j, relation, e, adjust1, adjust2);

// the outer unit normal ve
tor of elmX

Unit2d n(e.y(), �e.x());

DPL(dgBDi�IntegrateEdge D, "[" << FILE << ", line " << LINE

<< "℄ dg_BDiffusion::integrateEdgeA_ -- n =", n);

// allo
ate spa
e for the shape fun
tions

uint m = elmX.T().n();

if (m < elmY.T().n())

m = elmY.T().n();

if (m > n) f

delete[℄ shpfn
 ;

70

A.1 Integration over an Edge

delete[℄ shpfn
D ;

shpfn
 = new real[n = m℄;

shpfn
D = new Real2d[n ℄;

g

DPL(dgBDi�IntegrateEdge D, "[" << FILE << ", line "

<< LINE << "℄ dg_BDiffusion::integrateEdgeA_ -- adjust: add "

<< adjust1 << ", mult. by", adjust2);

// the weights and points for the quadrature; quadrature loop

uint gauss;

if (gauss == 0) f

gauss = elmX.p();

if (gauss < elmY.p())

gauss = elmY.p();

g else

gauss = gauss ;

onst real* awi = int GaussAbs
Wght[gauss℄;

for (uint qi = 0; qi < gauss + 1; ++qi) f

qxi = qxj = awi[0℄;

if (relation == 2) f

qxi = adjust1 + qxi*adjust2;

g else f

if (relation == 3) f

qxj = adjust1 + qxj*adjust2;

g

g

// map the quadratur points from 1D to an edge in 2D

edgeQuadPoint (i, qxi, qyi);

edgeQuadPoint (j, qxj, qyj);

s.lin
omb(p, r, 1.0, �qxi);

t.lin
omb(q, r, 1.0, �qyi);

// the Ja
obian and other integration
onstants

// awi[1℄ is the weight for the numeri
al integration

dx = e.l2() / (s^t);

if (dx < 0.0)

dx = �dx;

DPL(dgBDi�IntegrateEdge D, "[" << FILE << ", line "

<< LINE << "℄ dg_BDiffusion::integrateEdgeA_ -- dx =", dx);

dx *= awi[1℄ * signa * a ;

u = Real2d(t.y(), �s.y()); u *= dx;

v = Real2d(�t.x(), s.x()); v *= dx;

// evaluate the shape fun
tions and their derivatives

71

A Do
umented Sour
e Code of the Extensions to Con
epts

elmX.evaluate(2.0 * qxi � 1.0, 2.0 * qyi � 1.0, shpfn
);

elmY.evaluateD(2.0 * qxj � 1.0, 2.0 * qyj � 1.0, shpfn
D);

//
ompute the entries in the element matrix, ie. loop over all shape f
ts.

bk = shpfn
 ;

for (uint k = 0; k < elmX.T().n(); ++k) f

blx = shpfn
D ;

for (uint l = 0; l < elmY.T().n(); ++l) f

Real2d blxi((*blx) * u, (*blx) * v);

em(k, l) += *bk * (n * blxi);

blx++;

g

bk++;

g

// next quadrature point

awi += 2;

g // for qi

g

A.2 Boundary Conditions

The de
laration and implementation of dg BoundaryCond are shown in the next two
ode

se
tions.

xy Fun
tion is simply a wrapper around the formula parser and the evaluation for a

parsed formula. These subroutines are in
luded in the tool box of Con
epts.

dgBoundary.h

/* -*-
++ -*-

* boundary
onditions for DG FEM

*
an possibly be useful for other types of FEM too

*/

#ifndef dgBoundary h

#de�ne dgBoundary h

#in
lude ". ./
on
epts.h"

#in
lude ". ./geometry/geoTopology.h"

#in
lude "dgDebug.h"

// *** xyFun
tion **

/** Class to handle an arbitrary 2D fun
tion.

*/

72

A.2 Boundary Conditions

lass xyFun
tion f

friend ostream& operator<<(ostream& os,
onst xyFun
tion& fn
);

publi
:

/** Constru
tor. Parses the formula and saves it in a pre
ompiled

form. */

xyFun
tion(
onst
har* formula);

/** Destru
tor. Frees the spa
e used by the parsed formula. */

~xyFun
tion();

/** Computes the value of the fun
tion at the point x. */

inline
onst real operator()(
onst Real2d& x)
onst;

private:

/// The parsed formula

u
har* pgm ;

g;

onst real xyFun
tion::operator()(
onst Real2d& x)
onst f

real f = 0.0;

pro
ess(pgm , x.x(), x.y(), 0.0, &f);

return f;

g

// *** dg Boundary **

/** Class to des
ribe the boundary
ondition of an element of the

topology. A boundary
ondition of type Neumann or Diri
hlet

onsist of the type and a fun
tion. These two properties
an

be requested.

Boundary
onditions of type Robin are not yet implemented.

This
lass is implemented to serve the needs of DG FEM but it
an

possibly be useful for hpFEM too.

�author Philipp Frauenfelder

*/

lass dg BoundaryCond : publi
 geo Attribute f

publi
:

/// The di�erent boundary
ondition types

enum boundaryTypes f FREE = 0, DIRICHLET, NEUMANN, MAX TYPE g;

/** Constru
tor. The type of the boundary
ondition must be one of

FREE, DIRICHLET or NEUMANN. If it's FREE, the formula is of no

use and
an be omitted. If any other boundary
ondition is given

without formula, then \(0)" is assumed. */

73

A Do
umented Sour
e Code of the Extensions to Con
epts

dg BoundaryCond(uint attrib,
onst
har* formula = 0);

/** Returns the type of the boundary
ondition */

inline
onst uint getType()
onst;

/** Appli
ation operator. Cal
ulates the value of the boundary

fun
tion at a spe
i�
 point. */

inline
onst real operator()(
onst Real2d& x)
onst;

/// Returns information about itself

virtual ostream& info(ostream& os)
onst;

private:

/// The fun
tion of the boundary
ondition

xyFun
tion* fn
 ;

g;

onst uint dg BoundaryCond::getType()
onst f

return attrib();

g

onst real dg BoundaryCond::operator()(
onst Real2d& x)
onst f

if (fn
) f

return (*fn
)(x);

g else f

return 0.0;

g

g

#endif // dgBoundary h

dgBoundary.

/* dg-Boundary

*/

#in
lude ". ./
on
epts.h"

#in
lude "dgDebug.h"

#in
lude "dgBoundary.h"

#in
lude ". ./toolbox/tbxFuCo.h"

// ** xyFun
tion **

xyFun
tion::xyFun
tion(
onst
har* formula) f

u
har pgm[FuCo MaxPgmSize℄;

uint len;

74

A.3 Sort of Adaptivity

if (!(len = parse(formula, pgm))) f

// *** ex
eption ***

err << '[' << FILE << ", line " << LINE ;

err << "℄ xyFun
tion::xyFun
tion() -- formula syntax error\n";

exit(1);

g else f

pgm = new u
har[len℄;

mem
py(pgm , pgm, len * sizeof(pgm [0℄));

g

g

xyFun
tion::~xyFun
tion() f

delete[℄ pgm ;

g

ostream& operator<<(ostream& os,
onst xyFun
tion& fn
) f

return os << "xyFun
tion";

g

// *** dg Boundary **

dg BoundaryCond::dg BoundaryCond(uint attrib,
onst
har* formula) :

geo Attribute(attrib), fn
 (0) f

assert(attrib < MAX TYPE);

if ((attrib != FREE) && (formula)) f

fn
 = new xyFun
tion(formula);

g

g

ostream& dg BoundaryCond::info(ostream& os)
onst f

os << "dg_BoundaryCond(" << attrib() << ", ";

if (fn
 == 0)

os << "0";

else

os << *fn
 ;

return os << ")";

g

A.3 Sort of Adaptivity

The next
ode snippet shows the implementation of the adaptive algorithm 4.7. It simply

repla
es the re�nement
ode in the main program (
. f. se
tion A.6).

75

A Do
umented Sour
e Code of the Extensions to Con
epts

The parameter eta determines if an element is re�ned or not, depending on its lo
al

error. If the lo
al error is larger than (eta �maximal error) the element is re�ned (i. e. it

is subdivided or the polynomial degree is raised).

// **

// Phase 3: re�ning

if (i > 0) f

// for the L shaped domain (geo LShape):

#de�ne NR NODES 6

Real2d nodes[NR NODES℄ = fReal2d(0.0, 0.0),

Real2d(1.0, 0.0),

Real2d(1.0, 1.0),

Real2d(�1.0, 1.0),

Real2d(�1.0,�1.0),

Real2d(0.0,�1.0)g;

out << " Refining (adapt.): " <<
ush;

// get maximal error

s
 = sp
.s
an();
out << "." <<
ush;

real maxErr = 0.0;

while (*s
) f

dg HP2d001& elm = (dg HP2d001&)(*s
)++;

real err = fabs(elm.getError());

if (err > maxErr)

maxErr = err;

g

delete s
;
out << "." <<
ush;

// re�ne elements

s
 = sp
.s
an();
out << "." <<
ush;

maxErr *= eta;

while (*s
) f

dg HP2d001& elm = (dg HP2d001&)(*s
)++;

if (fabs(elm.getError()) > maxErr) f

bool subdivide = false;

for (uint j = 0; j < NR NODES; j++)

subdivide j= elm.pointInElement(nodes[j℄);

if (subdivide) f

sp
.adjust(elm, 1, 0);
out << 'l' <<
ush;

g else f

sp
.adjust(elm, 0, 1);
out << 'p' <<
ush;

g

g

g

out << "." <<
ush;

delete s
;
out << " done: " << sp
 << endl;

76

A.4 Debugging Te
hniques

A.4 Debugging Te
hniques

The debugging te
hniques des
ribed in se
tion 4.3.4 need some header �les. The top

level header �le debug.h and one of header �les in the pa
kages are shown here.

debug.h

This is the top level debugging header �le.

#ifndef debug h

#de�ne debug h

#ifdef DEBUG

#in
lude<stream.h>

/// Debug Print Line

#de�ne DPL(doit, msg, var)n

if(doit!=0)
out << msg << " " << var << endl;

/// Debug Print

#de�ne DP(doit, msg, var)n

if(doit!=0)
out << msg << " " << var;

#else

#de�ne DP(doit, msg, var)

#de�ne DPL(doit, msg, var)

#de�ne NDEBUG // dis
ard assertions

#endif

#in
lude <assert.h>

#in
lude <iomanip>

#endif

opDebug.h

This is the debugging header �le of the operator pa
kage.

#ifndef opDebug h

#de�ne opDebug h

#in
lude "../debug.h"

#ifdef DEBUG

// debugging opDGESV

#de�ne opDGESVConstr D 0

77

A Do
umented Sour
e Code of the Extensions to Con
epts

#de�ne opDGESVAppl D 0

#endif

#endif

A.5 Mesh Generation on the L Shaped Domain

The following two �les
ontain the
ode for the mesh generation for the L shaped domain

(
. f. �gure 5.7 on page 52). The de
laration of the
lasses for the L shaped domain and

its mesh and the s
anner for the mesh of the L shaped domain are in the �le lshape.h.

The implementation of the
onstru
tor and the destru
tor of dg LShape are in the �le

lshape.

.

lshape.h

/* -*-
++ -*-

* L shaped domain

*/

#ifndef lshape h

#de�ne lshape h

#in
lude <typeinfo>

#in
lude <math.h>

#in
lude <stdlib.h>

#in
lude <string.h>

#in
lude <fstream.h>

#in
lude "
on
epts.h"

#in
lude "geometry.h"

#in
lude "dg.h"

/** Three unit quadrilaterals forming an L shaped domain (third quadrant

missing).

*/

lass dg LShape : publi
 geo Mesh2 f

publi
:

/** Constru
tor. Creates the verti
es, edges and quadrilaterals

in the topology and arranges them with their element map in
ells.

The boundary
onditions are intialized and assigned to the edges

*/

dg LShape();

virtual ~dg LShape();

/// Returns the number of
ells in the mesh

78

A.5 Mesh Generation on the L Shaped Domain

inline uint n
ell()
onst f

return 3;

g

/// Returns a s
anner for the mesh of the domain

inline geo S
an2* s
an() f

return new S(
ell);

g

private:

/** Sub
lass of dg LShape used to s
an the mesh of the square

�see dg LShape

*/

lass S : publi
 tbx S
an<geo Cell2> f

publi
:

inline S(geo Quad2d *(&
ell)[3℄) : idx (0),
ell (
ell) fg

inline S(
onst S& s
an) : idx (s
an.idx),
ell (s
an.
ell) fg

inline bool eos()
onst f

return idx == 3;

g

inline geo Cell2& operator++(int) f

return *
ell [idx ++℄;

g

inline geo S
an2*
lone()
onst f

return new S(*this);

g

private:

uint idx ;

geo Quad2d *(&
ell)[3℄;

g;

/// The verti
es of the L shaped domain

geo Vertex *vtx [8℄;

/// The edges of the L shaped domain

dg Edge *edg [10℄;

/// The quadrilaterals of the L shaped domain

dg Quad *quad [3℄;

/// The
ells in the mesh

geo Quad2d *
ell [3℄;

/// Boundary
onditions

dg BoundaryCond *diri
hlet1 , *diri
hlet2 , *neumann1 , *neumann2 ;

79

A Do
umented Sour
e Code of the Extensions to Con
epts

g;

#endif

lshape.

/* L shaped domain

*/

#in
lude "lshape.h"

#in
lude "dg.h"

dg LShape::dg LShape() f

diri
hlet1 = new dg BoundaryCond(dg BoundaryCond::DIRICHLET, "(sqrt(x))");

diri
hlet2 = new dg BoundaryCond(dg BoundaryCond::DIRICHLET, "(sqrt(-y))");

neumann1 = new dg BoundaryCond(dg BoundaryCond::NEUMANN,

"(1/(2*((1+y*y)^(3/4))))");

neumann2 = new dg BoundaryCond(dg BoundaryCond::NEUMANN,

"(1/(2*((1+x*x)^(3/4))))");

for (uint i = 0; i < 8; ++i) f

vtx [i℄ = new geo Vertex();

g

edg [0℄ = new dg Edge(*vtx [0℄, *vtx [1℄, neumann2);

edg [1℄ = new dg Edge(*vtx [1℄, *vtx [2℄, diri
hlet2);

edg [2℄ = new dg Edge(*vtx [2℄, *vtx [3℄);

edg [3℄ = new dg Edge(*vtx [3℄, *vtx [0℄, neumann1);

edg [4℄ = new dg Edge(*vtx [2℄, *vtx [4℄);

edg [5℄ = new dg Edge(*vtx [4℄, *vtx [5℄, neumann2);

edg [6℄ = new dg Edge(*vtx [5℄, *vtx [3℄, neumann1);

edg [7℄ = new dg Edge(*vtx [6℄, *vtx [2℄, diri
hlet1);

edg [8℄ = new dg Edge(*vtx [6℄, *vtx [7℄, neumann1);

edg [9℄ = new dg Edge(*vtx [7℄, *vtx [4℄, neumann2);

quad [0℄ = new dg Quad(*edg [0℄, *edg [1℄, *edg [2℄, *edg [3℄);

quad [1℄ = new dg Quad(*edg [2℄, *edg [4℄, *edg [5℄, *edg [6℄);

quad [2℄ = new dg Quad(*edg [7℄, *edg [8℄, *edg [9℄, *edg [4℄);

// bottom left

ell [0℄ = new geo Quad2d(*quad [0℄, geo MapQuad2d("(x-1, y-1)", 1.0, 1.0));

// top left

ell [1℄ = new geo Quad2d(*quad [1℄, geo MapQuad2d("(x-1, y)", 1.0, 1.0));

// top right

ell [2℄ = new geo Quad2d(*quad [2℄, geo MapQuad2d("(x, y)", 1.0, 1.0));

g

dg LShape::~dg LShape() f

80

A.6 Main program

for(uint l = 2; l��;) delete
ell [l℄;

for(uint k = 2; k��;) delete quad [k℄;

for(uint j = 9; j��;) delete edg [j℄;

for(uint i = 7; i��;) delete vtx [i℄;

delete neumann1 ;

delete neumann2 ;

delete diri
hlet1 ;

delete diri
hlet2 ;

g

A.6 Main program

The �le dgfem.

ontains the main program. The
omments follow the steps in se
-

tion 3.3, where the main steps in a Con
epts appli
ation are listed.

After the sour
e
ode, the output of the program dgfem is shown.

/* DG FEM

*/

#in
lude <typeinfo>

#in
lude <math.h>

#in
lude <stdlib.h>

#in
lude <string.h>

#in
lude <fstream.h>

#in
lude <unistd.h>

#in
lude "
on
epts.h"

#in
lude "fun
tion.h"

#in
lude "operator.h"

#in
lude "hp.h"

#in
lude "dg.h"

#in
lude "lshape.h"

int main(int arg
,
har** argv) f

uint p = 1, gauss = 0, depth = 1;

real mu = 1.0, stabilization = 0.0;

uint graphi
points = 20;

bool debug = false;

ofstream *ofs, *errfs;

int opt;

dg HP2dS
an* s
;

out.setf(ios::s
ienti�
, ios::
oat�eld);

out.setf(ios::showpos);

81

A Do
umented Sour
e Code of the Extensions to Con
epts

out.pre
ision(3);

// **

// parsing
ommand line options

while ((opt = getopt(arg
, argv, "-m:p:g:s:dD:G:")) != EOF)

swit
h(opt) f

ase 'm':

mu = atof(optarg); break;

ase 'p':

p = atoi(optarg); break;

ase 'g':

gauss = atoi(optarg); break;

ase 's':

stabilization = atof(optarg); break;

ase 'd':

debug = true; break;

ase 'D':

depth = atoi(optarg); break;

ase 'G':

graphi
points = atoi(optarg); break;

default:

out << "Call: " << argv[0℄

<< " [-p DEGREE℄ [-g GAUSS℄ [-D DEPTH℄ [-m MU℄ "

<< "[-s STAB℄ [-G GPOINTS℄ [-d℄" << endl

<< "where" << endl

<< " DEGREE: polynomial degree" << endl

<< " GAUSS: number of quadrature points (0: as mu
h as needed)"

<< endl

<< " DEPTH: maximal level" << endl

<< " MU: slope of linear polynomial degree distribution ve
tor"

<< endl

<< " STAB: stabilization
oeffi
ient" << endl

<< " GPOINTS: number of points in the graphi
s in ea
h dire
tions"

<< endl

<< " -d: debug, ie. print the matri
es" << endl;

exit(1);

g

out << '[' << argv[0℄ << "℄" << endl;

out << "--" << endl << "Parameters: " << endl

<< "degree = " << p << endl << "gauss = " << gauss << endl

<< "depth = " << depth << endl << "mu = " << mu << endl

<< "stab = " << stabilization << endl

<< "gpoints = " << graphi
points << endl;

// **

// problem: - a Delta u +
 u = f

onst real a(1.0);

onst real
(1.0);

82

A.6 Main program

// exa
t solution

onst
har* uex = "(sqrt(sqrt(x*x+y*y)))";

// RHS

onst
har* fex =

"(3*x*x/(4*((x*x+y*y)^(7/4)))+3*y*y/(4*((x*x+y*y)^(7/4)))-"

"1/((x*x+y*y)^(3/4))+((x*x+y*y)^(1/4)))";

out << "--" << endl << "Problem: "

<< "- a Delta u +
 u = f" << endl

<< "a = " << a << endl << "
 = " <<
 << endl

<< "u = " << uex << endl << "f = " << fex << endl;

// **

// Phases 1 and 2:
reate mesh and spa
e

out << "--" << endl << "Mesh and spa
e: " <<
ush;

dg LShape msh;
out << "." <<
ush;

geo Bool b
;
out << "." <<
ush;

dg HP2d sp
(msh, 0, p, &b
);
out << " done: " << sp
 << endl;

// graphi
 of the mesh

ofs = new ofstream("dg0.eps");

sp
.sket
h(*ofs, 100);

delete ofs;

// **

//
omputations

out << "--" << endl << "Computations:" << endl;

errfs = new ofstream("error.data");

for (uint i = 0; i <= depth; ++i) f

out << endl << "Iteration " << i << endl;

// **

// Phase 3: re�ning

if (i > 0) f

// verti
es of the L shaped domain (dg LShape):

#de�ne NR NODES 6

Real2d nodes[NR NODES℄ = fReal2d(0.0, 0.0),

Real2d(1.0, 0.0),

Real2d(1.0, 1.0),

Real2d(�1.0, 1.0),

Real2d(�1.0,�1.0),

Real2d(0.0,�1.0)g;

out << " Refining (lin. deg. ve
.): " <<
ush;

uint l = 0; // max level

83

A Do
umented Sour
e Code of the Extensions to Con
epts

// get max level

s
 = sp
.s
an();
out << "." <<
ush;

while (*s
) f

dg HP2d001& elm = (dg HP2d001&)(*s
)++;

onst dg Quad* quad = dynami

ast<
onst dg Quad*>(&elm.support());

if (quad)

if (l < quad�>level())

l = quad�>level();

g

l++;

out << '.' <<
ush;

delete s
;

// re�ne elements

s
 = sp
.s
an();
out << "." <<
ush;

while (*s
) f

dg HP2d001& elm = (dg HP2d001&)(*s
)++;

bool subdivide = false;

for (uint j = 0; j < NR NODES; j++)

subdivide j= elm.pointInElement(nodes[j℄);

if (subdivide) f

sp
.adjust(elm, 1, 0);
out << 'l' <<
ush;

g else f

onst dg Quad* quad = dynami

ast<
onst dg Quad*>(&elm.support());

if (quad) f

sp
.adjust(elm, 0, (int)
oor((real)(1+l�quad�>level())*mu)

� elm.p());
out << 'p' <<
ush;

g

g

g

out << "." <<
ush;

delete s
;
out << " done: " << sp
 << endl;

if (i == depth) f

// graphi
 of the mesh

out << " Graphi
 of the mesh." << endl;

ofs = new ofstream("dg1.eps");

sp
.sket
h(*ofs, 100);

delete ofs;

g

g

// **

// Phase 4:
reate the di�erential operators and their matri
es

out << " Stiffness matrix: " <<
ush;

dg BDi�usion bf(gauss, a);
out << "." <<
ush;

op Lo
al<real> A1(sp
, sp
, bf);
out << "." <<
ush;

84

A.6 Main program

dg Identity id(gauss);
out << "." <<
ush;

op Lo
al<real> I(sp
, sp
, id);
out << "." <<
ush;

dg BDis
ont st(gauss, stabilization);
out << "." <<
ush;

op Lo
al<real> S(sp
, sp
, st);
out << "." <<
ush;

op LiCo<real> LL(A1, I, 1.0,
);
out << "." <<
ush;

op LiCo<real> L(LL, S, 1.0, 1.0);
out << " done." << endl;

if (debug) f

out << " Diffusion matrix: " << A1 << endl

<< " Stabilization matrix: " << S << endl

<< " Identity matrix: " << I << endl;

g

// **

// Phase 5: the linear forms and the ve
tors of the right hand side

out << " Load ve
tor: " <<
ush;

dg LDi�usion ldi�(gauss, a);
out << "." <<
ush;

fn
 Ve
tor<real> fdi�(sp
, ldi�);
out << "." <<
ush;

hp Riesz lf(fex, gauss);
out << "." <<
ush;

fn
 Ve
tor<real> �(sp
, lf);
out << "." <<
ush;

dg LDis
ont ldis(gauss, stabilization);
out << "." <<
ush;

fn
 Ve
tor<real> fdis(sp
, ldis);
out << "." <<
ush;

� += fdi�;
out << "." <<
ush;

� += fdis;
out << " done." << endl;

// **

// Phase 6: solving the system

out << " Solving: " <<
ush;

fn
 Ve
tor<real> u(sp
);
out << "." <<
ush;

op DGESV Linv(L);
out << "." <<
ush;

Linv(�, u);
out << " done: " << Linv << endl;

// **

// exa
t solution

out << " Exa
t solution: " <<
ush;

hp Riesz lf u(uex, gauss);
out << "." <<
ush;

fn
 Ve
tor<real> uu(sp
, lf u);
out << "." <<
ush;

fn
 Ve
tor<real> ue(sp
);
out << "." <<
ush;

op DGESV Iinv(I);
out << "." <<
ush;

Iinv(uu, ue);
out << " done." << endl;

if (debug) f

out << " Right hand side: " << endl << � << endl

<< " Diffusion part of RHS: " << endl << fdi� << endl

<< " Stabilization of RHS: " << endl << fdis << endl

85

A Do
umented Sour
e Code of the Extensions to Con
epts

<< " Solution: " << endl << u << endl

<< " Exa
t Solution (by L^2 proje
tion): " << endl << ue << endl;

g

// **

// Phase 7: error estimation

fn
 Ve
tor<real> di�(ue);

di� �= u;

if (i == depth) f

// **

// Phase 8: postpro
essing

out << " Save data for gnuplot to disk." << endl;

sp
.storeSolution(ue);

ofs = new ofstream("dg0exa
t.data");

sp
.drawGraph(*ofs, graphi
points);

delete ofs;

sp
.storeSolution(u);

ofs = new ofstream("dg0.data");

sp
.drawGraph(*ofs, graphi
points);

delete ofs;

sp
.storeSolution(di�);

ofs = new ofstream("dg0error.data");

sp
.drawGraph(*ofs, graphi
points);

delete ofs;

g else f

sp
.storeSolution(di�);

g

// L^2 error

I(di�, �);

sp
.storeWeights(�);

*errfs << sp
.dim() << " " << sp
.getError() << " ";

out << " | |u-u_(l,p)||_2^2 = " << sp
.getError() << endl;

// energy error

L(di�, �);

sp
.storeWeights(�);

*errfs << sp
.getError() << " ";

out << " | |u-u_(l,p)||_E^2 = " << sp
.getError() << endl;

*errfs << Linv.
ondition() << endl;

g

delete errfs;

// **

// Phase 9: removal of the matri
es, ve
tors, the spa
e and the mesh

return 0;

g

86

A.6 Main program

Output of the Main Program

[dgfem℄

--

Parameters:

degree = 1

gauss = 0

depth = 1

mu = +1.000e+00

stab = +0.000e+00

gpoints = 20

--

Problem: - a Delta u +
 u = f

a = +1.000e+00

 = +1.000e+00

u = (sqrt(sqrt(x*x+y*y)))

f = (3*x*x/(4*((x*x+y*y)^(7/4)))+3*y*y/(4*((x*x+y*y)^(7/4)))

-1/((x*x+y*y)^(3/4))+((x*x+y*y)^(1/4)))

--

Mesh and spa
e: .. done: dg_HP2d(dim = 12, nelm = 3)

--

Computations:

Iteration 0

Stiffness matrix: done.

Load ve
tor: done.

Solving: .. done: op_DGESV(dim = 12,
ond = +8.745e+00, fa
torized)

Exa
t solution: done.

||u-u_(l,p)||_2^2 = +3.543e-02

||u-u_(l,p)||_E^2 = +1.509e-01

Iteration 1

Refining (lin. deg. ve
.): ...lll. done: dg_HP2d(dim = 48, nelm = 12)

Graphi
 of the mesh.

Stiffness matrix: done.

Load ve
tor: done.

Solving: .. done: op_DGESV(dim = 48,
ond = +3.200e+01, fa
torized)

Exa
t solution: done.

Save data for gnuplot to disk.

||u-u_(l,p)||_2^2 = +2.964e-02

||u-u_(l,p)||_E^2 = +1.340e-01

87

Symbol Index

[v℄ jump of v over an edge

jF

0

K

j Ja
obian of the element map F

K

hvi average of v over an edge

E set of smallest element edges

E

int

set of interior element edges

P

p

(

^

) polynomials of total degree p on

^

�

'

K

i

	

N

K

i=1

shape fun
tions on element K

f'

i

g

N

i=1

basis of the (DG)FE-spa
e

T partition of
, a FE-mesh

Æ

K

stabilisation parameter

bv
 oriented jump of v over an edge

�

+

out
ow boundary

�

�

in
ow boundary

�

0

di�usion boundary

�

int

union of the set of interior element edges

^

 referen
e element (0; 1)

2

�

�

K element in
ow boundary

n

e

numbering dependent unit normal ve
tor of an edge

n

K

unit outward normal ve
tor of element K

p degree ve
tor fp

K

: K 2 T g

�
oordinates in the referen
e element

^

e edge of an element of T

F

K

element map: F

K

:

^

! K

h

K

diameter of K 2 T

K open and
onne
ted element of T

N dimension of the (DG)FE-spa
e

N

i

(�) shape fun
tion on the referen
e element

^

89

Symbol Index

N

K

number of shape fun
tions on element K

p

K

polynomial degree on element K

v

+

inner tra
e of v

v

�

outer tra
e of v

W

1;1

(
)

2�2

sym

spa
e of symmetri
 2� 2 matri
es of Sobolev fun
tions in W

1;1

(
)

x

i

i

th

omponent of the ve
tor x 2 R

d

x

i

i

th

vertex of an element K 2 T

B

l

�

(
)
ountably normed spa
e

S

p;0

0

(
; T), S

p

0

(
; T) DGFE-spa
e:

n

u 2 L

2

(
) : uj

K

Æ F

K

2 P

p

K

(

^

); uj

�K\�

D

= 0;8K 2 T

o

S

p;1

0

(
; T) FE-spa
e:

n

u 2 H

1

0

(
) : uj

K

Æ F

K

2 P

p

K

(

^

);8K 2 T

o

^

T

n

�

, T

n

�

geometri
 mesh family

H

m;l

�

(
) weighted Sobolev spa
e

90

Bibliography

[1℄ Free Software Foundation, In
. [2000℄, GCC|The GNU Compiler Colle
tion, Internet.

The GNU
ompiler is used to
ompile Con
epts. http://www.fsf.org/software/g

/g

.html

[2℄ Netlib [1994℄, LAPACK { Linear Algebra PACKage, Internet.

Large library of linear algebra subroutines in Fortran. A C++ version is also available but was not used for this

diploma thesis. http://www.netlib.org/lapa
k/

[3℄ I. Babu�ska and B. Q. Guo [1988℄, Regularity of the Solutions of Ellipti
 Problems with Pie
ewise

Analyti
 Data I, SIAM J. Math. Anal., 19:172{203.

[4℄ I. Babu�ska and B. Q. Guo [1989℄, Regularity of the Solutions of Ellipti
 Problems with Pie
ewise

Analyti
 Data II, SIAM J. Math. Anal., 20:763{781.

[5℄ Timothy J. Barth and Herman De
onin
k (Editors) [1999℄, High order methods for
omputational

physi
s, vol. 9 of Le
ture notes in
omputational s
ien
e and engineering,
hap. 6, pp. 365{374,

Springer.

Gives a
ompa
t derivation of the used DGFEM variational formulation and a short note on stability.

[6℄ P. Frauenfelder [1999℄, S
hnellere Quadratur f�ur hp-FEM in drei Dimensionen, Semester Thesis.

Sum fa
torization exploiting the tensor produ
t Ansatz of the shape fun
tions during the
omputation of the

element matri
es.

[7℄ Martin Gogolla, UML for the Impatient, University of Bremen, FB 3, Computer S
ien
e

Departement, Postfa
h 330440, D-28334 Bremen, Germany.

A short introdu
tion to UML by examples.

[8℄ Nina P. Han
ke [1998℄, Cal
ulating Large Spe
tra in Hydrodynami
 Stability: a p-FEM Approa
h

to Solve the Orr Sommerfeld Equation, Master's thesis, Swiss Federal Institute of Te
hnology,

CH-8092 Z�uri
h.

A the short and good summary of doubly integrated Legendre polynomials
an be found on page 22 and following.

[9℄ Hewlett-Pa
kard Company, Sili
on Graphi
s Computer Systems, In
. [1996℄, Standard Template

Library Programmer's Guide.

http://www.sgi.
om/Te
hnology/STL/

[10℄ Christian Lage [1995℄, Softwareentwi
klung zur Randelementmehtode: Analyse und Entwurf

eÆzienter Te
hniken, Ph.D. thesis, Christian-Albre
hts-Universit�at, Kiel.

First ideas of Con
epts.

[11℄ Christian Lage [1998℄, Con
ept Oriented Design of Numeri
al Software, Te
h. Rep. 98-07, Swiss

Federal Institute of Te
hnology, CH-8092 Z�uri
h.

Abstra
t presentation of the ideas behind Con
epts by its author.

91

Bibliography

[12℄ Rational Corporation, Santa Clara [1997℄, Obje
t Constraint Language (Version 1.1).

http://www.rational.
om/uml/resour
es/do
umentation/o
l/

[13℄ Rational Corporation, Santa Clara [1997℄, UML Notation Guide (Version 1.1).

http://www.rational.
om/uml/resour
es/do
umentation/notation/

[14℄ Rational Corporation, Santa Clara [1997℄, UML Semanti
s (Version 1.1).

http://www.rational.
om/uml/resour
es/do
umentation/semanti
s/

[15℄ A. R�uegg and D. Ho
h [1999℄, FEM f�ur elliptis
he Probleme mit dem Programmsystem

Con
epts-1.4, Semester Thesis.

FEM with mixed boundary values in Con
epts. Features a short introdu
tion into the main parts of Con
epts.

[16℄ Bjarne Stroustrup [1997℄, The C++ Programming Language, Addison Wesley Longman, In
., 3rd

edn.

The referen
e for C++.

[17℄ E. S�uli, P. Houston and C. S
hwab [1999℄, hp-Finite Element Methods for Hyperboli
 Problems,

Te
h. Rep. 99-14, Swiss Federal Institute of Te
hnology, CH-8092 Z�uri
h.

[18℄ T. P. Wihler and C. S
hwab [2000℄, Exponential
onvergen
e of the hp-DGFEM for Di�usion

Problems in two Spa
e Dimensions.

Theoreti
al ba
kground for the
omputations in this thesis.

[19℄ Thomas Williams and Colin Kelley [1999℄, Gnuplot Central, Internet.

Gnuplot was used to
reate the graphs in this thesis. http://www.u

.ie/gnuplot/

[20℄ Andreas Zeller et al. [2000℄, DDD|Data Display Debugger, Internet.

One of the greatest debuggers with a ni
e, graphi
al user interfa
e. Besides usual front-end features su
h as

viewing sour
e texts, DDD has be
ome famous through its intera
tive graphi
al data display, where data

stru
tures are displayed as graphs. http://www.gnu.org/software/ddd/

92

