
Diploma Thesis

hp-DGFEM in Conepts 1.4

Philipp Frauenfelder

Marh 6, 2000

instruted by

Prof. Christoph Shwab

Seminar for Applied Mathematis

Department of Mathematis

Swiss Federal Institute of Tehnology

Z�urih

Abstrat

Disontinuous Galerkin Finite Element Methods (DGFEM) were introdued over 25

years ago for the numerial solution of �rst-order hyperboli problems. Although, sub-

sequently muh of the researh of partial di�erential equations has onentrated on the

development and the analysis of onforming Finite Element Methods (FEM), reent

years have witnessed renewed interest in disontinuous shemes. In ontrast to stan-

dard FEM, DGFEM allow disontinuous numerial solutions. The DGFEM an also

be thought of as the higher-order extension of the lassial ell entre Finite Volume

Method (FVM)|a popular disretization tehnique in the omputational aerodynamis

ommunity.

This Diploma thesis is devoted to the implementation of the hp-version of the DG-

FEM as presented in [17℄. The motivation is to have a numerial evidene for the proof

of exponential onvergene in a polygon [18℄. The implemented seond-order partial dif-

ferential equation overs a large lass of equations whih inludes advetion-dominated

di�usion problems and problems of ellipti type. The proof of the exponential onver-

gene does not inlude the advetion term, tough.

Unfortunately, there is an important di�erene between the implemented DGFEM

from [17℄ and the one used in [18℄: the former uses weakly enfored Dirihlet boundary

onditions and the latter strongly enfored Dirihlet boundary onditions.

The outline of the thesis is as follows: hapter 1 gives a very short introdution

to FEM and then to DGFEM inluding the variational formulation of the implemented

equation. In hapter 2, a summary of the results in [18℄ is given (the proofs are omitted).

Chapter 3 presents the basis of the software whih was used (Conepts by Dr. Christian

Lage). In hapter 4, the needed extensions to Conepts are explained. And in hapter 5,

the numerial results are presented. In the appendix, some of the soure ode is given

for the experiened reader.

The losing remarks an be found on page 61.

Contents

1 Introdution to DGFEM 1

1.1 Continuous Disretization . 1

1.1.1 Variational Form . 1

1.1.2 Finite Element Spae . 2

1.1.3 Linear System . 2

1.2 Disontinuous Disretization . 3

1.3 Advetion Di�usion Problem . 4

1.3.1 Variational Form . 6

1.3.2 Consisteny . 8

2 Exponential Convergene in DGFEM 9

2.1 The Model Problem and its Regularity 9

2.2 hp-DGFEM . 10

2.2.1 Variational Formulation . 11

2.3 Stability . 11

2.4 Convergene . 12

2.4.1 Approximation on the Unit Square 12

2.4.2 Approximation on a Polygon . 13

2.4.3 Convergene on a Polygon . 14

3 Introdution to Conepts 15

3.1 History and Authors . 15

3.2 Main Parts of Conepts . 16

3.2.1 Topology, Geometry and Mesh . 17

3.2.2 Shape Funtions, Elements and Spae 19

3.2.3 Bilinear Forms and Operators . 21

3.2.4 Linear Forms and Vetors . 22

3.2.5 Solver . 23

3.3 Main Steps in a Conepts Appliation . 23

3.4 Some UML Diagrams of Conepts . 24

3.4.1 Class Diagram . 24

3.4.2 Objet Diagram . 25

iii

3.4.3 Sequene Diagram . 28

3.5 Element Integration . 32

4 Extensions to Conepts for DGFEM 35

4.1 New Classes for DGFEM . 35

4.2 New Ideas for Conepts . 37

4.2.1 Disontinuous Elements . 37

4.2.2 Integration over an Edge . 40

4.3 Other Extensions . 42

4.3.1 Boundary Conditions . 42

4.3.2 Graph of a Solution . 43

4.3.3 Sort of Adaptivity . 43

4.3.4 Debugging Tehniques . 44

4.4 Wish List for Extensions . 45

4.4.1 Tehnial Extensions . 45

4.4.2 Algorithmi and Funtional Extensions 45

5 Numerial Results 49

5.1 Model Problem . 49

5.2 Results on the Unit Square . 50

5.3 Results on an L Shaped Domain . 54

5.4 Conlusions . 57

5.4.1 Exponential Convergene . 57

5.4.2 Stabilisation . 59

Closing Remarks 61

A Doumented Soure Code of the Extensions to Conepts 63

A.1 Integration over an Edge . 63

A.2 Boundary Conditions . 72

A.3 Sort of Adaptivity . 75

A.4 Debugging Tehniques . 77

A.5 Mesh Generation on the L Shaped Domain 78

A.6 Main program . 81

Symbol Index 89

Bibliography 91

iv

1 Introdution to Disontinuous

Galerkin Finite Element Methods

The onvergene of any numerial method is based upon onsisteny of the approximation

and upon stability of the disretization. It is well known that hp-FEM an ahieve

exponential approximation rates for typial seond order partial di�erential equations

for ertain problems (e. g. in solid mehanis). This requires the ombination and

simultaneous variation of the polynomial degree and mesh-re�nement.

For strongly advetion dominated problems, as they appear in omputational uid

dynamis, the usual Galerkin type disretisations (as in FEM) do not exhibit good

stability properties. Of partiular interest are disontinuous approximations whih an

be used for �rst order or strongly advetion dominated problems. The disontinuous

Galerkin FEM (DGFEM) implement suh a disontinuous approximation.

This hapter gives �rst a very brief introdution to standard FEM. Most of the

priniples found there an also be applied to DGFEM, whih are presented in the seond

setion. The last setion shows a more sophistiated variational formulation for DGFEM

(the one whih was used to implement the hp-DGFEM).

Most of the information in this hapter is taken from [5℄ and [17℄.

1.1 Continuous Disretization

Let
 � R

2

be a bounded domain with � = �
 and � = �

D

[�

N

the partition of � into

a Neumann and Dirihlet boundary. Consider the model problem

��u+ u = f in

u = 0 on �

D

�u

�n

= g

N

on �

N

:

(1.1)

1.1.1 Variational Form

We introdue the spae

H

1

0

(
) =

�

u 2 H

1

(
) : u = 0 on �

D

	

:

1

1 Introdution to DGFEM

The standard proedure of multiplying with a test funtion and integrating by parts

leads to the variational formulation of (1.1):

Find u 2 H

1

0

(
) suh that

Z

ru � rv + uv dx =

Z

fv dx+

Z

�

N

g

N

v ds 8v 2 H

1

0

(
):

(1.2)

This variational formulation is disretised by restriting u and v to a FE-subspae of

H

1

0

(
).

1.1.2 Finite Element Spae

We onsider a partition (FE-mesh) T of
 into open elements K suh that

S

K2T

K =
.

We will assume that the K 2 T are images of the referene element

^

 = (0; 1)

2

under

aÆne maps F

K

, i. e.:

8K 2 T : K = F

K

(

^

):

With eah K 2 T we assoiate a polynomial degree p

K

� 1 and ollet them in the

degree vetor p = fp

K

: K 2 T g. P

p

(

^

) denotes the polynomials of total degree p on

^

.

In order to disretise (1.2), subspaes of ontinuous funtions must be hosen. Usu-

ally, one hooses

S

p;1

0

(
; T) :=

n

u 2 H

1

0

(
) : uj

K

Æ F

K

2 P

p

K

(

^

); 8K 2 T

o

� H

1

0

(
);

We introdue the bilinear form

a(u; v) :=

Z

ru � rv + uv dx (1.3)

and the linear form

l(v) :=

Z

fv dx+

Z

�

N

g

N

v ds (1.4)

and �nally disretise (1.2):

Find u

FE

2 S

p;1

0

(
; T) suh that a(u

FE

; v) = l(v) 8v 2 S

p;1

0

(
; T): (1.5)

1.1.3 Linear System

By expressing u

FE

and v in a basis of S

p;1

0

(
; T), (1.5) leads to a linear system whih

an be solved by standard tehniques. Let N := dimS

p;1

0

(
; T) and f'

i

g

N

i=1

be a basis

of S

p;1

0

(
; T). Then we an write

u

FE

=

N

X

i=1

u

i

'

i

and v =

N

X

j=1

v

j

'

j

:

2

1.2 Disontinuous Disretization

Therefore, (1.5) leads to

a

N

X

i=1

u

i

'

i

;

N

X

j=1

v

j

'

j

!

= l

N

X

j=1

v

j

'

j

!

N

X

i;j=1

u

i

a('

i

; '

j

)v

j

=

N

X

j=1

l('

j

)v

j

u

>

Av = l

>

v

where

A = fa('

i

; '

j

)g

N

i;j=1

; u = fu

i

g

N

i=1

; v = fv

j

g

N

j=1

and l = fl('

j

)g

N

j=1

:

Solving

A

>

u = l (1.6)

for u results in u

FE

=

P

N

i=1

u

i

'

i

satisfying (1.5).

Remark 1.7 The presented ontinuous disretization of (1.1) leads to a symmetri A

as the bilinear form a in (1.3) is symmetri. This won't be the ase anymore with the

disontinuous disretization. Moreover, A is positive de�nite:

a(u; u) =

Z

jruj

2

+ u

2

dx > 0 for u 6= 0 in the L

2

-sense.

1.2 Disontinuous Disretization

The ontinuity of the FE-solution in the previous setion is restritive. As mentioned in

the �rst paragraphs of this hapter, it is desirable to admit disontinuous approximations

for u

FE

. To this end, the variational formulation (1.2) must be hanged. This deserves a

new name: Disontinuous Galerkin Finite Element Method, short: DGFEM. We won't

treat a detailed derivation of the new variational formulation, see [5℄ for this. But we will

show a heuristi interpretation of the new variational formulation. Later in the hapter

we show onsisteny of a more sophistiated formulation.

We assume that the elements in the subdivision T are numbered in a ertain way.

We denote by E the set of element edges assoiated with the mesh T . Sine hanging

nodes are permitted in the DGFEM, E will be understood to onsist of the smallest

edges in �K.

The hanged variational formulation:

Find u

DG

2 S

p;0

0

(
; T) suh that B

DG

(u

DG

; v) = l(v) 8v 2 S

p;0

0

(
; T); (1.8)

3

1 Introdution to DGFEM

where

B

DG

(u

DG

; v) =

X

K2T

Z

K

ru

DG

� rv + u

DG

v dx

+

X

e2E

Z

e

[u

DG

℄ hrv � n

e

i � [v℄ hru

DG

� n

e

i ds;

(1.9)

S

p;0

0

(
; T) =

n

u 2 L

2

(
) : uj

K

Æ F

K

2 P

p

K

(

^

); uj

�K\�

D

= 0; 8K 2 T

o

and l(v) the same as in (1.4). From now on, we write S

p

0

(
; T) instead of S

p;0

0

(
; T).

With the numbering of T we de�ne

[v℄ := vj

�K

i

\e

� vj

�K

j

\e

(1.10)

and

hvi :=

1

=2

�

vj

�K

i

\e

+ vj

�K

j

\e

�

; (1.11)

where K

i

and K

j

share the edge e with i > j. n

e

is de�ned as the unit normal vetor of

the edge e pointing from K

i

to K

j

.

Remark 1.12 The hoie of the minus sign in (1.9) is somewhat arbitrary but has a

good reason: if we hanged it to a plus sign the resulting matrix would be inde�nite.

With the minus, the matrix is non-symmetri put positive semide�nite:

8u 2 H

1

(
) : B

DG

(u; u) =

X

K

Z

K

jruj

2

dx � 0:

(1.8) and (1.9) are similar to (1.2)|apart from the di�erent spaes|only the sum

over the internal edges in (1.9) is new. As there is no need for ontinuity anymore, we

an hoose the basis funtions of S

p

0

(
; T) to have support in exatly one element of T .

If we evaluate only the �rst sum in (1.9) with suh a basis, the assoiated matrix has a

blok diagonal struture, eah blok resulting from one K 2 T . If we would solve this

system, an element would not have any onnetion to its neighbours. This onnetion

is introdued by the seond sum in (1.9).

1.3 Advetion Di�usion Problem

In the introdutory paragraph, advetion dominated problems were mentioned. We now

onsider an advetion di�usion problem and show the variational formulation of suh a

problem. For a more detailed desription, see [17℄.

Let
 be a bounded Lipshitz domain in R

d

, d = 2 or 3, and onsider

�r

�

a(x)ru

�

+ b(x) � ru+ (x)u = f(x); (1.13)

4

1.3 Advetion Di�usion Problem

PSfrag replaements

�

>

a(x)� > 0 8� 2 R

d

b

g

D

g

D

g

N

�

�

�

+

�

D

�

N

Figure 1.1: Interesting subsets of the boundary.

where a 2 L

1

(
)

d�d

sym

, b(x) 2 W

1;1

(
)

d

, (x) 2 L

1

(
) and f(x) 2 L

2

(
). We assume

that the prinipal part of the partial di�erential operator in (1.13) is nonnegative, i. e.

�

>

a(x)� � 0 8� 2 R

d

and a. e. in
.

Let n denote the unit outward normal vetor of � = �
 and de�ne the following

subsets of � (see �gure 1.1):

�

0

=

�

x 2 � : n

>

a(x)n > 0

	

di�usion boundary;

�

�

= fx 2 � n �

0

: b � n < 0g inow boundary;

�

+

= fx 2 � n �

0

: b � n � 0g outow boundary:

With these de�nitions, we have � = �

0

[�

�

[�

+

. We further deompose the di�usion

boundary �

0

into two onneted parts: �

D

, where Dirihlet boundary onditions are

imposed, and �

N

, where Neumann boundary onditions are imposed. Therefore, we an

supplement (1.13) with the following boundary onditions:

u = g

D

on �

D

[�

�

;

n

>

aru = g

N

on �

N

:

(1.14)

Remark 1.15 With (1.13) and (1.14) a wide range of physially relevant problems an

be desribed: a mixed boundary value problem for an ellipti equation if we hoose a(x)

positive on the whole domain or a linear transport problem with the hoie a(x) � 0 on

.

5

1 Introdution to DGFEM

1.3.1 Variational Form

The variational form of (1.13) needs to allow for the possibility of a = 0 on the boundary.

Additionally, the Dirihlet boundary onditions are weakly enfored, i. e. they are part

of the variational formulation and not of the DGFE-spae.

The variational formulation is split into four parts: the di�usion term, the advetion

term, the absolute term and a disontinuity penalisation term.

Di�usion Term

We have already introdued E , the set of edges of the elements K 2 T . In addition, we

de�ne the set of interior element edges

E

int

:= fe 2 E : e \ �
 = ;g

and its union

�

int

:=

[

e2E

int

e:

The variational formulation of the left and right hand side are:

B

a

(u; v) =

X

K2T

Z

K

ru � arv dx+

Z

�

D

u

�

(arv) � n

e

�

�

�

(aru) � n

e

�

v ds (1.16)

+

Z

�

int

[u℄ h(arv) � n

e

i � h(aru) � n

e

i [v℄ ds

l

a

(v) =

Z

�

D

g

D

�

(arv) � n

e

�

ds+

Z

�

N

g

N

v ds (1.17)

Advetion Term

Similarly to the inow boundary of the whole domain, we de�ne the inow boundary of

an element K 2 T :

�

�

K := fx 2 �K : b � n

K

< 0g ;

where n

K

denotes the unit outward normal vetor on K. In ontrast to the numbering

dependent jump [v℄, we introdue the oriented jump of v over an edge e � �K n �:

bv := v

+

� v

�

;

where v

+

is the inner trae of v in K. The de�nition on �K n� implies that there exists

an element K

0

sharing e with K. Therefore we an de�ne the outer trae v

�

of v on e

relative to K as the inner trae of v on e relative to K

0

.

6

1.3 Advetion Di�usion Problem

Remark 1.18 In general, [v℄ will be distint from bv as the former depends on the

numbering and the latter does not. However, j[v℄j = jbvj.

B

b

(u; v) =

X

K2T

Z

K

(b � ru)v dx�

X

K2T

Z

�

�

Kn�

�

(b � n

K

) bu v

+

ds (1.19)

�

X

K2T

Z

�

�

K\�

�

(b � n

K

)u

+

v

+

ds

l

b

(v) = �

X

K2T

Z

�

�

K\�

�

(b � n

K

)g

D

v

+

ds (1.20)

Absolute Term

B

(u; v) =

X

K2T

Z

K

uv dx (1.21)

l

(u; v) =

X

K2T

Z

K

fv dx (1.22)

Disontinuity Penalisation Term

We de�ne Æ

K

:= h

�1

K

, where h

K

:= diamK, i. e. is element wise onstant. Æ

K

is a

stabilisation parameter.

B

s

(u; v) =

Z

�

D

Æ

K

uv ds+

Z

�

int

Æ

K

[u℄[v℄ ds (1.23)

l

s

(v) =

Z

�

D

Æ

K

g

D

v ds (1.24)

Remark 1.25 The proof of the exponential onvergene, see setion 2.4, relies on this

stabilisation.

The numeris in hapter 5 show that the stabilisation is not neessary for the hosen

model problem.

The variational formulation of (1.13) is then

B

DG

(u; v) := B

a

(u; v) +B

b

(u; v) +B

(u; v) +B

s

(u; v) =

l

a

(v) + l

b

(v) + l

(v) + l

s

(v) =: l

DG

(v): (1.26)

7

1 Introdution to DGFEM

1.3.2 Consisteny

To show onsisteny, we plug the solution of (1.13) and (1.14) into (1.26) and assume

the solution to be di�erentiable and ontinuous. Therefore, [v℄ = bv = 0 and hvi = v.

We start with treating the di�usion term (1.16) with integration by parts:

B

a

(u; v) =

Z

ru � arv dx+

Z

�

D

u

�

(arv) � n

�

�

�

(aru) � n

�

v ds

=

Z

�r(aru)v dx +

Z

�

D

u

�

(arv) � n

�

ds+

Z

�

N

�

(aru) � n

�

v ds;

sine a is symmetri. Together with l

a

(v) from (1.17), the seond and third term weakly

ful�ll the boundary ondition on �

D

and �

N

. What remains is

R

�r(aru)v dx.

Next, we treat the advetion term (1.19):

B

b

(u; v) =

Z

(b � ru)v dx�

Z

�

�

(b � n)uv ds:

There is nothing to do sine l

b

(v) from (1.20) and the seond term weakly ful�ll the

boundary ondition on �

�

. What remains is

R

(b � ru)v dx.

For B

(u; v) and l

(v) from (1.21) and (1.22) respetively, there is nothing to do.

The last term is the disontinuity penalisation term (1.23):

B

s

(u; v) =

Z

�

D

Æ

K

uv ds:

Together with l

s

(v) from (1.24), B

s

(u; v) weakly ful�lls the boundary ondition on �

D

.

We sum up all the terms whih remained:

Z

�r(aru)v dx+

Z

(b � ru)v dx+

Z

uv dx

on the left hand side and

Z

fv dx

on the right hand side, i. e.

Z

[�r(aru) + b � ru+ u� f ℄ v dx = 0:

We therefore onlude onsisteny of (1.26) with (1.13) and (1.14).

8

2 Exponential Convergene in DGFEM

The main result of this hapter is the exponential onvergene of hp-DGFEM on a

polygon. The model problem presented herein features homogeneous Dirihlet boundary

onditions whih are strongly enfored in the variational formulation (in ontrast to the

variational formulation presented in setion 1.3.1 and implemented in hapter 4).

Essentially, this hapter is a summary of [18℄ whih provides the theoretial proof of

what the omputations in hapter 5 show.

2.1 The Model Problem and its Regularity

Let
 � R

2

be a bounded, polygonal domain. We assume that its boundary � = �

is omposed of a Dirihlet part �

D

with

R

�

D

ds > 0 and of a Neumann part �

N

: � =

�

D

[�

N

.

We onsider the model problem

�r(aru) + u = f in

u = 0 on �

D

(aru) � n = g

N

on �

N

:

(2.1)

Here, the oeÆients a(x) and (x) have the following properties:

a(x) = fa

ij

(x)g

2

i;j=1

2 W

1;1

(
)

2�2

sym

and (x) 2 L

1

(
): (2.2)

Further we assume that (x) � 0 for all x 2
 and (2.1) is properly ellipti, i. e.:

9�a; a

0

> 0 : �a j�j

2

� �

>

a(x)� � a

0

j�j

2

8� 2 R

2

; x 2
: (2.3)

We will measure the regularity of (2.1){(2.3) in terms of ertain weighted Sobolev

spaes: Let
 � R

2

be a polygonal domain and let A

i

, i = 1; : : : ;M denote its verties.

Further let � = (�

1

; : : : ; �

M

), 0 � �

i

< 1, be an M -tuple. For any number k we de�ne

� � k := (�

1

� k; : : : ; �

M

� k).

We de�ne the weight funtion �

�

(x) by

�

�

(x) :=

M

X

i=1

r

�

i

(x)

�

i

where r

�

i

(x) := min f1; jx� A

i

jg:

9

2 Exponential Convergene in DGFEM

For integers 0 � l � m we introdue the semi-norms

juj

2

H

m;l

�

(
)

:=

m

X

k=l

�

�

D

k

u

�

�

�

�+k�l

2

L

2

(
)

:

By H

m;l

�

(
), 0 � l � m, we denote the ompletion of C

1

(
) with respet to the norms

kuk

2

H

m;l

�

(
)

:= kuk

2

H

l�1

(
)

+ juj

2

H

m;l

�

(
)

for l � 1,

kuk

2

H

m

�

(
)

:=

m

X

k=0

�

�

D

k

u

�

�

�

�+k

2

L

2

(
)

for l = 0.

De�nition 2.4 (Countably Normed Spae B

l

�

(
)) Fix l � 0 and M-tuple � =

(�

1

; : : : ; �

M

). The ountably normed spae B

l

�

(
) onsists of all funtions u for whih

u 2 H

m;l

�

(
) for all m � l and

�

�

D

k

u

�

�

�

�+k�l

L

2

(
)

� Cd

k�l

(k � l)! for k = l; l + 1; : : :

for some onstants C > 0 and d � 1 independent of k.

We also need ertain trae spaes of B

l

�

(
). To this end, let M� f1; : : : ; Ng be an

index set and de�ne

 =

[

j2M

�

j

� �:

Then B

l�

1

=2

�

(
) is the set of traes from B

l

�

(
) on .

Now, for the solution of problem (2.1){(2.3) we have the following

Theorem 2.5 (Regularity) Let
 � R

2

be a polygon. Then there exist 0 < �

j

< 1,

j = 1; : : : ; N , suh that for f 2 B

0

�

(
) and g

N

2 B

1

=2

�

(
) the solution of problem (2.1){

(2.3) exists and belongs to B

2

�

(
).

Proof: See [3℄ and [4℄. �

2.2 hp-DGFEM

We now introdue the �nite element spaes. Note that in this theoretial part (as in [18℄)

the homogeneous Dirihlet boundary onditions are strongly enfored. For onveniene,

in hapters 4 and 5, boundary onditions are weakly enfored, see setion 1.3.1.

10

2.3 Stability

2.2.1 Variational Formulation

The variational formulation an be taken from setion 1.3.1 if we take into aount that

the Dirihlet boundary onditions are strongly enfored and that b = 0:

B(u; v) =

X

K2T

Z

K

ru � a(x)rv + (x)uv dx

+

Z

�

int

[u℄ h(arv) � n

e

i � h(aru) � n

e

i [v℄ ds (2.6)

+

X

K2T

Æ

K

Z

�Kn�

[u℄[v℄ ds

l(v) =

X

K2T

Z

K

fv dx+

Z

�

N

g

N

v ds: (2.7)

We de�ne the energy norm:

juj

2

DG

:= B(u; u) =

�

X

K2T

p

aru

2

L

2

(K)

+

p

u

2

L

2

(K)

+ Æ

K

k[u℄k

2

L

2

(�Kn�)

�

(2.8)

and

kuk

2

DG

:=

�

X

K2T

kuk

2

H

1

(K)

+ h

�1

K

kuk

2

L

2

(�Kn�)

+ h

K

juj

2

H

1

(�Kn�)

�

Remark 2.9 The proofs of the stability and the exponential onvergene need the sta-

bilisation term in (2.6). In the numerial part (in hapter 5), we will see that the

stabilisation is not needed for the exponential onvergene on the hosen model problem.

2.3 Stability

In the following setion, some result about the stability and onvergene of the hp-

DGFEM are presented.

Let �

p

u

ex

2 S

p

0

(
; T) be an arbitrary interpolant of the solution u

ex

of our model

problem (2.1){(2.3). Further, let u

DG

denote the solution of the DGFEM de�ned by the

bilinear form (2.6) and the linear form (2.7). Then we write

u

ex

� u

DG

= u

ex

� �

p

u

| {z }

=:�

+ �

p

u� u

DG

| {z }

=:�

: (2.10)

In the ensuing Proposition 2.11 we will prove that � may be estimated by �. Hene, we

will be able to bound the error u

ex

� u

DG

of the hp-DGFEM by � only.

11

2 Exponential Convergene in DGFEM

Proposition 2.11 (Stability) Let G = fT

i

g

i2N

be a shape regular mesh family. Further

let the onditions (2.2) and (2.3) be be satis�ed.

Then, there exists a onstant C > 0 depending only on the onstants in (2.2) and

(2.3) and on the regularity of the mesh suh that for the hp-DGFEM de�ned by (2.6)

and (2.7) with Æ

K

= h

�1

K

there holds the a-priori estimate

j�j

DG

� Cp

i;max

k�k

DG

8i 2 N ;

where p

i;max

:= max

K2T

i

p

K

.

Proof: See [18℄. �

2.4 Convergene

From Proposition 2.11 we know that the error ju

ex

� u

DG

j

DG

of the hp-DGFEM may be

estimated by � = u

ex

��

p

u

ex

in a ertain way, where �

p

u

ex

2 S

p

0

(
; T) may be arbitrarily

hosen. Therefore, we are interested in hp-approximations of the exat solution u

ex

of

the model problem (2.1){(2.3).

We will prove that by a judiious ombination of mesh re�nement towards the singular

points of the polygon (i. e. orner verties and verties with hanging boundary ondition

type) and inrease of the polynomial degree p used in the approximation, exponential

onvergene may be ahieved. To do so, we will introdue the so-alled geometri meshes

on
.

Ellipti regularity states that the solution u

ex

is, for analyti data, itself analyti in

minus these singularities. Geometrially graded meshes therefore ensure the analytiity

of the solution restrited to eah element not abutting at a singular point.

2.4.1 Approximation on the Unit Square

De�nition 2.12 (Geometri Mesh Family

^

T

n

�

) On

^

 = (0; 1)

2

we de�ne the geo-

metri mesh family

^

T

n

�

with n + 1 layers and grading fator 0 < � < 1 reursively as

follows: if n = 0,

^

T

0

�

= f

^

g. Given

^

T

n

�

, n � 0, generate

^

T

n+1

�

by subdividing the element

K

0

abutting at the singular vertex 0 2 K

0

into three smaller retangles by diving all but

one of its sides in a � : (1� �) ratio (. f. Figure 2.1).

Proposition 2.13 (Approximation on

^

) Let

^

 = (0; 1)

2

, 0 < � < 1 and let

^

T

n

�

be

the geometri mesh with n + 1 layers de�ned in De�nition 2.12. Then, for u 2 B

2

�

(

^

)

with some 0 < � < 1 and �

�

(x) = jxj

�

, there exists � > 0 suh that for the following

linear polynomial degree distribution vetor with slope �

p =

�

p

ij

= p

i

; i = 0; : : : ; n; j = 1; 2; p

i

= max f1; b�ig

	

12

2.4 Convergene

PSfrag replaements

1

1

0

x

1

x

2

K

0

K

11

K

12

K

21

K

22

K

31

K

32

Figure 2.1: Geometri mesh

^

T

n

�

for � = 0:5 and n = 3.

there holds:

inf

v2S

p

0

(
;T

n

�

)

ku� vk

DG

� Ce

�b

3

p

N

;

where C; b > 0 do not depend on N = dimS

p

0

(

^

;

^

T

n

�

).

2.4.2 Approximation on a Polygon

We will now establish an exponential onvergene result like Proposition 2.13 on a poly-

gon
. The basi idea will be to loalize the hp-approximation problem at eah singular

point and to use the results in the previous setion.

De�nition 2.14 (Geometri Meshes on a Polygon) A geometri mesh family T

n

�

on a polygon
 is obtained by mapping the basi mesh

^

T

n

�

from

^

 linearly to a viinity of

eah onvex orner of
. At reentrant orners, three and at Dirihlet/Neumann verties

two opies of

^

T

n

�

(suitably saled), are used, see �gure 2.2. The remaining domain

~

 is

meshed with a �xed mesh whih is regularly onneted with the geometri pathes at the

singular points.

In order to onstrut a pieewise hp-approximation �

p

u 2 S

p

0

(
; T

n

�

) of u 2 B

2

�

(
), we

proeed as follows: �rst we onstrut �

p

u in eah parallelogram path. Then, sine u is

analyti in

~

, we inrease the polynomial degree on the �xed mesh in

~

 onsistently with

the largest degree in eah path (we assume that the degree vetors in eah geometri

mesh path are idential), yielding exponential onvergene also in

~

. Summing up the

loal error estimates from the subregions leads to the ensuing result:

13

2 Exponential Convergene in DGFEM

Figure 2.2: Polygon with geometri meshes in the singular verties.

Proposition 2.15 Let
 � R

2

be a polygon and u 2 B

2

�

(
).

Then there holds

inf

v2S

p

0

(
;T

n

�

)

ku� vk

DG

� Ce

�b

3

p

N

;

where C; b > 0 are independent of N = dimS

p

0

(
; T

n

�

).

Proof: In order to prove this proposition, a generalization of Proposition 2.13 to paral-

lelograms is needed. This an be established similarly to Proposition 2.13. �

2.4.3 Convergene on a Polygon

The main result of [18℄ is

Theorem 2.16 Let
 � R

2

be a polygon and let moreover the onditions (2.2) and

(2.3) be satis�ed. Then, for the hp-DGFEM de�ned by (2.6) and (2.7) on S

p

0

(
; T

n

�

)

with Æ

K

= h

�1

K

there holds the following error estimate:

ju

ex

� u

DG

j

DG

� Ce

�b

3

p

N

;

where C; b > 0 are independent of N = dimS

p

0

(
; T

n

�

).

Proof: See [18℄. �

14

3 Introdution to Conepts

Conepts is a library nearly ompletely written in C++, an objet oriented programming

language [16℄. The main bene�ts of C++ are:

� One an implement very eÆient ode.

� Compilers are available on almost all platforms [1℄ and C++ is one of the most

widespread objet oriented programming languages.

� With the availability of templates, name spaes and exeptions, in addition to the

Standard Template Library [9℄, reusable ode on a rather high level an be written.

In [11℄, Lage desribes the main design idea behind the design of Conepts as follows:

Sine we are interested in the development of numerial software, there is a

speial situation: the onsidered numerial methods are already formulated

in an abstrat way based on hierarhial strutured mathematial onepts.

This motivates the following approah: represent eah onept by a module

and ombine these modules aording to the numerial algorithm to generate

an implementation.

With this in mind, it is easier to understand the design of Conepts.

In this hapter, the main parts of Conepts are presented. Starting with the seond

setion, the design priniples following the mathematial hierarhy of FEM are explained.

To support this, only lass hierarhy diagrams are used. To better understand the

interations of the presented lasses, the fourth setion shows some UML diagrams. The

�fth setion explains the element integration of the Laplaian in great detail. The �rst

setion gives a short overview of the history and the authors of Conepts.

3.1 History and Authors

The software was mainly written by Dr. Christian Lage. First versions and ideas of

the software appear already in his Ph.D. thesis [10℄. The urrent version 1.4 was de-

veloped during his post dotoral studies at the Seminar for Applied Mathematis of

the Swiss Federal Institute of Tehnology (ETH), Zurih. The design ideas leading the

implementation of Conepts are presented in [11℄.

15

3 Introdution to Conepts

Ana-Maria Matahe is working with the hp-FEM part of Conepts. She implemented

the quadrilaterals for two dimensional problems together with Lage. She is the one I

have asked if I did not know what happened in the ode. She also gave me the �rst

introdutions to Conepts.

Reently (summer 1999), two students (David Hoh and Andreas R�uegg) wrote a

semester thesis [15℄ on and with Conepts-1.4. They implemented mixed and variable

boundary onditions for hp-FEM. Their work was supervised by Ana-Maria. They both

ontinue to work on Conepts and have already implemented an interfae to a diret

sparse solver.

3.2 Main Parts of Conepts

The library Conepts implements the onepts of both Finite Element Methods and

Boundary Element Methods (BEM). In the following, only the FEM part is treated.

Muh of the priniples are appliable to BEM too, tough.

Typography

The following typographial onventions are used:

� Class names are typeset like lass name.

� Abstrat lasses are typeset like abstrat. An abstrat lass is merely an interfae

lass, i. e. not all methods have an implementation, they only serve to presribe

the interfae of the derived lasses.

Mathematial Conepts and their Classes

The quotation of Lage above suggests we have a loser look at the onepts of FEM. We

do so by repeating (1.5), the disretised formulation of FEM:

Find u

FE

2 S

p;1

0

(
; T) suh that a(u

FE

; v) = l(v) 8v 2 S

p;1

0

(
; T)

and (1.6), the linear system resulting from (1.5): A

>

u = l. Therefore, we need onepts

for:

1. The mesh T on the domain
.

2. The shape funtions on

^

 and the element maps F

K

leading to a basis f'

i

g

N

i=1

of

the FE-spae S

p;1

0

(
; T).

3. The bilinear form a and the linear form l leading to the matrix A and the vetor l.

4. A solver for the linear system.

16

3.2 Main Parts of Conepts

These onepts are implemented in the following lasses:

1. The domain of interest
 is diretly desribed by the mesh in a user de�ned lass,

e. g. geo Quadrat for the unit square. This lass is derived from geo Mesh2 in the

two dimensional ase.

2. The spae is implemented in hp HP2d. Like the de�nition of S

p;1

0

(
; T) suggests,

it onsists of elements hp HP2d001 (quadrilaterals). For the sake of eÆieny, the

elements diretly inorporate the shape funtions on the referene element. There-

fore, the implementation an exploit the speial struture of the shape funtions.

3. hp Laplae and hp Identity are both derived from op BilinearForm. Together, they

form the implementation of a. hp Riesz for l is derived from fn LinearForm.

op Operator is the base lass for all operators. Hene, op Matrix for A is derived

from it. The lass for l is alled fn Vetor.

4. The inverse of an operator an be omputed by di�erent means: op GMRes imple-

ments the General Minimal Residuals algorithm and op CG the Conjugate Gra-

dients algorithm, op DGESV is an interfae to a diret solver from LAPACK [2℄.

They are all derived from op Operator .

In the rest of the setion, we will look at the di�erent mathematial onepts and the

aording lasses.

3.2.1 Topology, Geometry and Mesh

Topology

The topology of a mesh is desribed by means of onnetors. These onnetors are

verties, edges, faes (in three dimensions) and ells.

Restrited to the ase of two spae dimensions, a ell onsists of a number of edges|

four in the ase of a quadrilateral and three in the ase of a triangle. Furthermore, an

edge onsists of two verties. This is reeted in the lasses of the geometry pakage.

The hierarhy of the mentioned lasses is shown in �gure 3.1.

The lass geo Connetor presribes the ommon interfae for all topologial elements

(onnetors). This interfae onsists of a method to query the attribute of the onnetor.

A typial appliation for the attribute of a onnetor are boundary onditions. Addi-

tional interfae methods are presribed on the next level of derivation. The re�nement

of the elements of the topology|i. e. the subdivision|is implemented on the highest

level of derivation, i. e. in geo Edge et.

17

3 Introdution to Conepts

geo Connetor

geo Connetor0 geo Connetor1 geo Connetor2 geo Connetor3

geo Vertex geo Edge geo Quad geo Triangle geo Tetrahedron

Figure 3.1: The lass hierarhy in the topologial part of the geometry pakage. An arrow represents a

\is a" relation.

geo Cell

geo Cell2 geo Cell3

geo Quad2d geo Triangle2d geo Triangle3d

Figure 3.2: The lass hierarhy in the geometrial part of the geometry pakage.

Geometry

Until now, we have only seen the topology of the ells in a meshed domain. With

the onept of geometry, we introdue the notion of oordinates by adding the element

mapping to the ells of the topology.

A ell of the topology, e. g. geo Quad, together with the element mapping of this ell

results in a quadrilateral of the geometry, e. g. geo Quad2d. As one would expet, the

lasses on the highest level of derivation have a method to evaluate the element mapping,

i. e. map a point in the referene element onto a physial point. The hierarhy of the

abovementioned lasses is shown in �gure 3.2.

18

3.2 Main Parts of Conepts

geo Mesh

geo Mesh2 geo Mesh3

geo Square geo Disk geo Quadrat

Figure 3.3: The lass hierarhy in the mesh part of the geometry pakage. The lasses geo Square,

geo Disk and geo Quadrat implement examples of meshes. They are skethed in �gure 3.4.

Mesh

The topology and geometry as introdued above do not desribe a mesh. They only

desribe separate ells in a mesh. The lasses in the mesh part of the geometry pakage

pak the ells together and �nally give an implementation of the mathematial notation

T . The lasses in this part of the geometry pakage are shown in �gure 3.3.

Usually, the lass implementing the mesh has to be user de�ned. Some examples like

geo Square, geo Disk and geo Quadrat are already available, . f. �gure 3.4.

3.2.2 Shape Funtions, Elements and Spae

Shape Funtions

As stated above, the shape funtions are integrated into the lass for the elements of the

FE-spae. The advantages of this Ansatz are that one an exploit the speial struture

of the hosen shape funtions. The disadvantage: the lasses for the elements annot be

reused if one wants to exhange the shape funtions.

Elements

An element of the FE-spae onsists of the support of the element (inluding the oor-

dinates) and of the polynomial degree on this element. In two dimensions, the support

of an element is a derived lass of geo Cell2 , . f. �gure 3.2.

The abstrat lass for an element of the FE-spae hp HP2dXXX (. f. �gure 3.5)

presribes the interfae to query the polynomial degree and the support of an element.

As stated in the paragraph about shape funtions above, these are also inluded into

the element. Therefore, the lasses hp HP2d000 and hp HP2d001 both have methods to

evaluate all the neessary shape funtions at a spei� point in the referene element.

19

3 Introdution to Conepts

PSfrag replaements

1

1

0

x

1

x

2

(a) geo Square

PSfrag replaements

1

1

0

x

1

x

2

(b) geo Disk

PSfrag replaements

1

1

0

x

1

x

2

() geo Quadrat

Figure 3.4: The meshes implemented by the example lasses. geo Square is the unit square (0; 1)

2

meshed with two triangles. geo Disk is the unit disk

�

x 2 R

2

: jxj < 1

	

initially meshed

with four triangles|the mesh does not really resemble a disk but re�ning the mesh will

improve the situation: the new verties on the boundary will lie on the irle. geo Quadrat

meshes the unit square (0; 1)

2

with one quadrilateral.

sp Element

hp HP2dXXX

hp HP2d000 hp HP2d001

Figure 3.5: The lass hierarhy in the element part of the spae pakage. hp HP2d000 implements

triangular elements, hp HP2d001 is used for quadrilaterals.

20

3.2 Main Parts of Conepts

sp Spae

hp HP2d

Figure 3.6: Class hierarhy in the spae part of

the spae pakage.

op BilinearForm

hp Laplae hp Identity

Figure 3.7: Class hierarhy in the bilinear forms

part of the operator pakage.

The topology desribes how the elements are onneted. In FEM, we need to have

a ontinuous basis of the FE-spae. Hene, there exist ertain onditions whih have

to be ful�lled at inter-element boundaries. From the algorithmi point of view, this is

ahieved by globally enumerating the degrees of freedom and then mapping the loal

degrees of freedom of eah element onto the global ones. Aording to this mapping, the

global matrix is assembled from the element matries. This mapping is stored element

wise in the so-alled T matries.

The interfae to aess these matries is presribed on the level of sp Element.

Spae

As the mesh in the geometry pakage ollets all the ells in the topology and their geo-

metrial information to implement the mesh T , the FE-spae paks the above-desribed

elements together and implements S

p;1

0

(
; T).

The abstrat lass sp Spae presribes the interfae to query the dimension and the

number of elements of the spae and to get an iterator (a so-alled sanner) of the spae.

With suh a sanner one an iterate over all elements of the spae (in no partiular order,

tough).

The lass hp HP2d, derived from sp Spae (. f. �gure 3.6), implements these

mandatory methods. Additionally, there are methods to set re�nement requirements

on the elements of the spae and to �nally re�ne and rebuild the spae. During this

proess, the T matries of the elements are omputed and stored.

3.2.3 Bilinear Forms and Operators

Bilinear Forms

A bilinear form is evaluated for two funtions of the basis of S

p;1

0

(
; T), the result is

stored in the global matrix: A = fa('

i

; '

j

)g

N

i;j=1

. Algorithmially, it is evaluated for all

shape funtions on all elements to form the element matries.

The abstrat funtion lass op BilinearForm presribes the interfae to evaluate a bi-

linear form on two elements, i. e. to ompute A

KK

0

=

�

a('

K

i

; '

K

0

j

)

	

where i = 1; : : : ; N

K

and j = 1; : : : ; N

K

0

are the indies of the shape funtions on the elements K and K

0

21

3 Introdution to Conepts

op Operator

op Loal op Matrix op LiCo op CG op GMRes op DGESV

Figure 3.8: Class hierarhy in the matries and solver part of the operator pakage.

respetively. A funtion lass is a lass whose main usage is through the parenthesis

operator (alled appliation operator). op BilinearForm presribes the interfae for the

appliation operator.

The derived lass hp Laplae (. f. �gure 3.7) implements an appliation operator

aording to the interfae presribed by op BilinearForm whih evaluates the variational

form of the Laplaian, i. e.

R

K

ru �rv dx for the shape funtions u and v on element K:

A

K

=

�

a('

K

i

; '

K

j

)

	

N

K

i;j=1

;

where

�

'

K

i

	

N

K

i=1

are the shape funtions on element K.

Similarly to hp Laplae, hp Identity evaluates

R

K

uv dx on a given element K.

Operators

To form the global matrix, the element matries have to be omputed and then assembled

into the global matrix. This is done in a op Loal or op Matrix lass, . f. �gure 3.8. The

abstrat base lass op Operator presribes the interfae for an operator onsisting of an

appliation operator whih omputes the appliation of an operator on a vetor.

The lass op Matrix implements a dense matrix and op Loal a matrix in sparse nota-

tion: only the non-zero entries have to be stored. op LiCo stands for a linear ombination

of two operators.

3.2.4 Linear Forms and Vetors

Linear Forms

A linear form l(v) is evaluated for eah basis funtion of S

p;1

0

(
; T) and the result is

stored in the load vetor. As for bilinear forms, algorithmially, it is evaluated for all

shape funtions on all elements to form the element load vetors.

The abstrat funtion lass fn LinearForm (see �gure 3.9) presribes the interfae of

a linear form: the appliation operator omputes and returns the loal load vetor for a

22

3.3 Main Steps in a Conepts Appliation

fn LinearForm

hp Riesz

Figure 3.9: Class hierarhy in the linear forms

part of the funtion pakage.

fn Funtion

fn Vetor

Figure 3.10: Class hierarhy in the vetor part

of the funtion pakage.

given element of the spae:

l

K

=

�

l('

K

j

)

	

N

K

j=1

:

The element load vetor is returned as a N

K

� 1 matrix.

Vetors

The vetor lass fn Vetor, . f. �gure 3.10, is delared similarly to the lass for matries

(see the setion about operators above). The element load vetors are omputed using

a given linear form and are then assembled into the global load vetor.

The biggest di�erene to the matrix lasses op Matrix and op Loal: as the vetors

are not stored in sparse notation, they support a wide variety of operations (suh as

addition, subtration and saling).

3.2.5 Solver

Solving a linear system is nothing more than omputing the inverse of the matrix and

applying the right hand side to it. Therefore, a solver is an operator whih takes a

matrix and a vetor and alulates the result.

There are several di�erent solvers implemented: Conjugate Gradients in op CG, Gen-

eral Minimal Residuals in op GMRes or a diret solver from LAPACK [2℄ in op DGESV.

As these are all operators, they are derived from op Operator , see �gure 3.8.

3.3 Main Steps in a Conepts Appliation

The main steps in a Conepts appliation are:

1. Create the mesh.

2. Create the spae.

3. (Re�ne the mesh.)

23

3 Introdution to Conepts

4. Create the bilinear forms and the aording matries and ombine them to form

the sti�ness matrix.

5. Create the linear forms and the aording vetors and ombine them to form the

load vetor.

6. Create a Solver and solve the linear system.

7. (Analyse the error and proeed with step 3 if the error is too large.)

8. Post proessing: plots, error omputation et.

9. Remove the matries, vetors, the spae and the mesh.

The steps in parenthesis are optional.

3.4 Some UML Diagrams of Conepts

Until now, we have only seen lass hierarhies. They don't present very muh information

about the interations of the lasses. In most objet oriented odes, these interations

are very omplex|Conepts is no exeption.

The graphial representation of omplex orrelations gives a muh faster and better

overview than a desription in a text. Sine this is not really new, the Uni�ed Modeling

Language (UML) was developed [12, 13, 14℄ and [7℄ for a short introdution. It de�nes

nine di�erent diagrams for the graphial desription of objet oriented designs.

I have hosen three of those nine diagrams as suitable to desribe the struture of

Conepts: the Class, Objet and Sequene Diagram.

3.4.1 Class Diagram

The Class Diagram desribes states of a data struture in a general form haraterizing

a set of allowed states. To ahieve this, lasses and their member relations are shown.

An arrow in a Class Diagram desribes a member relation, i. e. the lass at the tail of an

arrow has as member a referene to an objet of the lass at the head of the arrow. The

label of the arrow is the name of the member objet. The number on the head ounts

the number of referenes whih are needed by the \tail lass", in most ases they don't

need to be distint, e. g. spaeX and spaeY in �gure 3.11 may be idential. The number

on the tail ounts the number of lasses whih have a referene to the same objet (n

means \arbitrary").

The Class Diagram in �gure 3.11 shows the main lasses whih take part in omputing

the sti�ness matrix and the load vetor for a Laplae equation on the unit square (0; 1)

2

meshed with geo Quadrat (see �gure 3.4() on page 20).

24

3.4 Some UML Diagrams of Conepts

dg BoundaryCond

geo Vertex geo Edge geo Quad

geo Quad2dgeo Quadrat

hp HP2d hp HP2d001

op Loal hp Laplae

fn Vetor

hp Riesz

spaeX, spaeY

2

n

msh

1

n

elm

n

1

ell

1

1

dirihlet, neumann

2

1

vtx

4

1

edg

4

1

quad

1

1

ell

1

1

ntr

1

1

edg
4

1

vtx

2

2

attrib

n

1

spae

1

n

Figure 3.11: Class Diagram of vetor, matrix, spae and topology. The bilinear form hp Laplae and

the linear form hp Riesz are only used temporarily by op Loal and fn Vetor respetively.

Arrows whih would desribe a loop, i. e. have the same head and tail, are not shown.

3.4.2 Objet Diagram

Like the Class Diagram, the Objet Diagram desribes states of a data struture. Not

in general tough, but for one onrete state, i. e. like a snapshot of the struture. To

ahieve this, the objets and their member relations are shown. An arrow in a Objet

Diagram desribes a member relation, i. e. the objet at the tail of an arrow has as

member a referene to the objet at the head of the arrow.

The most ompliated part of the struture in Conepts is the geometry and topology,

above all, when the mesh is re�ned. Figure 3.12 shows as the initial mesh the unit square

(0; 1)

2

and then the re�nement of the square into four smaller squares. Figures 3.13 and

3.14 show the data struture of the initial and the re�ned mesh respetively.

Initial Mesh

In �gure 3.13, from left to right are the arrays for the verties (type geo Vertex), the edges

(type geo Edge), the quadrilateral (of the topology, type geo Quad) and the ell (type

geo Quad2d). One an easily see that eah edge has two referenes to verties and the

quadrilateral has four referenes to edges (see also the Class Diagram in �gure 3.11). The

arrow on the left rossing many others indiates that the edges are arranged irularly.

25

3 Introdution to Conepts

0 1

3 2

0

1

2

3

(a) Initial mesh.

0 1

3 2

A C

G E

B

F

H

DI

(b) Re�ned mesh.

Figure 3.12: The initial mesh and the re�ned mesh. The numbers indiate the indies of the verties

and the edges in the vtx and edg array respetively. Topologially, the verties 0 and A are

idential, but in the data struture, they are two di�erent objets.

geo Quadrat

0

1

2

3

0

1

2

3

0 0

vtx

edg

quad

ell

Figure 3.13: The Objet Diagram of the initial mesh (. f. �gure 3.12(a)). The numbers indiate the

indies of the entries in the vtx, edg, quad and ell arrays of the mesh objet (symbolized

by geo Quadrat).

26

3.4 Some UML Diagrams of Conepts

vtx

edg

geo Vertex geo Edge

hldhld

vtx

0

1

2

3

A

B

C

D

E

F

G

H

I

0

1

2

3

AB

BC

CD

DE

EF

FG

GH

HA

BI

DIj

FI

HI

Figure 3.14: The Objet Diagram of the re�ned mesh (. f. �gure 3.12(b)). Only the objets of type

geo Vertex (on left) and geo Edge (on the right) are displayed. The numbered objets are

the same as in �gure 3.13. The members of geo Edge indiated by are alled lnk.

27

3 Introdution to Conepts

geo Quadrat

0

ABIH BCDI IDEF HIFG

quad

hld

lnk lnk lnk

Figure 3.15: Objet diagram of the hildren of the geo Quad objet in the re�ned mesh: all objets

exept the one labeled geo Quadrat are of the type geo Quad.

Re�ned Mesh

The data struture of the re�ned mesh (. f. �gure 3.12(b)) is already quite ompliated.

Therefore, only parts of it (only the objets of type geo Vertex and geo Edge) are shown

in �gure 3.14.

Eah objet whih was already present in the initial mesh has got one or more

hildren in the re�ned mesh. A vertex has only one hild, an edge has two hildren and

a quadrilateral has four hildren (see �gure 3.12(b)). This is also visible in �gure 3.14:

the geo Vertex objets on the left have one hld arrow pointing to a letter-labeled vertex.

The geo Edge objets on the left also have a hld arrow point to a letter-labeled edge.

This letter-labeled edge has an additional lnk arrow. The hildren of a topologial objet

are not stored in an array but in a linked list. For the hildren of the geo Quad objet

this would look like in �gure 3.15.

3.4.3 Sequene Diagram

A Sequene Diagram pitures the interation among objets. It shows the partiipat-

ing objets together with a life line (the long retangle beneath the objet's name).

The messages the objets exhange (symbolized by arrows) are ordered on the life line

with respet to their ourrene in time. The numbers of the phases orrespond to the

numbers in setion 3.3.

Mesh Creation

Figure 3.16 shows the sequene of major operations to reate the mesh (phase 1). The

onstrutor of the mesh lass is alled from the main program and then all the objets

whih form the topology (see �gure 3.13) are reated and properly arranged. The order

of reation of these objets is: verties, edges, quadrilateral, ell. The new all to msh

only returns after the new all to ell, i. e. one all from the main program is enough to

reate the mesh. The same holds for the destrution of the mesh: one all suÆes.

28

3.4 Some UML Diagrams of Conepts

PSfrag replaements

main

dg BCond

neumann

dirihlet

msh

geo Quadrat

geo Vertex

geo Edge

geo Quad

geo Quad2d

vertex

edge

quad

ell

new

new

new

new

new

new

delete

delete

delete

delete

delete

delete

Phase 1

Phases 2{8

Phase 9

Figure 3.16: Sequene Diagram of the mesh reation: in phase 1, the mesh is reated. In the phases 2{8

the alulations are performed (starting with the reation of the spae)|this is not shown

here. In phase 9, the mesh is removed as one of the last steps in the main program.

PSfrag replaements

main

new

new

new

delete

delete

delete

msh

hp Spae

hp Element

adjust

adjust

Rebuild

Rebuild

Phase 2

Phases 3{7

Phase 9

Figure 3.17: Sequene Diagram of the spae reation: in phase 2, the spae is reated. In the phases 3{8

the alulations are performed and the spae is re�ned (one in this example). In phase 9,

the spae is removed. In this diagram, the rebuild proess is triggered twie.

29

3 Introdution to Conepts

PSfrag replaements

main

new

new

deletedelete

delete

lf

f

u

fn Vetor fn Vetor

hp Riesz

operator()

Phase 5

Phases 6{8

Phase 9

Figure 3.18: Sequene Diagram of the reation of the vetors: in phase 5, the linear forms and the

aording vetors are reated. In the phases 6{8 the alulations are performed|this is

not shown here. In phase 9, the linear form and the vetors are removed.

Creation of the Spae

Figure 3.17 shows the sequene of operations to reate the spae (phase 2). The main

parameter of the onstrutor of the spae is the mesh whih was reated in phase 1.

The spae is only prepared in the onstrutor, but the elements of the spae are not

onstruted yet. As long as the elements or some other information like number of

elements or dimension is not needed, the elements are not onstruted. In this phase,

the adjustment information an be set, i. e. whih elements should be re�ned and what

polynomial degree they should have.

Then, when the elements are eventually neessary, they are onstruted in two steps

by the so-alled rebuild proess. In the �rst step, the topology is re�ned if needed and

prepared for the seond step whih reates the elements, ounts the degrees of freedom

and alulates the mapping from the loal to the global degrees of freedom (stored in

the T matries of the elements).

Linear Forms and Vetors

Figure 3.18 shows the sequene of operations to reate a linear form, its vetor f and the

solution vetor u (phase 5).

Bilinear Forms and Matries, Solve

Figure 3.19 shows the sequene of operations to reate the sti�ness matries from the

bilinear forms (phase 4) and then the solver operator Linv. The appliation operator

operator() of Linv is then alled with two vetors: the right hand side and the empty

solution vetor whih is then �lled with the solution of the linear system (phase 6).

30

3
.
4

S
o
m
e
U
M
L
D
i
a
g
r
a
m
s
o
f
C
o
n

e
p
t
s

PSfrag replaements

main

new

new

new

new

new new

delete

delete

delete

delete

hp Laplae

hp Identity

op Loal

op LiCo

op CG

fn Vetorfn Vetor

operator()

operator()operator()operator()

operator()operator()

a

A

id

I

L

Linv

u

f

Phase 4

Phase 6

Phase 9

Figure 3.19: Sequene Diagram of the reation of the matries and the solution: in phase 4, the bilinear forms and the

matries are reated. In the phase 6 the solution of the linear system is omputed. In phase 9, all data

strutures are removed. operator() is the C++ notation for the appliation operator.

3
1

3 Introdution to Conepts

3.5 Element Integration

In this setion, the element integration algorithm as it is used in the appliation operator

for quadrilaterals of hp Laplae is disussed in greater detail.

The appliation operator has to ompute

Z

K

r

x

'

K

i

r

x

'

K

j

dx =

Z

^

r

x

N

i

r

x

N

j

� jF

0

K

j d�; (3.1)

where � are the oordinates in the referene element

^

, jF

0

K

j is the Jaobian of the element

mapping F

K

, '

K

i

are the shape funtions on element K, N

i

are the shape funtions on

^

: '

K

i

Æ F

K

= N

i

. Therefore,

r

x

N

i

=

�

�N

i

�x

1

�N

i

�x

2

�

; where

�N

i

�x

1

=

�N

i

��

1

��

1

�x

1

+

�N

i

��

2

��

2

�x

1

: (3.2)

In Conepts, urrently only bilinear elements are used. Therefore, the element map

of element K 2 T is

F

K

:

^

!
; � 7!

4

X

i=1

x

i

�N

i

(�);

where fx

i

g

4

i=1

are the verties of the quadrilateral K. The derivatives of the element

mapping are therefore

�F

K

��

1

=

1

=2

�

�x

1

(1� �

2

) + x

2

(1� �

2

) + x

3

�

2

� x

4

�

2

�

=

�x

1

��

1

�x

2

��

1

!

=:

1

=2s;

�F

K

��

2

=

1

=2

�

�x

1

(1� �

1

)� x

2

�

1

+ x

3

�

1

+ x

4

(1� �

1

)

�

=

�x

1

��

2

�x

2

��

2

!

=:

1

=2t:

Hene, jF

0

K

j =

�F

K

��

2

^

�F

K

��

2

=

s^t

=4.

The integrand in (3.1) is (using (3.2))

r

x

N

i

r

x

N

j

=

�

�N

i

��

1

��

1

�x

1

+

�N

i

��

2

��

2

�x

1

�

�

�

�N

j

��

1

��

1

�x

1

+

�N

j

��

2

��

2

�x

1

�

+

�

�N

i

��

1

��

1

�x

2

+

�N

i

��

2

��

2

�x

2

�

�

�

�N

j

��

1

��

1

�x

2

+

�N

j

��

2

��

2

�x

2

�

=

�N

i

��

1

�N

j

��

1

�

"

�

��

1

�x

1

�

2

+

�

��

1

�x

2

�

2

#

+

�

�N

i

��

1

�N

j

��

2

+

�N

i

��

2

�N

j

��

1

�

�

�

��

1

�x

1

��

2

�x

1

+

��

1

�x

2

��

2

�x

2

�

+

�N

i

��

2

�N

j

��

2

�

"

�

��

2

�x

1

�

2

+

�

��

2

�x

2

�

2

#

:

32

3.5 Element Integration

We use s; t and jF

0

K

j to ompute the terms in square brakets above:

(F

0

K

)

�1

=

�

1

=2s

1

=2t

�

�1

=

4

=s^t �

�

t

2

�t

1

�s

2

s

1

�

=

�

��

1

�x

1

��

1

�x

2

��

2

�x

1

��

2

�x

2

�

:

Hene

�

��

1

�x

1

�

2

+

�

��

1

�x

2

�

2

=

t

2

1

+ t

2

2

jF

0

K

j

2

=:

tt

jF

0

K

j

;

��

1

�x

1

��

2

�x

1

+

��

1

�x

2

��

2

�x

2

= �

s � t

jF

0

K

j

2

=:

st

jF

0

K

j

;

�

��

2

�x

1

�

2

+

�

��

2

�x

2

�

2

=

s

2

1

+ s

2

2

jF

0

K

j

2

=:

ss

jF

0

K

j

:

Plugging all into (3.1):

Z

^

�

�N

i

��

1

�N

j

��

1

� tt+

�

�N

i

��

1

�N

j

��

2

+

�N

i

��

2

�N

j

��

1

�

� st +

�N

i

��

2

�N

j

��

2

� ss

�

�

jF

0

K

j

jF

0

K

j

d�:

All derivatives to x have vanished and are replaed by derivatives to �. These derivatives

are de�ned on the referene element

^

 and no longer on the element K|they are easily

omputable.

The same method is also appliable to integrate the advetion term, where only one

of the two shape funtion has a derivative.

33

4 Extensions to Conepts for DGFEM

The present hapter desribes the extensions of Conepts whih were neessary for DG-

FEM to work. The �rst setion desribes the new lasses whih implement the DGFEM.

In the seond setion, the really new ideas (new to Conepts), whih were introdued,

are presented. The third setion desribes the other extensions whih were not really

neessary but proved quite useful. The last setion gives some ideas what ould be done

next as it lists possible diretions of development.

4.1 New Classes for DGFEM

Most of the extension were done in new lasses, diretly derived from the base lasses

or from the lasses in the hp-FEM pakage. The �gures 4.1{4.6 show these relations.

dg HP2d001 in �gure 4.1 ontains nothing new whih would be absolutely neessary

for DGFEM, but some of the hanges made my life as programmer somewhat easier (see

setion 4.3.2). The hanges leading to dg HP2d (�gure 4.2) are desribed in setion 4.2.1.

The new lass dg Edge (�gure 4.3) was neessary to detet elements sharing an edge,

see setion 4.2.2. dg BoundaryCond (�gure 4.4) is used to speify non-homogeneous

boundary onditions of Dirihlet or Neumann type, see setion 4.3.1. The abstrat lass

dg BForm in �gure 4.5 provides a few auxiliary omputation methods for the derived

lasses. The lasses on the highest level of derivation in �gures 4.5 and 4.6 implement

the bilinear and linear forms of the variational formulation presented in setion 1.3.1.

hp HP2d001

dg HP2d001

Figure 4.1: dg HP2d001 is the new quadrilateral

element for DGFEM extending the

lasses shown in �gure 3.5.

hp HP2d

dg HP2d

Figure 4.2: The new spae lass for DGFEM

extending the lasses shown in �g-

ure 3.6: dg HP2d.

35

4 Extensions to Conepts for DGFEM

geo Edge

dg Edge

Figure 4.3: The new topologial edge dg Edge

for DGFEM extending the lasses

shown in �gure 3.1.

geo Attribute

dg BoundaryCond

Figure 4.4: The new boundary ondition lass

dg BoundaryCond.

op BilinearForm

dg BForm

dg BDi�usion dg BAdvetion dg Identity dg BDisont

Figure 4.5: The new bilinear forms dg BDi�usion, dg BAdvetion, dg Identity and dg BDisont imple-

menting the bilinear forms from setion 1.3.1.

fn LinearForm

hp Riesz dg LDi�usion dg LAdvetion dg LDisont

Figure 4.6: The new linear forms dg LDi�usion, dg LAdvetion and dg LDisont and the old hp Riesz

implementing the linear forms from setion 1.3.1.

36

4.2 New Ideas for Conepts

Algorithm 4.1 The ontrolling method rebuild of the rebuild proess.

� Remove all old elements and the ontrol information of their edges and verties from the spae.

The ontrol information of the ells is retained.

� Get a sanner over the initial mesh and for eah ell in the initial mesh:

{ Call rebuild0 on level 0 with desired level �1 and desired polynomial degree �1.

� Get another sanner over the initial mesh and for eah ell in the initial mesh:

{ Call rebuild1.

� Remove the adjustment information whih was applied during this rebuild proess.

4.2 New Ideas for Conepts

4.2.1 Disontinuous Elements

When I started my diploma thesis, only FEM were implemented. The FEM use a

ontinuous disretization whih is not suitable for DGFEM.

Problem

The ontinuity of the basis funtions of the FE-spae is enfored in the rebuild proess

of the spae (. f. setion 3.4.3). So I looked somewhat deeper into this rebuild proess.

The whole proess is ontrolled by the method rebuild in the lass hp Spae. The

sequene of operations is shown in algorithm 4.1. The main thing it does: loop twie

over all ells in the initial mesh and all the methods rebuild0 and rebuild1 for eah ell.

The method rebuild0 works reursively and determines whih ells in the topology

should be the support for an element in the spae and what their polynomial degree

should be. See algorithm 4.2 for the sequene of operations. The level of an element is

the level of re�nement in the topology. An element in the initial mesh is on level 0. One

re�nement step on suh an element reates four elements on level 1 (. f. �gure 3.12 on

page 26).

The method rebuild1 also works reursively. In rebuild1, the degrees of freedom are

ounted, the T matries are omputed and the elements are reated, see algorithm 4.3.

The ontinuity is enfored where the degrees of freedom for the verties and edges are

marked as ounted.

Solution

Essentially, the only thing I had to do was remove this marking operation. In rebuild0,

the hanges are too small to show them with help of algorithm 4.2: on irregular edges,

the larger edge is allowed to have a polynomial degree di�erent from the smaller edges.

37

4 Extensions to Conepts for DGFEM

Algorithm 4.2 Sequene of operations for rebuild0: updating the information in the

topology.

l = urrent level, L = desired level, P = desired polynomial degree.

� If L = �1 and this ell belonged to an element in the spae:

{ Get the adjustment information for the level l

adj

and the polynomial degree p

adj

.

{ L = l + l

adj

.

{ P = previous polynomial degree +p

adj

.

{ If L or P are still negative, then let L = 0 or P = 1 respetively.

� If we have to re�ne the urrent ell (l < L) or if the urrent ell did not belong to an element in

the spae:

{ For eah hild of the urrent ell:

. Call rebuild0 on level l+ 1, with desired level L and desired polynomial degree P .

If a hild of a ell is aessed for the �rst time and is not yet present in the topology, the

aess triggers its reation.

� If we have to re�ne the urrent ell (l < L):

{ Update the information on the ell and its edges regarding the polynomial degree.

� otherwise (i. e. no re�nement):

{ Update the information on the ell and its edges regarding the polynomial degree.

{ Set the ell, its edges and verties as \member of the spae", i. e. their degrees of freedom

will be ounted and there will be an element belonging to this ell.

38

4.2 New Ideas for Conepts

Algorithm 4.3 Sequene of operations for rebuild1: ount degrees of freedom, ompute

T matries and reate elements.

� Loop over all verties of the ell:

{ If this vertex is member of the spae:

. If the global degree of freedom of this vertex was not yet ounted:

� Count the degree of freedom of vertex and mark it as ounted. The number of

the global degree of freedom of the vertex is stored in its ontrol information.

. Add the mapping of the loal to the global degree of freedom to the T matrix.

� Loop over all edges of the ell and do the same degree of freedom ounting as for the verties.

� If the ell is member of the spae:

{ Count the degrees of freedom and mark them as ounted. The degrees of freedom of the

ell are stored in its ontrol information.

{ Add the mapping of the loal to the global degrees of freedom to the T matrix.

{ Create the element for the ell and add it to the spae.

� otherwise (i. e. the ell is not member of the spae):

{ For eah hild of the urrent ell:

. Reompute the T matrix for the already omputed degrees of freedom of the edges

and verties.

. Call rebuild1.

39

4 Extensions to Conepts for DGFEM

Algorithm 4.4 Sequene of operations to assemble a symmetri sti�ness matrix.

� Loop over all elements K of the spae:

{ Compute A

K

by using the appliation operator of the bilinear form.

{ Get the T matrix T

K

of K.

{ Transform the loal degrees of freedom into global ones by

�

(A

K

T

K

)

>

� T

K

�

>

= T

>

K

A

K

T

K

.

{ Add T

>

K

A

K

T

K

entry by entry into the global sti�ness matrix.

In rebuild1 the hanges were only minor too: I removed the hek if a degree of

freedom was already ounted. The result is that a vertex is ounted one for every

element it is in. The same for the edges. Therefore, the shape funtions are no longer

assembled in suh a way that the resulting basis funtions are ontinuous.

4.2.2 Integration over an Edge

Many integrals in the variational formulation in setion 1.3.1 are over an edge and not

over a whole element like in FEM (setion 1.1). This is a new idea in Conepts as until

now, all integrals were omputed over whole elements and not over an element boundary

like an edge.

Problems

More than one problem arises if integration over an edge is required:

1. Not only the shape funtions on the same element interat with eah other but

also those on neighbouring elements have interations.

The evaluation of e. g. [u℄ h(arv) � n

e

i like in (1.16) on an edge requires the values

of u and v from both sides of the edge. The interfae of a bilinear form presribed

by op BilinearForm (setion 3.2.3) is suh that the method omputing the bilinear

form gets two elements on whih the onsidered shape funtions for u and v have

their support. Hene, means to �nd out if two elements share an edge are needed.

This is not always very simple sine these two elements an be loated on di�erent

levels of the topology and there are no possibilities to ompare them or their edges

diretly.

2. In the FEM problems solved until now, only symmetri sti�ness matries were

omputed.

These were sti�ness matries where the elements interated only with themselves

and not with their neighbours. Therefore, the onstrutor of op Loal or op Matrix

assembling the matrix only alled the appliation operator of the given bilinear

form like shown in algorithm 4.4.

40

4.2 New Ideas for Conepts

Algorithm 4.5 Sequene of operations in ontained: is the edge e ontained in e

0

or

vie-versa?

Called on edge e with edge e

0

as argument.

� If e = e

0

, return 1.

� If level of e < level of e

0

:

{ Coarsen edge e

0

(level of e

0

� level of e) times, if possible. Otherwise, return 0.

{ If e = e

0

, return 2.

� If level of e

0

< level of e:

{ Coarsen edge e (level of e� level of e

0

) times, if possible. Otherwise, return 0.

{ If e = e

0

, return 3.

� Return 0.

There already existed a onstrutor whih omputed all the neessary element

matries but it did not take into aount that the resulting global sti�ness matrix

was not symmetri.

Solutions

The problems shown above were not equally diÆult to solve:

1. To solve this problem, I wrote a new method ontained in the lass dg Edge derived

from geo Edge whih detets if an edge is ontained in another one or vie-versa.

The method alled on edge e needs as argument an edge e

0

. The method returns:

0 if e \ e

0

= ;.

1 if e = e

0

.

2 if e � e

0

.

3 if e � e

0

.

The detetion of e = e

0

is easy as eah edge has a unique key. Therefore, e = e

0

,

the key of e and e

0

are equal. To detet either e � e

0

or e � e

0

, I introdued a level

for eah edge. This level indiates on whih level of the topology the edges lives.

If an edge is a hild of an other edge (it was reated in a re�nement proess of an

edge), then there is a referene to the father of the edge. Otherwise, there is no

father.

With these means, on an implement algorithm 4.5.

The referene to the father and the level ounter make the memory footprint of

the topology somewhat larger. There would be a possibility to get the same result

without a referene to the father. One ould re�ne the edge with the lower level

41

4 Extensions to Conepts for DGFEM

Algorithm 4.6 Sequene of operations to assemble a non-symmetri sti�ness matrix.

� Loop over all elements K of the spae:

{ Get the T matrix T

K

of K.

{ Loop over all elements K

0

of the spae:

. Compute A

KK

0

by using the appliation operator of the bilinear form.

. Get the T matrix T

K

0

of K

0

.

. Transform the loal degrees of freedom into global ones by

�

(A

KK

0

T

K

0

)

>

� T

K

�

>

=

T

>

K

A

KK

0

T

K

0

.

. Add

�

T

>

K

A

KK

0

T

K

0

�

>

entry by entry into the global sti�ness matrix (whih will be the

transposed global sti�ness matrix).

as many times until it has the same level as the other edge. But this idea has two

drawbaks:

� Re�ning an edge reates two new edges whih have to be heked, i. e. a lot

of ases arise.

� Re�ning an edge reates two new edges in the topology, if they are not al-

ready present. During the omputation of the sti�ness matries, all edges are

ompared with eah other. For a geometri mesh, this means a lot of useless

edges would be reated in the topology and would not be removed afterwards.

2. The non-symmetri sti�ness matries should be available in transposed form as

(1.6) suggests. Algorithm 4.6 does exatly that.

4.3 Other Extensions

4.3.1 Boundary Conditions

During my investigation of the present ode of Conepts, I did not �nd any means

to implement variable boundary onditions. Hoh and R�uegg implemented mixed and

variable boundary onditions in [15℄ but this implementation did not suit my needs.

Therefore, I did my own implementation of boundary onditions by reating a lass

dg BoundaryCond, derived from geo Attribute (. f. �gure 4.4).

Until now, boundary onditions were only a type, oded as an integer, i. e. the lass

geo Attribute represents essentially only a number. Hene, it was possible to inlude

a opy of the boundary ondition objet in eah topologial objet needing boundary

onditions. As I needed at least a funtion for eah boundary ondition type, these

objet would have been signi�antly too large to be inluded in every topologial objet.

That's why I hanged the whole idea of boundary onditions in the topology. Now,

there is only a referene to a boundary ondition stored in eah topologial objet whih

42

4.3 Other Extensions

needs boundary onditions. The boundary ondition objet itself is only needed one

for eah boundary ondition and is reated at the beginning of the mesh reation and

destroyed at the end of the mesh removal (. f. �gure 3.16).

The lass dg BoundaryCond takes a type and a funtion as onstrutor arguments

and has methods to query the type and to ompute the value of the funtion at a ertain

physial point.

4.3.2 Graph of a Solution

Developing new bilinear and linear forms for Conepts is rather diret and straight

forward from the algorithmi point of view. But if you have to ode these new bilinear

and linear forms, there are many possibilities to make mistakes. Most of the new ode

I had to write has to do with integration over edges.

When I started my diploma thesis, the only available output was the whole sti�ness

matrix or the L

2

error at the end of the omputation. Whereas the former provides too

muh, the latter does not provide enough information. On the other hand, a graphial

interpretation of the solution vetor would be the ideal mean to disover mistakes in the

integration over an edge as they show up as large jumps although the solution is smooth

and well behaved.

To reate suh a graphial interpretation of the solution vetor there were di�erent

things to do:

1. As the elements have the information about the shape funtions and an evaluate

the solution vetor, the solution vetor has to be stored in the elements.

I wrote a new method for the spae lass dg HP2d: storeSolution whih alls store-

Solution on eah element. The method storeSolution of an element takes the nees-

sary oeÆients out of the solution vetor (using the information in the T matries)

and stores them loally.

2. Evaluate the solution in a mesh of points and reate a piture of the data.

I wrote a new method for the element lass dg HP2d001: solutionInPoint whih

omputes the value of the solution in a given point. The method drawGraph in the

spae lass alls this method for the points of a mesh and stores the data in a �le

whih an be read by Gnuplot [19℄.

The methods as desribed above an also be used to draw a piture of the error on

the domain
 if the exat solution is known. The oeÆients of the exat solution are

omputed by a L

2

projetion and a simple subtration gives the oeÆients of the error.

4.3.3 Sort of Adaptivity

With the linear polynomial degree distribution vetor as desribed in proposition 2.13,

most graphs of the error show that the error was not distributed in suh a way that the

43

4 Extensions to Conepts for DGFEM

Algorithm 4.7 Sequene of operations for a geometri mesh in an adaptive algorithm.

� Compute the exat solution and the DGFE-solution.

� Store the solution and the weights to ompute the error from the solution vetor in the elements.

� Loop over all elements and get the maximal element error e

max

.

� Loop over all elements K 2 T :

{ If the element error e

K

> � � e

max

then:

. If the origin is in the element K, then re�ne it (i. e. subdivide it). Otherwise: raise

the polynomial degree by 1.

� Start again with the omputation on top.

linear degree vetor is the ideal way of re�nement. This raised the idea of an adaptive

algorithm.

To make this possible I wrote another set of methods to store the weights to ompute

the L

2

error. With this, it is possible to ompute the element error by a simple salar

produt between the oeÆients of the solution vetor and the weights. This easy way

of omputing the loal error is only possible, if the exat solution is known.

Algorithm 4.7 shows an hp-re�nement algorithm to reate a geometri mesh towards

the origin (where the singularity of the exat solution lies).

4.3.4 Debugging Tehniques

Debugging a large library like Conepts is sometimes painful. I developed some teh-

niques whih I desribe in this setion.

Using a Debugger

I hose DDD|Data Display Debugger [20℄ as my favorite debugger beause of its exel-

lent way to graphially display ompliated data strutures.

Using a debugger is not always the best hoie. Above all, if you want to have a

quik overview what happens at a ertain point in the ode in a large loop, seletive

output on sreen is muh better suited.

Output on Sreen

To handle output on sreen eÆiently, I introdued two ompiler maros in the top level

inlude �le debug.h: DP and DPL. The �rst one stands for \debug print"and the seond

stands for \debug print line". Pristinely, these are not my idea but are inspired by Rolf

Negri, an assistant at the Institute for Operations Researh at the ETH.

44

4.4 Wish List for Extensions

These maros both have three arguments: an integer to turn the output on and o�,

a text and an arbitrary variable. De�ning the integer in a pakage level inlude �le (e. g.

dgDebug.h for the DGFEM pakage) gives an as �ne grained ontrol over the debugging

messages as one wishes to have.

For a prodution build of the library, the ompiler de�ne DEBUG an be omitted and

all maros DP and DPL are ignored.

Assertions

A third mean to debug a ode is to use assertions. If an assertion fails, the exeution of

the program is immediately terminated with a verbose error message desribing the �le

and the line in the �le where the assertion failed. These assertions are only ative in a

debugging build of the library and don't slow the exeution in a prodution build.

Assertions should be used to hek the prerequisites of a method, e. g. the range of

parameters.

4.4 Wish List for Extensions

The �rst paragraph lists some possible tehnial extensions to Conepts whih do not

really extend the funtionality but rather make it easier to add new omponents. The

seond paragraph lists some wishes whih arose during my diploma thesis.

4.4.1 Tehnial Extensions

Lage, the main author of Conepts, who is still atively developing and maintaining it,

plans to use more C++ features whih were not stable when he started the development

of Conepts. Namely, these are exeptions (error handling), name spaes (to remove the

ugly geo , hp et. pre�xes) and templates (i. e. parametrized lasses).

4.4.2 Algorithmi and Funtional Extensions

The extensions to Conepts I desribed in this hapter are by far not omplete:

� The bilinear and linear forms desribed in setion 4.1 an only ope with problems

with onstant oeÆients. Therefore, a next step ould be to implement non-

onstant oeÆients for the di�usion, advetion and the absolute term.

For the di�usion term, even a symmetri matrix of oeÆients would be desirable.

� The theoretial proof of the exponential onvergene in hapter 2 uses strongly

enfored Dirihlet boundary onditions whereas the variational formulation in se-

tion 1.3.1 used as the basis for the implementation of DGFEM uses weakly enfored

45

4 Extensions to Conepts for DGFEM

Dirihlet boundary ondition. The best solution would be, if the user ould hose

between weakly and strongly enfored boundary onditions.

Beause of this di�erene, the results presented in the next hapter are not as sig-

ni�ant as they ould be if the boundary onditions were implemented di�erently.

But implementing strongly enfored boundary onditions takes more time than

there is for a diploma thesis.

� The graphis of the mesh (whih are already part of the lass hp HP2d) are not

very good looking. The graph of the solution desribed in this hapter does not

show the mesh at all. More sophistiated graphis should inlude the mesh and

the solution in one image.

Another enhanement whih also belongs to the domain of user interfae is a mesh

generator. Currently, the meshes are oded by hand in a speialized lass, for

instane dg LShape in the appendix on page 78 and following.

� The element lass dg HP2d001 is derived from the FE-lass hp HP2d001. There-

fore, it uses the same shape funtions as the FE-ode. This is not really a sensi-

ble hoie, sine the terms with the normal derivative in the bilinear form (1.16)

make all shape funtions exterior shape funtions, i. e. they all interat with the

neighbouring elements. Choosing doubly integrated Legendre polynomials as shape

funtions results in only 16 exterior shape funtions, the rest are internal shape

funtions. The degrees of freedom assoiated with internal shape funtions an be

eliminated with stati ondensation. On the other hand, this hoie implies that

the polynomial degree is at least three.

The neessary hanges to implement these shape funtions would a�et the rebuild

proess in the spae lass (where the degrees of freedoms are ounted) and the

element lass (where the shape funtions and their derivatives are evaluated).

See [8℄ for a short summary on shape funtions based on the doubly integrated

Legendre polynomials.

� Implementing better suited shape funtions would have the bene�t that stati

ondensation was possible. This idea is ompletely missing in Conepts right now,

also in the FEM ode.

� The shape funtions on the quadrilaterals have a tensor produt Ansatz:

N

i

(�) = N

i

(�

1

; �

2

) =M

k

(�

1

) �M

l

(�

2

);

where fM

K

g

k

are one dimensional shape funtions on (0; 1). This property an

be exploited during the element omputations with so alled sum fatorization [6℄.

The bene�t is signi�antly redued omputation time for the element matries for

high polynomial degrees.

46

4.4 Wish List for Extensions

In Conepts, the shape funtions in hp HP2d001 are urrently not available as fa-

torsM

k

andM

l

but only as produtN

i

. This has to be hanged if sum fatorization

should be implemented.

� If only few elements are hanged, the new solution should be not so far from the

old solution|at least in the elements whih have not hanged. Therefore, saving

the old solution and taking it as a starting value for an iterative solve for the new

solution should save some omputation time. This is would be a �rst step towards

a multi grid algorithm.

For a true multi grid algorithm, the new solution on hanged elements has to be

approximated by an interpolation of the old solution. Then the solver itself works

iteratively on di�erent meshes to approximate the solution of the linear system.

47

5 Numerial Results

In this hapter, the numerial results whih should provide the evidene of the theoretial

results in hapter 2 are presented. The model problem is introdued in the �rst setion.

The results on the unit square and on a L shaped domain are given in the onseutive

setions. In the last setion, the onlusions are drawn from the omputations: does the

implemented variational formulation from setion 1.3.1 provide exponential onvergene?

Also in the last setion of this hapter: the impat of the stabilisation on the error and

the ondition number of the sti�ness matrix.

All omputations in the seond and third setion have been done without stabilisa-

tion. The error of the numerial solution is shown in two di�erent norms:

� The error in the energy norm: ju� u

DG

j

2

DG

= B(u� u

DG

; u� u

DG

). Observe that

this norm is not the same for the stabilised version and the version without stabili-

sation: the bilinear form B is taken from (1.26) with and without the stabilisation

term respetively.

� The error in the L

2

-norm: ku� u

DG

k

2

0

=

R

ju� u

DG

j

2

dx. This norm does not

depend on the stabilisation.

5.1 Model Problem

In order be able to ompute the error without ompliated error estimation, I hose the

exat solution and alulated the aording right hand side. The exat solution should

have some sort of singularity at one point. There are many di�erent possibilities, e. g.

u =

p

r, where r

2

= (x

1

)

2

+ (x

2

)

2

, i. e. r is the distane from the origin.

The domains of interest are the unit square and an L shaped domain (see �gures 5.6

and 5.7 on page 52 respetively). The exat solutions are shown in �gure 5.1 and

�gure 5.2 for the unit square and the L shaped domain respetively.

Inserting a = 1, b = (0; 0), = 1 and u =

p

r into (1.13) gives:

3(x

1

)

2

4

p

r

7

+

3(x

2

)

2

4

p

r

7

�

1

p

r

3

+

p

r = f: (5.1)

49

5 Numerial Results

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

PSfrag replaements

x

1

x

2

Figure 5.1: The exat solution on the unit

square (0; 1)

2

.

-1
-0.5

0
0.5

1 -1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

PSfrag replaements

x

1

x

2

Figure 5.2: The exat solution on the L shaped

domain.

The boundary onditions on the unit square are of Dirihlet type on the oordinate

axes and of Neumann type otherwise. Hene, the Dirihlet boundary onditions are

uj

x

1

=0

=

p

x

2

and uj

x

2

=0

=

p

x

1

and the Neumann boundary onditions are

�u

�n

�

�

�

�

x

1

=�1

=

1

2(1 + (x

2

)

2

)

3

=4

=

x

1

2

p

r

3

and

�u

�n

�

�

�

�

x

2

=�1

=

1

2(1 + (x

1

)

2

)

3

=4

=

x

2

2

p

r

3

:

5.2 Results on the Unit Square

The results on the unit square (0; 1)

2

for u =

p

r are presented in the following.

The meshes in pitures like �gure 5.3 or 5.4 show the element boundaries and eah

element is oloured aording to its polynomial degree: the darker an element the higher

its polynomial degree.

h-version DGFEM

In the h-version DGFEM, only the mesh is re�ned and the polynomial degree is kept

onstant.

There are basially two methods to perform the mesh re�nement: uniformly on the

whole domain of interest or adaptively on the elements with the highest error. The

uniform re�nement is easy to implement, beause all elements an be treated in the

same way. The adaptive re�nement is not muh harder beause the exat solution is

known. Algorithm 4.7 shows an adaptive algorithm to reate a geometri mesh towards

the origin in the unit square. This algorithm an also be used to perform an adaptive

h-re�nement if every element with a large error is subdivided.

Figure 5.5 shows the results of some alulations on the unit square. Figure 5.3 shows

the mesh after �ve adaptive h-re�nement steps with p = 1.

50

5.2 Results on the Unit Square

PSfrag replaements

Figure 5.3: The mesh on the unit square after

�ve adaptive h-re�nement steps.

PSfrag replaements

Figure 5.4: The mesh on the unit square after

�ve adaptive p-re�nement steps on

an initial mesh with 16 elements.

PSfrag replaements

e

n

e

r

g

y

e

r

r

o

r

2

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�7

0 200 400 600 800 1000 1200 1400 1600

1800

uniform h-re�nement

adaptive h-re�nement, p = 1

uniform p-re�nement

adaptive p-re�nement, 16 elements

Figure 5.5: The error ju� u

DG

j

2

DG

of the h- and the p-version DGFEM on the unit square.

51

5 Numerial Results

PSfrag replaements

0

1

1

x

1

x

2

Figure 5.6: The unit square (0; 1)

2

.

PSfrag replaements

0

1

1

x

1

x

2

Figure 5.7: An L shaped domain.

p-version DGFEM

In the p-version DGFEM, only the polynomial degree is raised and the mesh is left

unre�ned.

As in the h-version DGFEM, there are two methods to re�ne the mesh: uniformly on

all elements or adaptively depending on the element error. The uniform re�nement was

performed on a one-element-mesh, the adaptive re�nements on a mesh with 16 elements.

Figure 5.4 shows the mesh with 16 elements after four re�nement steps. Figure 5.5 shows

the results of the p-version DGFEM. The urves don't go further beause the maximal

polynomial degree of 15 was reahed during the omputations.

hp-version DGFEM

In the hp-version DGFEM, the polynomial degree is raised and the mesh is re�ned at

the same time (but not neessarily on the same element).

Again, there are two methods to re�ne the mesh: adaptively (. f. algorithm 4.7) or

with a linear degree vetor (. f. proposition 2.13).

Figure 5.8 shows the results of the hp-version DGFEM with the linear degree vetor.

The urve for � = 2 stops early beause the maximal polynomial degree of 15 was

reahed, whereas the urve for � =

1

=2 stops early beause the error was growing instead

of falling for more than 800 degrees of freedom.

Figure 5.9 shows the results of the hp-version DGFEM with the adaptive algo-

rithm 4.7. Whereas for the linear degree vetor above, I only re�ned towards the origin,

I made some more experiments with the adaptive algorithm. I re�ned towards one and

three orners (see �gure 5.10 for an idea of the meshes) and modi�ed the parameter

52

5.2 Results on the Unit Square

PSfrag replaements

e

n

e

r

g

y

e

r

r

o

r

2

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�8

10

�10

10

�12

10

�14

0 200 400 600 800 1000 1200 1400 1600 1800

� =

1

=2

� = 1

� = 2

1 orner

3 orners

1 orner, � =

1

=5

Figure 5.8: The error of the hp-version DGFEM with the linear degree vetor on the unit square.

PSfrag replaements

e

n

e

r

g

y

e

r

r

o

r

2

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�8

10

�10

10

�12

10

�14

0 200 400 600 800 1000 1200 1400 1600 1800

� =

1

=2

� = 1

� = 2

1 orner

3 orners

1 orner, � =

1

=5

Figure 5.9: The error of the hp-version DGFEM with the adaptive algorithm on the unit square. Nor-

mally, � =

1

=2 unless stated otherwise.

53

5 Numerial Results

PSfrag replaements

(a) Re�nement towards one orner in (0; 1)

2

.

PSfrag replaements

(b) Re�nement towards three orners in

(0; 1)

2

: towards all orners but (1; 1).

Figure 5.10: Re�nement towards orners of the unit square.

� whih ontrols how large the error of an element is allowed to be in order that the

element is not hanged (i. e. is not re�ned and the polynomial degree is not hanged),

see algorithm 4.7 for details. All urves reahed the maximal polynomial degree of 15.

For the urves in the �gures above, if not already stated otherwise, only omputation

time and memory demand were a problem, i. e. the matries grew too large to be solved

in aeptable time.

Comparison

The omparisons in �gure 5.11 and 5.12 show that the hp-version is far superior ompared

to the h- or the p-version DGFEM. It does not matter muh if with an adaptive algorithm

or with a linear degree vetor, tough.

5.3 Results on an L Shaped Domain

The results in this setion are not as detailed as those in the previous setion beause

we already have an idea whih parameters give good onvergene.

The results of the hp-version DGFEM with the linear degree vetor and the adaptive

algorithm are shown in �gure 5.13. To get an idea of the used meshes during the

omputations, see �gure 5.14.

54

5.3 Results on an L Shaped Domain

PSfrag replaements

L

2

-

e

r

r

o

r

2

energy error

2

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�8

10

�10

10

�12

10

�14

0 200 400 600 800 1000 1200 1400 1600 1800

� =

1

=2

� = 1

� = 2

� = 3

adaptive h-re�nement, p = 1

uniform p re�nement, 1 element

linear degree vetor, � = 1

adaptive, 1 orner, � =

1

=5

Figure 5.11: The error of the h-, p- and hp-version DGFEM on the unit square in the L

2

-norm.

PSfrag replaements

L

2

-error

2

e

n

e

r

g

y

e

r

r

o

r

2

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�8

10

�10

10

�12

10

�14

0 200 400 600 800 1000 1200 1400 1600 1800

� =

1

=2

� = 1

� = 2

� = 3

adaptive h-re�nement, p = 1

uniform p re�nement, 1 element

linear degree vetor, � = 1

adaptive, 1 orner, � =

1

=5

Figure 5.12: The error of the h-, p- and hp-version DGFEM on the unit square in the energy norm.

55

5 Numerial Results

PSfrag replaements

e

n

e

r

g

y

e

r

r

o

r

2

degrees of freedom

1

0.1

0.01

0.001

0 200 400 600 800 1000 1200 1400 1600 1800

linear degree vetor, � = 1

adaptive, � =

1

=5

Figure 5.13: The error of the hp-version DGFEM on the L shaped domain.

PSfrag replaements

(a) Re�nement of the L shaped domain with

the adaptive algorithm.

PSfrag replaements

(b) Re�nement of the L shaped domain with

the linear degree vetor.

Figure 5.14: Re�nement of the L shaped domain.

56

5.4 Conlusions

Problem 2b C

2

Fit

unit square, linear degree vetor, � = 1 0.87072 2.2937 yes

unit square, adaptive, 1 orner, � =

1

=5 1.17860 8.2348 no

L shape, linear degree vetor, � = 1 0.46106 1.1255 yes

L shape, adaptive, � =

1

=5 0.78555 4.1134 no

Table 5.1: Parameters of the interpolating urves in �gure 5.15.

5.4 Conlusions

5.4.1 Exponential Convergene

The results in hapter 2 predit exponential onvergene for the linear degree vetor,

i. e.

ju

ex

� u

DG

j

DG

� Ce

�b

3

p

N

:

All onvergene plots in this hapter are semi-logarithmi beause one an see exponen-

tial onvergene of the form error � Ce

�bN

quite learly as a straight line, sine

error � Ce

�bN

ln(error) � lnC � bN;

where N stands for the degrees of freedom. Unfortunately, the predited error bound

has got this

3

p

N whih results in

ju

ex

� u

DG

j

DG

� Ce

�b

3

p

N

ln(ju

ex

� u

DG

j

DG

) � lnC � b

3

p

N

whih annot be identi�ed easily in suh a plot. Plotting the error against

3

p

N makes

this easier: the urve should be a straight line there.

To make the identi�ation even easier, I have alulated the parameters b and C

from two points in the plots and inluded the resulting graphs in �gure 5.15 for both

the L shaped domain and the unit square. All plots are against the square of the error,

therefore

ln(ju

ex

� u

DG

j

2

DG

) � lnC

2

� 2b

3

p

N

b

=2

3

p

N

The results of the interpolation are summed up in table 5.1. Although the meshes

in the proof in hapter 2 and in Conepts are slightly di�erent, the method using the

linear degree vetor yields exponential onvergene like predited.

The adaptive method (. f. algorithm 4.7) does not yield exponential onvergene

but aording to �gure 5.15, they reah the same absolute error with muh less degrees

of freedom up to a ertain bound. May be, there is more sophistiated algorithm whih

keeps the onvergene rate from attening for growing number of degrees of freedom.

57

5 Numerial Results

PSfrag replaements

e

n

e

r

g

y

e

r

r

o

r

2

3

p

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

2 4 6 8 10 12

interpolation

interpolation

interpolation

interpolation

unit square, linear degree vetor, � = 1

unit square, adaptive, 1 orner, � =

1

=5

L shape, linear degree vetor, � = 1

L shape, adaptive, � =

1

=5

Figure 5.15: Conlusion on the unit square and on the L shaped domain. The interpolation urve is

drawn without points interpolating the urve just above in the legend of the plot.

58

5.4 Conlusions

PSfrag replaements

o

n

d

i

t

i

o

n

n

u

m

b

e

r

degrees of freedom

1

10

100

1000

10000

10

5

10

6

0 200 400 600 800 1000

1000

1200 1400 1600 1800

stabilisation

stabilisation

unit square, linear degree vetor, � = 1

unit square, adaptive, 1 orner, � =

1

=5

L shape, linear degree vetor, � = 1

L shape, adaptive, � =

1

=5

Figure 5.16: The impat of stabilisation on the ondition number of the sti�ness matrix. The stabilised

version of a urve is the one just below in the legend of the plot.

5.4.2 Stabilisation

Up to here, all omputations were done without the stabilisation from (1.23) or (2.6).

Nevertheless, �gure 5.15 shows exponential onvergene.

The ondition number of the stabilised sti�ness matries does not improve ompared

to the non-stabilised matries. Figure 5.16 shows the impat of stabilisation on the

ondition number of the sti�ness matries.

The �gures 5.17 (for the L

2

-error) and 5.18 (for the energy error) show the impat

of stabilisation on the error. Both on the unit square and on the L shaped domain and

both for the L

2

-error and the energy error, the stabilised method is somewhat better.

The improvement is not in the onvergene rate b but only in the onstant C, tough.

This onlusion an be drawn without omputing the parameters b and C: the respetive

lines in the plots are parallel.

59

5 Numerial Results

PSfrag replaements

L

2

-

e

r

r

o

r

2

energy error

2

3

p

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

2 4 6 8 10 12

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�8

10

�10

10

�12

10

�14

stabilisation

stabilisation

unit square, linear degree vetor, � = 1

L shape, linear degree vetor, � = 1

Figure 5.17: The impat of stabilisation on the L

2

-error. The stabilised version of a urve is the one

just below in the legend of the plot.

PSfrag replaements

L

2

-error

2

e

n

e

r

g

y

e

r

r

o

r

2

3

p

degrees of freedom

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

2 4 6 8 10 12

1

0.1

0.01

0.001

10

�4

10

�5

10

�6

10

�8

10

�10

10

�12

10

�14

stabilisation

stabilisation

unit square, linear degree vetor, � = 1

L shape, linear degree vetor, � = 1

Figure 5.18: The impat of stabilisation on the energy error. The stabilised version of a urve is the

one just below in the legend of the plot.

60

Closing Remarks

The theoretial part in hapter 2 proofs the exponential onvergene of the hp-version of

the DGFEM with a linear degree vetor [18℄, i. e. the vetor of polynomial degrees on

the mesh is given by

p =

�

p

ij

= p

i

; i = 0; : : : ; n; j = 1; 2; p

i

= max f1; b�ig

	

;

where p

ij

is the polynomial degree of the j

th

element on level i of the mesh, see �gure 2.1

on page 13 and proposition 2.13 on page 12. This de�nes the standard mesh on the

referene element

^

 (the unit square (0; 1)

2

). On a polygon, near eah vertex of the

polygon, the mesh is onstruted in the same way as on the referene element: see

de�nition 2.14 on page 13. With suh a mesh, the onvergene is exponential:

ju

ex

� u

DG

j

DG

� Ce

�b

3

p

N

;

where N is the number of degrees of freedom, u

ex

the exat solution of the problem and

u

DG

the DGFEM-approximation. The problem in this ase is of the form

�r(aru) + u = f in
; u = 0 on �

D

and (aru) � n = g

N

on �

N

:

In the pratial part in hapter 5, I found the same onvergene rate for the model

problem u

ex

=

p

r on the unit square (0; 1)

2

and on an L shaped domain (. f. �gure 5.7

on page 52), no matter if stabilised or not. These results are presented in setion 5.4.

The equations whih I implemented are not exatly the same as in the theoretial part,

though. These di�erenes are summarized in the following table:

Theory Pratie

Mesh �gure 2.1, page 13 �gure 5.10, page 54

Dirihlet boundary onditions strongly enfored weakly enfored

Note of Thanks

I would like to thank the following people for helping me with my diploma thesis: Ana-

Maria Matahe (she helped me to understand the software Conepts), Thomas Wihler

(he heked some of my omputations and he and Prof. Shwab are writing the paper

[18℄ from whih I took the theoretial part) and Prof. Shwab (despite he had to instrut

me, he had a lot of on�dene in me).

61

A Doumented Soure Code of the

Extensions to Conepts

A.1 Integration over an Edge

As desribed in setion 4.2.2, to detet ommon edges of two elements, I wrote the lass

dg Edge. The header and the implementation �le for dg Edge are printed below.

In addition to the lass dg Edge, the lass dg Quad was needed for two reasons:

� When re�ning a quadrilateral, all new edges have to be of the type dg Edge.

� The implementation of the linear polynomial degree distribution vetor desribed

in hapter 2 needs the level of eah element. This level information is added in

dg Quad.

dgTopology.h

/* -*- ++ -*-

* Topology for DG FEM

* onnetivity informations

*/

#ifndef dgTopology h

#de�ne dgTopology h

#inlude <iostream.h>

#inlude <typeinfo>

#inlude "../onepts.h"

#inlude "../geometry/geoTopology.h"

// *** dg Edge **

/** An edge in the topology of DGFEM. Additional level and father

information to detet elements whih share ommon edges. */

lass dg Edge : publi geo Edge f

publi:

63

A Doumented Soure Code of the Extensions to Conepts

/** Construtor. Creates an edge out of two verties. The onstrutor of

geo Edge is alled to reate the edge. Then, the level and father

information is stored. */

dg Edge(geo Vertex& vtx0, geo Vertex& vtx1,

geo Attribute* attrib = 0,

onst dg Edge* father = 0, onst uint level = 0);

virtual ~dg Edge() fg

/** Returns a hild. If no hild exists, two new hildren are

reated (with the same attributes as this one). The new edges all

have a level whih is inreased by one. Their father pointer is

also initialized with the right value. */

virtual geo Edge* hild(uint i);

/// Returns information in an output stream

virtual ostream& info(ostream& os) onst;

/** Returns a pointer to the father. */

inline onst dg Edge* father() onst f

return father ;

g

/** Returns the relation of the two edges, ie. if one is ontained in

the other.

This method is new and not yet

fully stable, ie. it an move or hange its name. Better suited

would be one level up in the hierarhy (ie. geo Connetor1).

�return nbeginfitemizeg

nitem 0: Neither of the edges is ontained in the other

nitem 1: The edges are equal

nitem 2: The other edge is ontained in this edge

nitem 3: This edge is ontained in the other edge

nendfitemizeg

�param other The other edge */

onst uint ontained(onst dg Edge& other) onst;

private:

/** Pointer to the father edge. The father information is stored

on reation and not hanged afterwards. */

onst dg Edge* father ;

/** The level of the edge. The level information is stored

on reation and not hanged afterwards. */

onst uint level ;

geo Edge*& getLnk () f

return lnk ;

g

64

A.1 Integration over an Edge

g;

// *** dg Quad **

/** A quadrilateral in the topology. Additional level information to

make meshes with linear polynomial degree destribution vetor

possible. */

lass dg Quad : publi geo Quad f

publi:

/** Construtor. Creates a quadrilateral out of four edges.

The onstrutor of geo Quad is alled to reate the quadrilateral,

then the level information is stored. */

dg Quad(geo Edge& edg0, geo Edge& edg1, geo Edge& edg2, geo Edge& edg3,

geo Attribute* attrib = 0, onst uint level = 0);

virtual ~dg Quad() fg

/** Returns a hild. If no hilds exist, four new hildren are reated

(with the same attributes as this one). All edges of the quadrilateral

are re�ned and four new edges introdued. The new quadrilaterals

all have a level whih is inreased by one. */

virtual geo Quad* hild(uint i);

/** Returns the level of the quadrilateral. */

inline onst uint level() onst f

return level ;

g

private:

/** The level of the quad. The top level in the inital mesh is 0,

the next �ner level is 1 et. The level information is stored

on reation and not hanged afterwards. */

onst uint level ;

geo Quad*& getLnk () f

return lnk ;

g

g;

#endif // dgTopology h

dgTopology.

/* Topology for DG FEM

* onnetivity information

*/

#inlude "dgTopology.h"

#inlude "dgDebug.h"

65

A Doumented Soure Code of the Extensions to Conepts

// *** dg Edge **

dg Edge::dg Edge(geo Vertex& vtx0, geo Vertex& vtx1,

geo Attribute* attrib = 0,

onst dg Edge* father = 0, onst uint level = 0) :

geo Edge::geo Edge(vtx0, vtx1, attrib), father (father), level (level) f

DPL(dgEdgeConstr D, "[" << FILE << ", line " << LINE

<< "℄ dg_Edge::dg_Edge -- new", *this);

g

geo Edge* dg Edge::hild(uint i) f

if (i > 1) return NULL;

if (hld == NULL) f

DPL(dgEdgeChild D, "[" << FILE << ", line " << LINE

<< "℄ dg_Edge::hild -- refining", *this);

geo Vertex* vtx = new geo Vertex(attrib);

hld = new dg Edge(*vtx [0℄�>hild(0), *vtx, attrib ,

this, level +1);

dg Edge* hld = (dg Edge*)hld ;

hld�>getLnk () = new dg Edge(*vtx, *vtx [1℄�>hild(0), attrib ,

this, level +1);

g

if (i == 0)

return hld ;

else f

dg Edge* hld = dynami ast<dg Edge*>(hld);

if (hld)

return hld�>getLnk ();

else f

// *** exeption ***

err << '[' << FILE << ", line " << LINE ;

err << "℄ dg_Edge::hild() -- edge not supported\n";

err << " type of hild: " << typeid(*hld).name() << endl;

exit(1);

g

g

g

ostream& dg Edge::info(ostream& os) onst f

os << "Edge(" << key << ", (";

os << *vtx [0℄ << ", " << *vtx [1℄ << ", Level=" << level << ')';

return os;

g

66

A.1 Integration over an Edge

onst uint dg Edge::ontained(onst dg Edge& other) onst f

if (*this == other)

return 1;

uint i;

onst dg Edge* me = this;

onst dg Edge* you = &other;

DPL(dgEdgeContained D, "[" << FILE << ", line " << LINE

<< "℄ dg_Edge::ontained -- me: " << *me << " at level " << level

<< ", you: " << *you << " at level", you�>level);

// ompare the levels of the two edges

if (other.level < level) f

DPL(dgEdgeContained D, "[" << FILE << ", line " << LINE

<< "℄ dg_Edge::ontained -- oarsening " << *me << " "

<< level � other.level << " times.", " ");

for (i = 0; i < (level � other.level); ++i) f

if (me)

me = me�>father();

else

return 0;

g

if (me && you && (*me == *you))

return 3;

g else

if (level < other.level) f

DPL(dgEdgeContained D, "[" << FILE << ", line " << LINE

<< "℄ dg_Edge::ontained -- oarsening " << *you << " "

<< other.level � level << " times.", " ");

for (i = 0; i < (other.level � level); ++i) f

if (you)

you = you�>father();

else

return 0;

g

if (me && you && (*me == *you))

return 2;

g

return 0;

g

// *** dg Quad **

dg Quad::dg Quad(geo Edge& edg0, geo Edge& edg1, geo Edge& edg2,

geo Edge& edg3, geo Attribute* attrib = 0,

onst uint level = 0) :

geo Quad::geo Quad(edg0, edg1, edg2, edg3, attrib), level (level) f

67

A Doumented Soure Code of the Extensions to Conepts

DPL(dgQuadConstr D, "[" << FILE << ", line " << LINE

<< "℄ dg_Quad::dg_Quad --", "new quad");

g

geo Quad* dg Quad::hild(uint i) f

dg Quad* hld;

if (i > 3) return NULL;

if (hld == NULL) f

geo Edge* edgA = edg [0℄�>hild(rho [0℄);

geo Edge* edgB = edg [0℄�>hild(rho [0℄.su());

geo Edge* edgC = edg [1℄�>hild(rho [1℄);

geo Edge* edgD = edg [1℄�>hild(rho [1℄.su());

geo Edge* edgE = edg [2℄�>hild(rho [2℄);

geo Edge* edgF = edg [2℄�>hild(rho [2℄.su());

geo Edge* edgG = edg [3℄�>hild(rho [3℄);

geo Edge* edgH = edg [3℄�>hild(rho [3℄.su());

geo Vertex* vtx4 = edgB�>vertex(rho [0℄);

geo Vertex* vtx5 = edgD�>vertex(rho [1℄);

geo Vertex* vtx6 = edgF�>vertex(rho [2℄);

geo Vertex* vtx7 = edgH�>vertex(rho [3℄);

geo Vertex* vtx8 = new geo Vertex(attrib);

dg Edge* edgI = new dg Edge(*vtx4, *vtx8, attrib , 0, level +1);

dg Edge* edgJ = new dg Edge(*vtx5, *vtx8, attrib , 0, level +1);

dg Edge* edgK = new dg Edge(*vtx6, *vtx8, attrib , 0, level +1);

dg Edge* edgL = new dg Edge(*vtx7, *vtx8, attrib , 0, level +1);

geo Quad** qd = &hld ;

*qd = new dg Quad(*edgA, *edgI, *edgL, *edgH, attrib , level +1);

hld = (dg Quad*)(*qd);

qd = &(hld�>getLnk ());

*qd = new dg Quad(*edgB, *edgC, *edgJ, *edgI, attrib , level +1);

hld = (dg Quad*)(*qd);

qd = &(hld�>getLnk ());

*qd = new dg Quad(*edgJ, *edgD, *edgE, *edgK, attrib , level +1);

hld = (dg Quad*)(*qd);

qd = &(hld�>getLnk ());

*qd = new dg Quad(*edgL, *edgK, *edgF, *edgG, attrib , level +1);

g

68

A.1 Integration over an Edge

dg Quad* qd = dynami ast<dg Quad*>(hld);

if (! qd) f

// *** exeption ***

err << '[' << FILE << ", line " << LINE ;

err << "℄ dg_Quad::hild() -- quad not supported\n";

exit(1);

g

while (i��) f

qd = dynami ast<dg Quad*>(qd�>getLnk ());

if (! qd) f

// *** exeption ***

err << '[' << FILE << ", line " << LINE ;

err << "℄ dg_Quad::hild() -- quad not supported\n";

err << " type of hild: " << typeid(*qd�>getLnk ()).name() << endl;

exit(1);

g

g

return qd;

g

Edge Integration Subroutine

The following subroutine shows how the integral

Z

e

u

�

(arv) � n

e

�

ds

is omputed. This subroutine is part of the lass dg BDi�usion. The parameters have

the following meaning:

elmX The �rst element, the shape funtions u have their support in elmX.

i Number of the edge in elmX over whih has to be integrated.

elmY The seond element, the shape funtions v have their support in elmY.

j Number of the edge in elmY over whih has to be integrated.

em The element matrix.

signa An arbitrary onstant whih an be given for the integration. Values of 1 (for

e � �

int

) and 2 (for e � �

D

) our.

relation The relation of edge i of elmX to edge j of elmY. The following values are

possible:

0 if e \ e

0

= ;, the subroutine is not alled if relation is 0.

69

A Doumented Soure Code of the Extensions to Conepts

1 if e = e

0

.

2 if e � e

0

.

3 if e � e

0

.

To get an idea what happens in the ode, see setion 3.5, where the integration of

R

K

rurv dx is explained, espeially the alulation of the derivatives and the Jaobian.

The variables p = x

2

� x

1

, q = x

4

� x

1

and r = x

2

� x

1

+ x

4

� x

3

are used to ompute

the Jaobian jF

0

K

j =

s^t

=4: s = p� �

1

r and t = q � �

2

r, where �

1

= qxi and �

2

= qyi are

the urrent oordinates in the referene element.

void dg BDi�usion::integrateEdgeA (onst dg HP2d001& elmX, onst uint i,

onst dg HP2d001& elmY, onst uint j,

sp ElementMatrix<real>& em,

onst real signa, onst uint relation) f

// quadrature points

real qxi = 0.0, qyi = 0.0, qxj = 0.0, qyj = 0.0;

// Jaobian

real dx;

// the derivatives wrt. nxi and x

Real2d s, t, u, v;

// pointer into the arrays of the shape funtions

real* bk;

Real2d* blx;

// p, q and r are used to alulate the Jaobian

Real2d p, q, r;

pqr (elmY, p, q, r);

// alulate the displaement and ratio of one edge wrt. the other

real adjust1, adjust2;

Real2d e;

getAdjust (elmX, elmY, i, j, relation, e, adjust1, adjust2);

// the outer unit normal vetor of elmX

Unit2d n(e.y(), �e.x());

DPL(dgBDi�IntegrateEdge D, "[" << FILE << ", line " << LINE

<< "℄ dg_BDiffusion::integrateEdgeA_ -- n =", n);

// alloate spae for the shape funtions

uint m = elmX.T().n();

if (m < elmY.T().n())

m = elmY.T().n();

if (m > n) f

delete[℄ shpfn ;

70

A.1 Integration over an Edge

delete[℄ shpfnD ;

shpfn = new real[n = m℄;

shpfnD = new Real2d[n ℄;

g

DPL(dgBDi�IntegrateEdge D, "[" << FILE << ", line "

<< LINE << "℄ dg_BDiffusion::integrateEdgeA_ -- adjust: add "

<< adjust1 << ", mult. by", adjust2);

// the weights and points for the quadrature; quadrature loop

uint gauss;

if (gauss == 0) f

gauss = elmX.p();

if (gauss < elmY.p())

gauss = elmY.p();

g else

gauss = gauss ;

onst real* awi = int GaussAbsWght[gauss℄;

for (uint qi = 0; qi < gauss + 1; ++qi) f

qxi = qxj = awi[0℄;

if (relation == 2) f

qxi = adjust1 + qxi*adjust2;

g else f

if (relation == 3) f

qxj = adjust1 + qxj*adjust2;

g

g

// map the quadratur points from 1D to an edge in 2D

edgeQuadPoint (i, qxi, qyi);

edgeQuadPoint (j, qxj, qyj);

s.linomb(p, r, 1.0, �qxi);

t.linomb(q, r, 1.0, �qyi);

// the Jaobian and other integration onstants

// awi[1℄ is the weight for the numerial integration

dx = e.l2() / (s^t);

if (dx < 0.0)

dx = �dx;

DPL(dgBDi�IntegrateEdge D, "[" << FILE << ", line "

<< LINE << "℄ dg_BDiffusion::integrateEdgeA_ -- dx =", dx);

dx *= awi[1℄ * signa * a ;

u = Real2d(t.y(), �s.y()); u *= dx;

v = Real2d(�t.x(), s.x()); v *= dx;

// evaluate the shape funtions and their derivatives

71

A Doumented Soure Code of the Extensions to Conepts

elmX.evaluate(2.0 * qxi � 1.0, 2.0 * qyi � 1.0, shpfn);

elmY.evaluateD(2.0 * qxj � 1.0, 2.0 * qyj � 1.0, shpfnD);

// ompute the entries in the element matrix, ie. loop over all shape fts.

bk = shpfn ;

for (uint k = 0; k < elmX.T().n(); ++k) f

blx = shpfnD ;

for (uint l = 0; l < elmY.T().n(); ++l) f

Real2d blxi((*blx) * u, (*blx) * v);

em(k, l) += *bk * (n * blxi);

blx++;

g

bk++;

g

// next quadrature point

awi += 2;

g // for qi

g

A.2 Boundary Conditions

The delaration and implementation of dg BoundaryCond are shown in the next two ode

setions.

xy Funtion is simply a wrapper around the formula parser and the evaluation for a

parsed formula. These subroutines are inluded in the tool box of Conepts.

dgBoundary.h

/* -*- ++ -*-

* boundary onditions for DG FEM

* an possibly be useful for other types of FEM too

*/

#ifndef dgBoundary h

#de�ne dgBoundary h

#inlude ". ./onepts.h"

#inlude ". ./geometry/geoTopology.h"

#inlude "dgDebug.h"

// *** xyFuntion **

/** Class to handle an arbitrary 2D funtion.

*/

72

A.2 Boundary Conditions

lass xyFuntion f

friend ostream& operator<<(ostream& os, onst xyFuntion& fn);

publi:

/** Construtor. Parses the formula and saves it in a preompiled

form. */

xyFuntion(onst har* formula);

/** Destrutor. Frees the spae used by the parsed formula. */

~xyFuntion();

/** Computes the value of the funtion at the point x. */

inline onst real operator()(onst Real2d& x) onst;

private:

/// The parsed formula

uhar* pgm ;

g;

onst real xyFuntion::operator()(onst Real2d& x) onst f

real f = 0.0;

proess(pgm , x.x(), x.y(), 0.0, &f);

return f;

g

// *** dg Boundary **

/** Class to desribe the boundary ondition of an element of the

topology. A boundary ondition of type Neumann or Dirihlet

onsist of the type and a funtion. These two properties an

be requested.

Boundary onditions of type Robin are not yet implemented.

This lass is implemented to serve the needs of DG FEM but it an

possibly be useful for hpFEM too.

�author Philipp Frauenfelder

*/

lass dg BoundaryCond : publi geo Attribute f

publi:

/// The di�erent boundary ondition types

enum boundaryTypes f FREE = 0, DIRICHLET, NEUMANN, MAX TYPE g;

/** Construtor. The type of the boundary ondition must be one of

FREE, DIRICHLET or NEUMANN. If it's FREE, the formula is of no

use and an be omitted. If any other boundary ondition is given

without formula, then \(0)" is assumed. */

73

A Doumented Soure Code of the Extensions to Conepts

dg BoundaryCond(uint attrib, onst har* formula = 0);

/** Returns the type of the boundary ondition */

inline onst uint getType() onst;

/** Appliation operator. Calulates the value of the boundary

funtion at a spei� point. */

inline onst real operator()(onst Real2d& x) onst;

/// Returns information about itself

virtual ostream& info(ostream& os) onst;

private:

/// The funtion of the boundary ondition

xyFuntion* fn ;

g;

onst uint dg BoundaryCond::getType() onst f

return attrib();

g

onst real dg BoundaryCond::operator()(onst Real2d& x) onst f

if (fn) f

return (*fn)(x);

g else f

return 0.0;

g

g

#endif // dgBoundary h

dgBoundary.

/* dg-Boundary

*/

#inlude ". ./onepts.h"

#inlude "dgDebug.h"

#inlude "dgBoundary.h"

#inlude ". ./toolbox/tbxFuCo.h"

// ** xyFuntion **

xyFuntion::xyFuntion(onst har* formula) f

uhar pgm[FuCo MaxPgmSize℄;

uint len;

74

A.3 Sort of Adaptivity

if (!(len = parse(formula, pgm))) f

// *** exeption ***

err << '[' << FILE << ", line " << LINE ;

err << "℄ xyFuntion::xyFuntion() -- formula syntax error\n";

exit(1);

g else f

pgm = new uhar[len℄;

mempy(pgm , pgm, len * sizeof(pgm [0℄));

g

g

xyFuntion::~xyFuntion() f

delete[℄ pgm ;

g

ostream& operator<<(ostream& os, onst xyFuntion& fn) f

return os << "xyFuntion";

g

// *** dg Boundary **

dg BoundaryCond::dg BoundaryCond(uint attrib, onst har* formula) :

geo Attribute(attrib), fn (0) f

assert(attrib < MAX TYPE);

if ((attrib != FREE) && (formula)) f

fn = new xyFuntion(formula);

g

g

ostream& dg BoundaryCond::info(ostream& os) onst f

os << "dg_BoundaryCond(" << attrib() << ", ";

if (fn == 0)

os << "0";

else

os << *fn ;

return os << ")";

g

A.3 Sort of Adaptivity

The next ode snippet shows the implementation of the adaptive algorithm 4.7. It simply

replaes the re�nement ode in the main program (. f. setion A.6).

75

A Doumented Soure Code of the Extensions to Conepts

The parameter eta determines if an element is re�ned or not, depending on its loal

error. If the loal error is larger than (eta �maximal error) the element is re�ned (i. e. it

is subdivided or the polynomial degree is raised).

// **

// Phase 3: re�ning

if (i > 0) f

// for the L shaped domain (geo LShape):

#de�ne NR NODES 6

Real2d nodes[NR NODES℄ = fReal2d(0.0, 0.0),

Real2d(1.0, 0.0),

Real2d(1.0, 1.0),

Real2d(�1.0, 1.0),

Real2d(�1.0,�1.0),

Real2d(0.0,�1.0)g;

out << " Refining (adapt.): " << ush;

// get maximal error

s = sp.san(); out << "." << ush;

real maxErr = 0.0;

while (*s) f

dg HP2d001& elm = (dg HP2d001&)(*s)++;

real err = fabs(elm.getError());

if (err > maxErr)

maxErr = err;

g

delete s; out << "." << ush;

// re�ne elements

s = sp.san(); out << "." << ush;

maxErr *= eta;

while (*s) f

dg HP2d001& elm = (dg HP2d001&)(*s)++;

if (fabs(elm.getError()) > maxErr) f

bool subdivide = false;

for (uint j = 0; j < NR NODES; j++)

subdivide j= elm.pointInElement(nodes[j℄);

if (subdivide) f

sp.adjust(elm, 1, 0); out << 'l' << ush;

g else f

sp.adjust(elm, 0, 1); out << 'p' << ush;

g

g

g

out << "." << ush;

delete s; out << " done: " << sp << endl;

76

A.4 Debugging Tehniques

A.4 Debugging Tehniques

The debugging tehniques desribed in setion 4.3.4 need some header �les. The top

level header �le debug.h and one of header �les in the pakages are shown here.

debug.h

This is the top level debugging header �le.

#ifndef debug h

#de�ne debug h

#ifdef DEBUG

#inlude<stream.h>

/// Debug Print Line

#de�ne DPL(doit, msg, var)n

if(doit!=0) out << msg << " " << var << endl;

/// Debug Print

#de�ne DP(doit, msg, var)n

if(doit!=0) out << msg << " " << var;

#else

#de�ne DP(doit, msg, var)

#de�ne DPL(doit, msg, var)

#de�ne NDEBUG // disard assertions

#endif

#inlude <assert.h>

#inlude <iomanip>

#endif

opDebug.h

This is the debugging header �le of the operator pakage.

#ifndef opDebug h

#de�ne opDebug h

#inlude "../debug.h"

#ifdef DEBUG

// debugging opDGESV

#de�ne opDGESVConstr D 0

77

A Doumented Soure Code of the Extensions to Conepts

#de�ne opDGESVAppl D 0

#endif

#endif

A.5 Mesh Generation on the L Shaped Domain

The following two �les ontain the ode for the mesh generation for the L shaped domain

(. f. �gure 5.7 on page 52). The delaration of the lasses for the L shaped domain and

its mesh and the sanner for the mesh of the L shaped domain are in the �le lshape.h.

The implementation of the onstrutor and the destrutor of dg LShape are in the �le

lshape..

lshape.h

/* -*- ++ -*-

* L shaped domain

*/

#ifndef lshape h

#de�ne lshape h

#inlude <typeinfo>

#inlude <math.h>

#inlude <stdlib.h>

#inlude <string.h>

#inlude <fstream.h>

#inlude "onepts.h"

#inlude "geometry.h"

#inlude "dg.h"

/** Three unit quadrilaterals forming an L shaped domain (third quadrant

missing).

*/

lass dg LShape : publi geo Mesh2 f

publi:

/** Construtor. Creates the verties, edges and quadrilaterals

in the topology and arranges them with their element map in ells.

The boundary onditions are intialized and assigned to the edges

*/

dg LShape();

virtual ~dg LShape();

/// Returns the number of ells in the mesh

78

A.5 Mesh Generation on the L Shaped Domain

inline uint nell() onst f

return 3;

g

/// Returns a sanner for the mesh of the domain

inline geo San2* san() f

return new S(ell);

g

private:

/** Sublass of dg LShape used to san the mesh of the square

�see dg LShape

*/

lass S : publi tbx San<geo Cell2> f

publi:

inline S(geo Quad2d *(&ell)[3℄) : idx (0), ell (ell) fg

inline S(onst S& san) : idx (san.idx), ell (san.ell) fg

inline bool eos() onst f

return idx == 3;

g

inline geo Cell2& operator++(int) f

return *ell [idx ++℄;

g

inline geo San2* lone() onst f

return new S(*this);

g

private:

uint idx ;

geo Quad2d *(&ell)[3℄;

g;

/// The verties of the L shaped domain

geo Vertex *vtx [8℄;

/// The edges of the L shaped domain

dg Edge *edg [10℄;

/// The quadrilaterals of the L shaped domain

dg Quad *quad [3℄;

/// The ells in the mesh

geo Quad2d *ell [3℄;

/// Boundary onditions

dg BoundaryCond *dirihlet1 , *dirihlet2 , *neumann1 , *neumann2 ;

79

A Doumented Soure Code of the Extensions to Conepts

g;

#endif

lshape.

/* L shaped domain

*/

#inlude "lshape.h"

#inlude "dg.h"

dg LShape::dg LShape() f

dirihlet1 = new dg BoundaryCond(dg BoundaryCond::DIRICHLET, "(sqrt(x))");

dirihlet2 = new dg BoundaryCond(dg BoundaryCond::DIRICHLET, "(sqrt(-y))");

neumann1 = new dg BoundaryCond(dg BoundaryCond::NEUMANN,

"(1/(2*((1+y*y)^(3/4))))");

neumann2 = new dg BoundaryCond(dg BoundaryCond::NEUMANN,

"(1/(2*((1+x*x)^(3/4))))");

for (uint i = 0; i < 8; ++i) f

vtx [i℄ = new geo Vertex();

g

edg [0℄ = new dg Edge(*vtx [0℄, *vtx [1℄, neumann2);

edg [1℄ = new dg Edge(*vtx [1℄, *vtx [2℄, dirihlet2);

edg [2℄ = new dg Edge(*vtx [2℄, *vtx [3℄);

edg [3℄ = new dg Edge(*vtx [3℄, *vtx [0℄, neumann1);

edg [4℄ = new dg Edge(*vtx [2℄, *vtx [4℄);

edg [5℄ = new dg Edge(*vtx [4℄, *vtx [5℄, neumann2);

edg [6℄ = new dg Edge(*vtx [5℄, *vtx [3℄, neumann1);

edg [7℄ = new dg Edge(*vtx [6℄, *vtx [2℄, dirihlet1);

edg [8℄ = new dg Edge(*vtx [6℄, *vtx [7℄, neumann1);

edg [9℄ = new dg Edge(*vtx [7℄, *vtx [4℄, neumann2);

quad [0℄ = new dg Quad(*edg [0℄, *edg [1℄, *edg [2℄, *edg [3℄);

quad [1℄ = new dg Quad(*edg [2℄, *edg [4℄, *edg [5℄, *edg [6℄);

quad [2℄ = new dg Quad(*edg [7℄, *edg [8℄, *edg [9℄, *edg [4℄);

// bottom left

ell [0℄ = new geo Quad2d(*quad [0℄, geo MapQuad2d("(x-1, y-1)", 1.0, 1.0));

// top left

ell [1℄ = new geo Quad2d(*quad [1℄, geo MapQuad2d("(x-1, y)", 1.0, 1.0));

// top right

ell [2℄ = new geo Quad2d(*quad [2℄, geo MapQuad2d("(x, y)", 1.0, 1.0));

g

dg LShape::~dg LShape() f

80

A.6 Main program

for(uint l = 2; l��;) delete ell [l℄;

for(uint k = 2; k��;) delete quad [k℄;

for(uint j = 9; j��;) delete edg [j℄;

for(uint i = 7; i��;) delete vtx [i℄;

delete neumann1 ;

delete neumann2 ;

delete dirihlet1 ;

delete dirihlet2 ;

g

A.6 Main program

The �le dgfem. ontains the main program. The omments follow the steps in se-

tion 3.3, where the main steps in a Conepts appliation are listed.

After the soure ode, the output of the program dgfem is shown.

/* DG FEM

*/

#inlude <typeinfo>

#inlude <math.h>

#inlude <stdlib.h>

#inlude <string.h>

#inlude <fstream.h>

#inlude <unistd.h>

#inlude "onepts.h"

#inlude "funtion.h"

#inlude "operator.h"

#inlude "hp.h"

#inlude "dg.h"

#inlude "lshape.h"

int main(int arg, har** argv) f

uint p = 1, gauss = 0, depth = 1;

real mu = 1.0, stabilization = 0.0;

uint graphipoints = 20;

bool debug = false;

ofstream *ofs, *errfs;

int opt;

dg HP2dSan* s;

out.setf(ios::sienti�, ios::oat�eld);

out.setf(ios::showpos);

81

A Doumented Soure Code of the Extensions to Conepts

out.preision(3);

// **

// parsing ommand line options

while ((opt = getopt(arg, argv, "-m:p:g:s:dD:G:")) != EOF)

swith(opt) f

ase 'm':

mu = atof(optarg); break;

ase 'p':

p = atoi(optarg); break;

ase 'g':

gauss = atoi(optarg); break;

ase 's':

stabilization = atof(optarg); break;

ase 'd':

debug = true; break;

ase 'D':

depth = atoi(optarg); break;

ase 'G':

graphipoints = atoi(optarg); break;

default:

out << "Call: " << argv[0℄

<< " [-p DEGREE℄ [-g GAUSS℄ [-D DEPTH℄ [-m MU℄ "

<< "[-s STAB℄ [-G GPOINTS℄ [-d℄" << endl

<< "where" << endl

<< " DEGREE: polynomial degree" << endl

<< " GAUSS: number of quadrature points (0: as muh as needed)"

<< endl

<< " DEPTH: maximal level" << endl

<< " MU: slope of linear polynomial degree distribution vetor"

<< endl

<< " STAB: stabilization oeffiient" << endl

<< " GPOINTS: number of points in the graphis in eah diretions"

<< endl

<< " -d: debug, ie. print the matries" << endl;

exit(1);

g

out << '[' << argv[0℄ << "℄" << endl;

out << "--" << endl << "Parameters: " << endl

<< "degree = " << p << endl << "gauss = " << gauss << endl

<< "depth = " << depth << endl << "mu = " << mu << endl

<< "stab = " << stabilization << endl

<< "gpoints = " << graphipoints << endl;

// **

// problem: - a Delta u + u = f

onst real a(1.0);

onst real (1.0);

82

A.6 Main program

// exat solution

onst har* uex = "(sqrt(sqrt(x*x+y*y)))";

// RHS

onst har* fex =

"(3*x*x/(4*((x*x+y*y)^(7/4)))+3*y*y/(4*((x*x+y*y)^(7/4)))-"

"1/((x*x+y*y)^(3/4))+((x*x+y*y)^(1/4)))";

out << "--" << endl << "Problem: "

<< "- a Delta u + u = f" << endl

<< "a = " << a << endl << " = " << << endl

<< "u = " << uex << endl << "f = " << fex << endl;

// **

// Phases 1 and 2: reate mesh and spae

out << "--" << endl << "Mesh and spae: " << ush;

dg LShape msh; out << "." << ush;

geo Bool b; out << "." << ush;

dg HP2d sp(msh, 0, p, &b); out << " done: " << sp << endl;

// graphi of the mesh

ofs = new ofstream("dg0.eps");

sp.sketh(*ofs, 100);

delete ofs;

// **

// omputations

out << "--" << endl << "Computations:" << endl;

errfs = new ofstream("error.data");

for (uint i = 0; i <= depth; ++i) f

out << endl << "Iteration " << i << endl;

// **

// Phase 3: re�ning

if (i > 0) f

// verties of the L shaped domain (dg LShape):

#de�ne NR NODES 6

Real2d nodes[NR NODES℄ = fReal2d(0.0, 0.0),

Real2d(1.0, 0.0),

Real2d(1.0, 1.0),

Real2d(�1.0, 1.0),

Real2d(�1.0,�1.0),

Real2d(0.0,�1.0)g;

out << " Refining (lin. deg. ve.): " << ush;

uint l = 0; // max level

83

A Doumented Soure Code of the Extensions to Conepts

// get max level

s = sp.san(); out << "." << ush;

while (*s) f

dg HP2d001& elm = (dg HP2d001&)(*s)++;

onst dg Quad* quad = dynami ast<onst dg Quad*>(&elm.support());

if (quad)

if (l < quad�>level())

l = quad�>level();

g

l++;

out << '.' << ush;

delete s;

// re�ne elements

s = sp.san(); out << "." << ush;

while (*s) f

dg HP2d001& elm = (dg HP2d001&)(*s)++;

bool subdivide = false;

for (uint j = 0; j < NR NODES; j++)

subdivide j= elm.pointInElement(nodes[j℄);

if (subdivide) f

sp.adjust(elm, 1, 0); out << 'l' << ush;

g else f

onst dg Quad* quad = dynami ast<onst dg Quad*>(&elm.support());

if (quad) f

sp.adjust(elm, 0, (int)oor((real)(1+l�quad�>level())*mu)

� elm.p()); out << 'p' << ush;

g

g

g

out << "." << ush;

delete s; out << " done: " << sp << endl;

if (i == depth) f

// graphi of the mesh

out << " Graphi of the mesh." << endl;

ofs = new ofstream("dg1.eps");

sp.sketh(*ofs, 100);

delete ofs;

g

g

// **

// Phase 4: reate the di�erential operators and their matries

out << " Stiffness matrix: " << ush;

dg BDi�usion bf(gauss, a); out << "." << ush;

op Loal<real> A1(sp, sp, bf); out << "." << ush;

84

A.6 Main program

dg Identity id(gauss); out << "." << ush;

op Loal<real> I(sp, sp, id); out << "." << ush;

dg BDisont st(gauss, stabilization); out << "." << ush;

op Loal<real> S(sp, sp, st); out << "." << ush;

op LiCo<real> LL(A1, I, 1.0,); out << "." << ush;

op LiCo<real> L(LL, S, 1.0, 1.0); out << " done." << endl;

if (debug) f

out << " Diffusion matrix: " << A1 << endl

<< " Stabilization matrix: " << S << endl

<< " Identity matrix: " << I << endl;

g

// **

// Phase 5: the linear forms and the vetors of the right hand side

out << " Load vetor: " << ush;

dg LDi�usion ldi�(gauss, a); out << "." << ush;

fn Vetor<real> fdi�(sp, ldi�); out << "." << ush;

hp Riesz lf(fex, gauss); out << "." << ush;

fn Vetor<real> �(sp, lf); out << "." << ush;

dg LDisont ldis(gauss, stabilization); out << "." << ush;

fn Vetor<real> fdis(sp, ldis); out << "." << ush;

� += fdi�; out << "." << ush;

� += fdis; out << " done." << endl;

// **

// Phase 6: solving the system

out << " Solving: " << ush;

fn Vetor<real> u(sp); out << "." << ush;

op DGESV Linv(L); out << "." << ush;

Linv(�, u); out << " done: " << Linv << endl;

// **

// exat solution

out << " Exat solution: " << ush;

hp Riesz lf u(uex, gauss); out << "." << ush;

fn Vetor<real> uu(sp, lf u); out << "." << ush;

fn Vetor<real> ue(sp); out << "." << ush;

op DGESV Iinv(I); out << "." << ush;

Iinv(uu, ue); out << " done." << endl;

if (debug) f

out << " Right hand side: " << endl << � << endl

<< " Diffusion part of RHS: " << endl << fdi� << endl

<< " Stabilization of RHS: " << endl << fdis << endl

85

A Doumented Soure Code of the Extensions to Conepts

<< " Solution: " << endl << u << endl

<< " Exat Solution (by L^2 projetion): " << endl << ue << endl;

g

// **

// Phase 7: error estimation

fn Vetor<real> di�(ue);

di� �= u;

if (i == depth) f

// **

// Phase 8: postproessing

out << " Save data for gnuplot to disk." << endl;

sp.storeSolution(ue);

ofs = new ofstream("dg0exat.data");

sp.drawGraph(*ofs, graphipoints);

delete ofs;

sp.storeSolution(u);

ofs = new ofstream("dg0.data");

sp.drawGraph(*ofs, graphipoints);

delete ofs;

sp.storeSolution(di�);

ofs = new ofstream("dg0error.data");

sp.drawGraph(*ofs, graphipoints);

delete ofs;

g else f

sp.storeSolution(di�);

g

// L^2 error

I(di�, �);

sp.storeWeights(�);

*errfs << sp.dim() << " " << sp.getError() << " ";

out << " | |u-u_(l,p)||_2^2 = " << sp.getError() << endl;

// energy error

L(di�, �);

sp.storeWeights(�);

*errfs << sp.getError() << " ";

out << " | |u-u_(l,p)||_E^2 = " << sp.getError() << endl;

*errfs << Linv.ondition() << endl;

g

delete errfs;

// **

// Phase 9: removal of the matries, vetors, the spae and the mesh

return 0;

g

86

A.6 Main program

Output of the Main Program

[dgfem℄

--

Parameters:

degree = 1

gauss = 0

depth = 1

mu = +1.000e+00

stab = +0.000e+00

gpoints = 20

--

Problem: - a Delta u + u = f

a = +1.000e+00

 = +1.000e+00

u = (sqrt(sqrt(x*x+y*y)))

f = (3*x*x/(4*((x*x+y*y)^(7/4)))+3*y*y/(4*((x*x+y*y)^(7/4)))

-1/((x*x+y*y)^(3/4))+((x*x+y*y)^(1/4)))

--

Mesh and spae: .. done: dg_HP2d(dim = 12, nelm = 3)

--

Computations:

Iteration 0

Stiffness matrix: done.

Load vetor: done.

Solving: .. done: op_DGESV(dim = 12, ond = +8.745e+00, fatorized)

Exat solution: done.

||u-u_(l,p)||_2^2 = +3.543e-02

||u-u_(l,p)||_E^2 = +1.509e-01

Iteration 1

Refining (lin. deg. ve.): ...lll. done: dg_HP2d(dim = 48, nelm = 12)

Graphi of the mesh.

Stiffness matrix: done.

Load vetor: done.

Solving: .. done: op_DGESV(dim = 48, ond = +3.200e+01, fatorized)

Exat solution: done.

Save data for gnuplot to disk.

||u-u_(l,p)||_2^2 = +2.964e-02

||u-u_(l,p)||_E^2 = +1.340e-01

87

Symbol Index

[v℄ jump of v over an edge

jF

0

K

j Jaobian of the element map F

K

hvi average of v over an edge

E set of smallest element edges

E

int

set of interior element edges

P

p

(

^

) polynomials of total degree p on

^

�

'

K

i

	

N

K

i=1

shape funtions on element K

f'

i

g

N

i=1

basis of the (DG)FE-spae

T partition of
, a FE-mesh

Æ

K

stabilisation parameter

bv oriented jump of v over an edge

�

+

outow boundary

�

�

inow boundary

�

0

di�usion boundary

�

int

union of the set of interior element edges

^

 referene element (0; 1)

2

�

�

K element inow boundary

n

e

numbering dependent unit normal vetor of an edge

n

K

unit outward normal vetor of element K

p degree vetor fp

K

: K 2 T g

� oordinates in the referene element

^

e edge of an element of T

F

K

element map: F

K

:

^

! K

h

K

diameter of K 2 T

K open and onneted element of T

N dimension of the (DG)FE-spae

N

i

(�) shape funtion on the referene element

^

89

Symbol Index

N

K

number of shape funtions on element K

p

K

polynomial degree on element K

v

+

inner trae of v

v

�

outer trae of v

W

1;1

(
)

2�2

sym

spae of symmetri 2� 2 matries of Sobolev funtions in W

1;1

(
)

x

i

i

th

omponent of the vetor x 2 R

d

x

i

i

th

vertex of an element K 2 T

B

l

�

(
) ountably normed spae

S

p;0

0

(
; T), S

p

0

(
; T) DGFE-spae:

n

u 2 L

2

(
) : uj

K

Æ F

K

2 P

p

K

(

^

); uj

�K\�

D

= 0;8K 2 T

o

S

p;1

0

(
; T) FE-spae:

n

u 2 H

1

0

(
) : uj

K

Æ F

K

2 P

p

K

(

^

);8K 2 T

o

^

T

n

�

, T

n

�

geometri mesh family

H

m;l

�

(
) weighted Sobolev spae

90

Bibliography

[1℄ Free Software Foundation, In. [2000℄, GCC|The GNU Compiler Colletion, Internet.

The GNU ompiler is used to ompile Conepts. http://www.fsf.org/software/g/g.html

[2℄ Netlib [1994℄, LAPACK { Linear Algebra PACKage, Internet.

Large library of linear algebra subroutines in Fortran. A C++ version is also available but was not used for this

diploma thesis. http://www.netlib.org/lapak/

[3℄ I. Babu�ska and B. Q. Guo [1988℄, Regularity of the Solutions of Ellipti Problems with Pieewise

Analyti Data I, SIAM J. Math. Anal., 19:172{203.

[4℄ I. Babu�ska and B. Q. Guo [1989℄, Regularity of the Solutions of Ellipti Problems with Pieewise

Analyti Data II, SIAM J. Math. Anal., 20:763{781.

[5℄ Timothy J. Barth and Herman Deonink (Editors) [1999℄, High order methods for omputational

physis, vol. 9 of Leture notes in omputational siene and engineering, hap. 6, pp. 365{374,

Springer.

Gives a ompat derivation of the used DGFEM variational formulation and a short note on stability.

[6℄ P. Frauenfelder [1999℄, Shnellere Quadratur f�ur hp-FEM in drei Dimensionen, Semester Thesis.

Sum fatorization exploiting the tensor produt Ansatz of the shape funtions during the omputation of the

element matries.

[7℄ Martin Gogolla, UML for the Impatient, University of Bremen, FB 3, Computer Siene

Departement, Postfah 330440, D-28334 Bremen, Germany.

A short introdution to UML by examples.

[8℄ Nina P. Hanke [1998℄, Calulating Large Spetra in Hydrodynami Stability: a p-FEM Approah

to Solve the Orr Sommerfeld Equation, Master's thesis, Swiss Federal Institute of Tehnology,

CH-8092 Z�urih.

A the short and good summary of doubly integrated Legendre polynomials an be found on page 22 and following.

[9℄ Hewlett-Pakard Company, Silion Graphis Computer Systems, In. [1996℄, Standard Template

Library Programmer's Guide.

http://www.sgi.om/Tehnology/STL/

[10℄ Christian Lage [1995℄, Softwareentwiklung zur Randelementmehtode: Analyse und Entwurf

eÆzienter Tehniken, Ph.D. thesis, Christian-Albrehts-Universit�at, Kiel.

First ideas of Conepts.

[11℄ Christian Lage [1998℄, Conept Oriented Design of Numerial Software, Teh. Rep. 98-07, Swiss

Federal Institute of Tehnology, CH-8092 Z�urih.

Abstrat presentation of the ideas behind Conepts by its author.

91

Bibliography

[12℄ Rational Corporation, Santa Clara [1997℄, Objet Constraint Language (Version 1.1).

http://www.rational.om/uml/resoures/doumentation/ol/

[13℄ Rational Corporation, Santa Clara [1997℄, UML Notation Guide (Version 1.1).

http://www.rational.om/uml/resoures/doumentation/notation/

[14℄ Rational Corporation, Santa Clara [1997℄, UML Semantis (Version 1.1).

http://www.rational.om/uml/resoures/doumentation/semantis/

[15℄ A. R�uegg and D. Hoh [1999℄, FEM f�ur elliptishe Probleme mit dem Programmsystem

Conepts-1.4, Semester Thesis.

FEM with mixed boundary values in Conepts. Features a short introdution into the main parts of Conepts.

[16℄ Bjarne Stroustrup [1997℄, The C++ Programming Language, Addison Wesley Longman, In., 3rd

edn.

The referene for C++.

[17℄ E. S�uli, P. Houston and C. Shwab [1999℄, hp-Finite Element Methods for Hyperboli Problems,

Teh. Rep. 99-14, Swiss Federal Institute of Tehnology, CH-8092 Z�urih.

[18℄ T. P. Wihler and C. Shwab [2000℄, Exponential onvergene of the hp-DGFEM for Di�usion

Problems in two Spae Dimensions.

Theoretial bakground for the omputations in this thesis.

[19℄ Thomas Williams and Colin Kelley [1999℄, Gnuplot Central, Internet.

Gnuplot was used to reate the graphs in this thesis. http://www.u.ie/gnuplot/

[20℄ Andreas Zeller et al. [2000℄, DDD|Data Display Debugger, Internet.

One of the greatest debuggers with a nie, graphial user interfae. Besides usual front-end features suh as

viewing soure texts, DDD has beome famous through its interative graphial data display, where data

strutures are displayed as graphs. http://www.gnu.org/software/ddd/

92

