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Abstract

The present thesis is concerned with hp-Finite Element Methods in three dimen-
sions. To resolve singularities or characteristic length scales in many physical and
engineering applications, it is necessary to have geometric meshes with local re-
finements to obtain exponential convergence. With exponential convergence, it is
feasible to reduce the discretisation error and the numerical errors several orders of
magnitude below the modeling error.

In three dimensions, geometric meshes require simultaneous, anisotropic refine-
ments in the mesh size h and the polynomia degree p. We study the algorithmic
and implementational details and give a number of numerical examplesfor the re-
action diffusion equation as well as Maxwell’s equations. Maxwell’s equations are
discretised using H 1-conforming elements and weighted regularisation.

Uncertainty in the input data is another source of errors besides numerical and
modelling errors. We develop a method to solve elliptic partial differential equa-
tions with stochastic coefficients efficiently using a Karhunen-L oéve expansion of
the stochastic coefficients. The numerical scheme is embarassingly parallel.

The software used to solve the numerical examplesin this thesis is avaible for
download as Open Source Software.






Kurzfassung

Die vorliegende Doktorarbeit behandelt hp-Finite Element Methoden in drei Di-
mensionen. Um Singularitéten oder charakteristische Langen in physikalischen
oder technischen Anwendungen aufzulsen und exponentielle Konvergenz zu er-
halten, braucht es geometrische Gitter mit lokalen Verfeinerungen. Durch die ex-
ponentielle Konvergenz wird es moglich, die Diskretisierungs-Fehler und numeri-
schen Fehler um Grossenordnungen unter den Modellierungs-Fehler zu senken.

Um dreidimensionale, geometrische Gitter herstellen zu konnen, werden gleich-
zeitige, anisotrope Verfeinerungen der Gitterweite h und des Polynomgrads p
bendtigt. Wir untersuchen die algorithmischen und programmiertechnischen Ein-
zelheiten und geben eine Reihe von Beispielen der Resktions-Diffusions-Glei-
chung und der Maxwell-Gleichungen. Die Maxwell-Gleichungen werden mit H 1-
konformen Elementen und gewichteter Regularisierung diskretisiert.

Unsicherheit bei den Eingabe-Daten ist eine weitere Quelle von Fehlern neben
numerischen und Diskretisierungs-Fehlern. Wir untersuchen eine Methode, um el-
liptische, partielle Differential-Gleichungen mit stochastischen Koeffizienten effi-
zient zu ldsen. Dazu wir eine Karhunen-L oéve-Zerlegung der stochastischen Ko-
effizienten verwendet. Die numerische Methode ist beschamend parallel.

Die Software, die fur die numerischen Beispiele dieser Arbeit benutzt worden
ist, ist als Open Source Software zum Download erhaltlich.
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Introduction

Why do we compute?

This thesis is in part concerned with software design for ssimulation of physical
phenomenain the sciences and engineering towards the end of validation of math-
ematical modelsfor these phenomena

Mathematical Models of Physical Reality

A model is a quantitative and abstract description of physical reality. A language
(with a consistent grammar in the sense of Noam Chomsky [[23]) to formulate
modelsis mathematics.

We call amathematical description of physical reality a mathematical model M
which ideally accounts for al known information as well as for the uncertainty
in our knowledge about the phenomenon to be simulated. Mathematical models
continually change and increase in sophi stication through experimental validation.
Validation of a mathematical model of physical reality involves, as a key step,
obtaining quantitative and experimentally verifiable predictions from it. This is
donetoday almost exclusively by numerical simulation. If the mathematical model
is too complex for numerical smulation (as is often the case), ssimplified working
models M’ which are derived from M and which are mathematically consistent
with it are used as basis for numerical simulation.

The two processes, model simplification for simulation and increasing model
sophistication due to validation, have led, in many areas of science, to model hi-
erarchies, which should be intrinsically consistent and experimentally validated in
suitable parameter ranges.
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Error Control

In numerical simulation for the purpose of validation of mathematical models of
physical reality, a necessary prerequisite is the quantitative control of numerical
and disretisation errors, i. e. the discretisation has to be verified. Essentially, con-
tributions to simulation errors come from numerical errors (roundoff errors etc.),
discretisation errors and modelling errors. We assume here that roundoff errors are
controled by using extended precision computations and ignore them.

To separate modelling and discretisation errors, a numerical method must then
be designed so asto

o reduce discretisation errors several orders of magnitude below any uncer-
tainty inherent in the model’s input data (such as loads, domains, coeffi-
cients),

o performrobustly over arange of input parametersin the working modelsthat
is strictly larger than the range for which the mathematical (working) model
isto be validated.

These two issues are addressed in the present dissertation by the systematic use of
high-order discretisation methods for partial differential equations with particular
emphasis on

o Electromagnetics, where Maxwell’s equations describe physics to a very
high degree of precision and where material parameters such as permittivity
and dielectric constants are known to a high degree of accuracy,

o Diffusion problems with stochastic coefficients, where (elliptic) stochastic
partial differential equations are the tool for uncertainty description and
quantification in physical systems.

As was shown in the 90ies, high-order hp and spectral methods allow, by judi-
cious combination of local mesh refinement and order adaptation, to exploit ana-
Iytic regularity of solutionsto achieve robust exponential convergence of computer
models towards mathematical models, thereby practically eliminating discretisa-
tion errors. Accordingly, we develop here two such methods: an hp-class of sub-
spaces for elliptic partial differential equations in general polyhedrain R3 and a
spectral approach to the deterministic simulation of elliptic PDEs with stochastic
coefficients.
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Design Principles for Simulation Software

A key component in numerical simulation is the design of simulation software.
Early programming languages like Fortran were effective in translating mathemat-
ical formulas of particular discretisations of certain mathematical models into ma-
chine executable al pha-numerical operations. They were strongly limited in map-
ping abstract mathematical objects like subspaces or operators or even symbolic
operations bijectively into machine code.

With the massive increasein available CPU and memory per cost, and the advent
of object oriented programming languages, the perspective of mapping mathemat-
ical models bijectively to simulation software became realistic. We believe such
bijective mapping of mathematical grammar to simulation software structures to
be desirable to guide reusable software development: Mathematical grammar has
produced consistent and quantitative abstractions of physical systems valid hun-
dreds of years. Software design, ad-hoc or systematic, has to date led in the best
case to codes and grammarsthat are considerably shorter-lived and which are, asa
rule, inconsistent and incompatible with each other.

With the ssimulation software Concepts [126, [54, [73, [74] presented in this dis-
sertation, computer analogs of mathematical concepts are built by object oriented
design using the functionalities of specialisations of abstract classed] in the ob-
ject oriented language C++ [[104, 105]@ In this way, we transfer universality and
consistency of mathematical grammar to simulation software desi gnE

Consider the class of mathematical models (using a so-called variational formu-
lation)

M :={Findu € U suchthat a(u,v) =1(v) VYveV}.

IAn instance (or object) of a class is a collection of state (data in the variables of the object) and
behaviour (interface of the class). The behaviour iscommon to all objects of the same class whereas
each instance has its own set of variables and therefore a (possibly) different state. An abstract
class is a class without instances. It has no variables and the interface is only declared but not
implemented. An abstract classis used as a parent for derived classes (to prescribe the interface of
the children) [21].

2|t goeswithout saying that any other object oriented programming language would be equally suitable
to achieve this mission. However, C++ is one of the few languages enabling us to achieve Fortran
like alpha-numerical performance [101].

30nly time can tell if this approach is successful but the grammar of mathematics is, to date, in our
opinion the best tool available for this task.
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Symbol | Mathematical Physical
U,V Linear spaces (function spaces of Finite energy solutions
Sobolev type), finite or infinite
dimensional
a(.,.) Bilinear (non-linear) operator Conservation law and
constitutive law
1) Linear (non-linear) functional External forces, sources,
sinks

Table 0.1: Fundamental concepts used in the definition of M from a mathematical and physical point
of view.

The concepts used in M are summarised in Table The simulation software
should be designed such that all modelsin M can be solved.

One way of solving a problem P € M is to discretise the infinite dimensional
function spaces U, V in M with finite dimensional subspacesUy c U and Vi C
V, thereby obtining aclass O of discretisations of M:

D = {Finduyn € Uy suchthat anm(un, vm) = Inm(vm) Yom € Vm} C M.

anm (., .) istherestriction of a(.,.) to Uy x Vi with additional simplifications
like numerical integration (which might introduce errors). Uy is the function
space for the approximation of the solution and the proper design of V asserts
stability of the approximation. It is conceivable that the mathematical model is
a-priori finite dimensional without a discretisation (e. g. particle models, atomistic
simulations)—these models also belong to £. On the other hand, mathematical
models belonging to M \ D, i.e. infinite dimensional models, could be directly
realized on the computer using symbolic simulation.

In this work, we restrict ourselvesto models M which (after discretisation) be-
long to £. The hierarchic structure of the mathematical models in M and their
instances in O can be mapped to the software as well. In addition, we enforce
the usage of the correct mathematical grammer by the type checking of the C++
compilerB We chose the inheritance paradigm in object oriented programming
languagesto satisfy this. Quoting Timothy A. Budd [[21]:

Inheritance means that the behaviour and data associated with child
classes are alwaysan extension of the propertiesassociated with parent

40ne has to get accustomed to these strict guidelines first when using Concepts. However, it ensures
the conservation of the intended structures over along time and many different users.
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classes. On the other hand, since achild classisamore specialised (or
restricted) form of the parent class, it is also, in a certain sense, a
contraction of the parent class.

Thisis exactly the same situation we observe for a concrete problem P € M and
itsdiscretisation P’ € D C M or therelation of the spacesUn C U.

Therefore, we choose the following approach: represent each concept in Ta
ble 0.1 by an abstract class and combine them according to the mathematical
grammar. This defines concept oriented design [[74]. Anocther great advantage
of concept oriented design, besides leading to a good design of the classes, is:
Mathematicians and other researchers will find the concepts familiar.

Simulation Software Concepts

The design ideas and principles above are used in the software Concepts [[26, 54,
73, [74]. Conceptsis a class library written in C++ [[104, [105]. We are currently
working with Concepts at our institute with Boundary Element Methods (BEM)
[©93], Finite Element Methods (FEM) and generalised FEM [[82]. Below, we outline
the main classes of the software by means of a general problem. In addition, an
application of the classes to FEM is shown.

Main Classes in Concepts

Thediscretised problem may bewritten asalinear system of equationsby choosing
asuitable basis for each of the subspaces. To keep the discussion focused, assume
the same basis {®1, ..., N} for both spacesUy = Vv, and obtain

Alu=|I
with [Alij = a(®j, ®j) the entries of the stiffness matrixg A lj = 1(dj) the
entries of the load vector | and u the coefficient vector of the discrete solution:

uy = ®"u.

The mathematical concepts used above are easily listed: operator, function,
bilinear form, linear form, (sub)space, basis function, matrix, vector (c.f. Fig-
ure[0.T—the Unified Modelling Language UML [[89] is a graphical language for

SWe shall always call A stiffness matrix and | load vector even though this originates from the appli-
cation in linear elasticity.
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<interfaces <interfaces <interface» <interfaces <interface»
Mesh Cell ElementMap Element Space
+ncell(): int [rehild(): ceil | [roperator() (x:Real(dim]): Reall[dim] | +dim(): int
+scan () : Scan<Cell> /\ +nelm(): int
+scan () : Scan<Element>
' '
' ' '
' ' 5T ' '
[ CompDomain Triangle2d “ntserface’ -1 Triangle Linear2d
+child(idx:int): Triangle2d can +Triangle (T:TColumn*=0) -dim: int
+chi (xi:Real [dim]) : Real[dim] +eos () : bool +evaluate (x:Real[]) -nelm: int
+jacobian (xi:Real [dim]) : Real[dim, din] +operator++ () : P +evaluateD (x:Real [1) Tinear2d (mesh:Mesh]
«<interface» <interfaces
BilinearForm LinearForm
[+operator () (elmx:Element, elmy:Element, em: ElementMatzix) | [roperator() (elm:Element, em: ElementMatrix) |
Laplacian
«interface» ElementMatrix (in[erf.ace»
Operator —eta eail Function
+operator () (£ncY: Function, fncX:Function) TFlementMatrix(miint,niint) Toperators (Enc:Function) : Fumction
+spaceX () : Space +transpose () : +operator- (fnc:Function) : Function
+spaceY() : Space +operator () (i:int,j:int): Real +space () : Space

Figure 0.1: UML diagram of the main classes in Concepts together with some specialisations to illus-
trate the use.

describing object oriented software). Mapping these concepts into classes, how-
ever, rises the problem to represent functions, in particular, basis functions. A
computationally sensible way to approach this problem is to decompose (mesh)
the domain D of the function into primitive sets K; (cells or elements). These
sets themselves can be characterised by applying mappings F; (so-called element
maps) to predefined reference sets, e. g. F; : K — K suchthat Kj = FKi(K). In
addition, functions N; mounted on areference set define so-called shape functions
q)}(i on each of the elements K viaupjKi o Fk; = Nj. Thebasis functions can then

be represented by linear combinations of the ¢ Ki (extended with 0 to the computa-
tional domain D). This generates basis functions {®; } with local support and—as
a consequence—a sparse stiffness matrix A.

Application to FEM: Concrete Classes in Concepts

Consider the scalar model problem given by the conservation law

f+VvV-F=0inD,
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Domain mesh;
Linear2d space (mesh) ; // elements are generated

Laplace a;

SparseMatrix A(space, a); // computing and assembling the stiffness matrix
Riesz f;

Vector 1(space, f); // load vector

Vector u(space) ; // empty solution vector

CG solver (A) ;
solver(l, u); // solve linear system

Algorithm 0.1: An application in pseudo code to solve a diffusion equation in two dimensions.

where f models the sources and forcesand F the flux. The constitutive law of the
diffusion problem reads

F = Avu.
A is the diffusion tensor and u the concentration. Assuming A = T leads to the
Laplace equation

—Au=f.
Let V = U bethe function space of physically admissible concentrations of ‘finite
energy’:
Findu € V such that

a(u,v) =l(w) VYvevV,

where
a(u,v):/ Vu - Vuvdx, |(v)=/ fodx + gvds.
D D

g=n-F =n-AvuonTy C dD isthe boundary condition for the flux F.
With this background, the necessary classes can be found easily (c. f. Figure [0.1).
An application in pseudo code looks like in Algorithm
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Overview of the Thesis

Thethesis is subdivided into three parts: fundamentals, applications and software.

Fundamentals

The first chapter recapitulates the essential tools of the language used to describe
the mathematical models: function spaces of Sobolev type, structures (linear and
bilinear forms) and abstract projections methods (abstract idea of discretisation).

In the second chapter, the meshes for hp-FEM in two and three dimensions are
reviewed following [[8,[29] together with the respective convergenceresults for the
FE spaces [8,197]:

min [lu—unly1p) < Cexp(—bN?®),
N EVN
where N = dimVy and s is 1/3 and 1/5 for two and three dimensional problems
respectively. Here, u is the solution of a Laplace equation in a Lipschitz polygon
or polyhedron.

The first part is closed by the third chapter developing the algorithmic ideas
dealing with hanging nodes. Hanging nodes arise in locally refined meshes asthey
are typical for hp-FEM in areas where the mesh is irregular. A mesh is called
regular if the intersection of two different elements is either empty, a vertex or
an entire side (edge or face). Irregular meshes do not have this property. The
hanging nodes have so-called constrained degrees of freedoml§ associated with.
These degrees of freedom are constrained by other degrees of freedom to ensure
the global continuity of the basis functions of the FE space. There exist different
solutions for this constrained approximation in the literature and software [[14, (15,
411,142,143, 147, 150, 68]. We propose a different, very flexible approach [[54].

Applications

Maxwell’s equations in time harmonic form are treated in the fourth chapter. A
variational form for nodal Finite Elements using weighted regularisation is re-
viewed [29]. Theregularisation is used to incorporate the divergence condition

diveE =0

6A degree of freedom corresponds to a global basis function of the FE space.
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on the electric field into the variational form:
Find E € Xu[Y] such that

/u‘lcurIE-curlvdx—/ a)z(s—l-.i) Evdx + (divE, dive)y =
D D lw

—i/ wJvdx Vv e Xp[Y].
D

where Xp[Y] := {u € Ho(curl; D) : divu € Y} and L%(D) c Y ¢ H-L(D).
The numerical experiments to compute the Eigenvalues of Maxwell’s equations
are conducted on various domainsin two and three dimensions[36] yielding expo-
nential convergencewith hp-FEM.

The second application in Chapter His concerned with elliptic partial differen-
tial equations with stochastic coefficients [[100, [107] and their discretisation with
a spectral method in the stochastic variables. Thisis an attempt to incorporate the
uncertainty in the input data into the numerical simulation. A Karhunen-Loeve
[180,181] expansion of the stochastic diffusion coefficient a(x, w) in

—div(a(x, @) Vxu(x, w)) = f(x)

is used to decouple the stochastic and spatial variables w and x of the diffusion
coefficient a:

a(x, ) = Ea() + Y v/Amem(¥) Xm(@).

m>1

{(Am, ¥m(X))}m>1 are the Eigenpairs of the covariance operator

(Vau)(X) ::/ Va(x, xHu(x") dx’
D

associated with the covariance V, of the diffusion coefficient a. A Fast Multipole
Method for general kernels [93,94] is used to compute the Eigenpairs of the co-
variance operator in a serial computation. Parallel processing on a Beowulf type
cluster [[7,[18] is then used to solve the numerous deterministic FE problems—each
with different diffusion and right hand side. Finaly, the performance of the Kar-
hunen-L oéve expansion Ansatz is compared with a simple Monte Carlo method.
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Software: Concepts

The third part of this thesis addresses the software Concepts [26, 54, 73, [74] used
to compute all numerical examplesin the thesis. A substantial part of the research
work leading to this thesis was spent in bringing Conceptsto its current state.

Thefirst chapter givesdetailed information on the realisation of the hp-FE space
discretising the Sobolev space HrlD(D) in Concepts. As mentioned earlier, we
concentrate on quadrilateral and hexahedral meshes. The chapter explains meshes
and their local, anisotropic refinement, the anisotropic handling of the element-
wise approximationorder p (polynomial degree), theimplemented shape functions
[[72] and the fast integrati ons techniques used for the element matrices.

The closing Chapter [7 concentrates on the implementation of vector valued
problems (like Maxwell’s equations) and the solution of a so-called geometric
deadlock problem which is crucial for hp-adaptive mesh refinements in three di-
mensions.

The framework for vector valued problemsimplementsthe notion of a Cartesian
product of different FE spaces provided they are al based on the same mesh (there
is no restriction on the number of components of the Cartesian product). The given
implementation supports block-wise formulation of bilinear and linear forms and
reuses as much code as possible from the components of the Cartesian product.

A geometric deadlock originates from refined neighbours of an element with (at
first sight) incompatible refinements. The element with the deadlock can therefore
not be refined at al. The geometric deadlock problem does not appear in the ap-
plications shown in this thesis as only a-priori refinements of the meshes are used.
However, with automatic, adaptive refinement, this problem is an issue—but it is
solved in Concepts.

10
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Projection Methods

This chapter reviews the abstract framework and mathematical tools necessary to
treat problems of the form
Findu € U such that

a(u,v) =l(v) VYveV.

The first section concentrates on general operator equations and their approximate
solution by Galerkin projection. Sobolev spaces are introduced in the second sec-
tion followed by some typical examples of boundary value and Eigenvalue prob-
lemsinthethird section. Thereisavast choice of literature on this subject of which
only [[19, 25, 97] are mentioned.

1.1 Operator Equations

1.1.1 Variational Formulation

We consider alinear operator equation with agiven f € V' (the dual space of V):
Findu € U such that
Au = f. (1.1

Here, A : U — V' can be any continuous, linear operator, for instance a differ-
ential or integral operator or a combination of these. More specific examples are
shown in Section[L.3

A solution of (I.I) can be found using a variational formulation. Define the
so-caled bilinear forma : U x V — R and the linear forml : V — R, i.e
leV”

a(u, v) := (Au, v), l(v) == (f,v),

13
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where (., .) is the duality pairing on V' x V. Then, the variationa formulation
reads:
Findu € U such that

a(u,v) =Il() VYveV. (1.2)

U and V are called trial and test space respectively.

1.1.2 Galerkin Projection

In continuum models, U and V are infinite dimensional. To solve ([.2) numeri-
cally, areduction to finite dimension is necessary. One way of doing this consists
in restricting (L.2) to finite dimensional subspacesUyn C U and Vi C V. Thisis
caled adiscretisation. Here, N = dimUy and M = dim V). The finite dimen-
sional problem reads:

Findun € Uy such that

anm(UN, vm) =Inm(vm)  Yum € V. (1.3

anm and Iy arediscretisations of a and | respectively (e. g. involving numerical
integration). Note that ([I.3) has the same structure as (1.2).

Choosing bases {®;} of Uy and {W¥;} of Vi alows to transform (L.3) into a
linear system:

uN=Zui<I>i =UT<I>, UM =Zvjlllj ='W,

= Alu=1, (L4)
where

[Alij = a(®i, ¥j), lj =1(j).

Aiscalled the stiffness matrix and | the load vector [1
From linear agebra, it is well known that (T.4) only has a unique solution, if
N = M and A isregular.

Iwe shall always call A stiffness matrix and | load vector even though this originates from the appli-
cation in linear elasticity.

14



1.1 OPERATOR EQUATIONS

Proposition 1.5 (Regular stiffnessmatrix) Let N = M. Aisregular <
Yun € Un3Jun € VN suchthat ann (Un, vn) # O < Vun € VnTun € Uy
such that ann (Un, vN) # O.

Inthis case, the bilinear formann (., .) iscalled regular on Uy x V.

1.1.3 Convergence

Theaim of solving (I.3) isto find an approximationu  of u with acertain accuracy
goal or acceptance criterion. This criterion can be given with respect to arelative
error in some norm or a point value, moment or stress of the solution. Aslong as
the accuracy goal is not met, the discretisation is refined or extended by increasing
the dimensions N and M of Uy and Vy respectively. Chapters2 and[3 give more
details on refinements of Finite Element spaces.

Assumea(.,.) = anm (., .). Subtracting (1.2) and (1.3) yields

au—un,vm) =0 Yum € Vm (1.6)

the so-called Galerkin orthogonality: ([L6) statesthat the discretisation error u—uy
is orthogonal to V\y with respect to the bilinear form a(., .). If a(., .) isaninner
product of some Hilbert space H > U, V, (L.6) is the Galerkin projection of u
ontoUyn. Wewriteuy = Pyu. If a(., .) isregular, the Galerkin projection u y of
u is unique.

Definition 1.7 A sequence of discretisations {Un;, Vi, }i is

o stable, if for all i
L

< Ks < 00,
uel  lUlly

e consistent, if for allu e U

|I—I>r<r>10 UNiIQlfJNi ||U o ”U =0

e convergent, if for all u e U

|I—I>To |u—Pryufy, =0.

15
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Proposition 1.8 (Lax-Milgram Lemma) Leta: U x V — R becontinuous, i. e.
lau, v)| <aufly llvlly  YueU,veV.

Let Uy ¢ U and VN C V be subspaces of equal dimension N such that the
so-called discrete inf-sup condition

. a(un, vN
in _aln. o)
uneUn yyevy lUNTlu llondly

Cn>0 (1.9
holds. Then,

e a(.,.)isregular onUy x Vy,

o the stability constantis Ks < «/Cy,

o the Galerkin projection Pyu is quasioptimal

lu—Pnully = @+a/Cn) inf Ju—unlly -
un€eUn
In the symmetric case, wherea(u, v) = a(v, u) andU =V, (L.9) isimplied by

coercivity:
au,u) > CJull vYueU.

1.2 Sobolev Spaces

We briefly review some basics on Sobolev spaces, more information can be found
in, e.g., 19,51, 197].

1.2.1 Definition

Definition 1.10 (Weak partial derivative) Letu, v € L,
N9 a multi-index. v is the a™ weak partial derivative of u:

(D),D cRYand« ¢

ger gen
D“U:z —al—anuzv
9xq IXn
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1.2 SOBOLEV SPACES

fDuD“godx = (—1)‘“'fDugo dx Vg € G (D),
where C;°(D) are all compactly supported functionsin € *°(D).
Definition 1.11 (Sobolev space)

WKP(D) :={ueLi (D): D% e LP(D) V]| <k}

For p = 2, wewrite HX(D) = W*2(D). The norm of u € WX-P(D) is defined as

(Z/ |D"‘u|pdx)1/p 1<p<oo
D

loe| <k

Z esssup | D*u| p = oo.
lel<k P

lullwke(py ==

Wg’p(D) denotesthe closure of @3°(D) in WK P(D).

Lemma 1.12 HX(D) isa Hilbert space with inner product given by

(U, v)k == Z /D D%u - D%v dx.

loe| <k

1.2.2 Traces

To give more flexible boundary conditions than only 0 on the entire boundary of D
in the space Wg’p(D), traces you of functionsu € WP (D) are necessary. There
holds[19, 97]:

Proposition 1.13 (Tracetheorem) Let D ¢ RY a bounded domain with Lipschitz
boundary I' = 9 D. Thetrace operator yg : U — u|- is continuousfrom W1-P(D)
to LP(I") and there holds

lvoullLery < Cllullwippy. 1= p=<oo.

C dependsonly on p and D.
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1 PROJECTION METHODS

Proposition[I.13 also holdsfor parts of theboundary I' p C I and one can safely
define
HE (D) :=={ue HYD) : ulr, = 0}.

Remark 1.14 yo : HY(D) — L2() is not surjective. yo(H1(D)) maps onto
H¥2(I") with the norm
[Jul 41 = inf  ||vllg1ip)-
HY2() veH(D), A7)

Yov=u

1.3 Examples

This section gives typical examples which fit into the framework of Section [L1l
Thefirst exampleisthe classical reaction diffusion equation (or Laplace or Poisson
problem) while the second exampl etreats linear elasticity. Maxwell’sequationsare
shown in the third example. It is detailed in Chapter [4 Further examples are given
in Section24

1.3.1 Reaction Diffusion Equation
Let D ¢ RY, d = 2or 3, be abounded domain. The reaction diffusion problem
reads:

—div(A(X)Vu) 4+ c(x)u = f, (1.15)

where A isthediffusion matrix, c(x) thereaction coefficient and f isasourceterm.
The diffusion coefficient A(x) is assumed to be strongly elliptic:

cllE2 < ETAOE < col? Ve e RY,

uniformly in D and the reaction coefficient c(x) > 0. These coefficients are as-
sumed to be sufficiently smooth. This models the concentration u of a chemical
speciesin adomain D with sources, reaction and diffusion in steady state (i.e. no
time dependency). The boundary conditions are

e Uu=00onTp c aD (Dirichlet boundary condition),

e N-A(X)Vu=ge HY2('y)onTy c 8D (Neumann boundary condition),
H—Y2(I") isthe dual space of H 72(I").
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1.3 EXAMPLES

Remark 1.16 To require u on the Dirichlet boundary to be 0 is not a severe re-
striction since it is always possible to subtract a lifting of a non-homogeneous
Dirichlet boundary condition gp € HY*(I'p) from u and modify the right hand
side accordingly. If thisis not suitable, the Dirichlet boundary conditions should
be handled as constraints[[2].

fits into the abstract framework of Section LI withU =V = HrlD(D)

and the Hilbert space H = L2(D):
Findu € U = V such that

/(A(x)Vu-Vv+c(x)UU)dx=/ fvdx+/ gvds YveV. (117)
D D r

N

a(u,v) I(v)

1.3.2 Linear Elasticity

Let D c RY,d = 2 or 3, beabounded domain. Thelinear elasticity problem reads
[e7:
—divo[ul=f inD, (1.18)

with the boundary conditions
u=0 onlp, ogful-n=g only.

Here, u € RY isthe displacement and o [u] the stress tensor:

E .
ofu) = e U] + ﬁdlvu-ﬂ, (1.19)

where ¢ [u] isthe symmetric gradient of u:
[g[u]]ij = 1/2(3in + ajui),

E > 0isYoung'smodulusof elasticity and 0 < v < 1/2the so-called Poisson ratio.

19



1 PROJECTION METHODS

As ¢[u] and o [u] are symmetric tensors, they are usually written in the form
(d=3

-
e=(e1n €22 e €12 €13 €23)

.
o=(o11 o2 o3 o012 013 023)

01 0 0
0 02 0
e =Du= 0 0 o3 u.

/20,  1/201 0
203 0  1/20;
0 1203 129,

In addition, (T.I9) may be written aso = Ae where A € R is symmetric.

The variational formulation of ([L.I8) reads:
Findu e V = H_(D)? such that

/Qw@udx:/ f-vdx+ [ g-vds VveH{ (D). (120
D D I'n

a(u,v) I (v)

By thefirst ([I'p] > 0) or second (|[T'p| = 0) Korn inequality, a(., .) is coercive.
Therefore, (1.20) fits into the setting of Section admitting a unique solution
with H = L2(D)¢.

1.3.3 Time Harmonic Maxwell’s Equations

As before, let D  RY, d = 2 or 3, be a bounded domain. The Maxwell’s equa-
tionsread [[70]:

—D4curlH =0E + j9, divB =0,

B +curlE =0, divD = p,
where H and E are the magnetic and electric fieldsand B and D are the magnetic
and electric inductions respectively. o is the conductivity and j 9 the impressed

(given) current density. The Maxwell’s equations model electro-magnetic phe-
nomena. In practice, also problems in unbounded domains are of interest (wave
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1.3 EXAMPLES

scattering, antenna modelling etc.) but thisis not considered here. For the mag-

netic and electric inductions, the following constitutive laws hold:
D =¢E, B=puH.
Hence,

—eE+curlH =0E + |9,
otuH +curlE=0

and with the time harmonic Ansatz

E(x,t) = Re(E(x) - €Y), H(x,t) = Re(H (x) - 1),

j9x,t) = Re(J(x) - €“")
and assuming ¢ and p independent of t:

—giwE+curlH =0cE+ J
uioH +curl E =0.

(1.21)

(1.22)
(1.23)

Extracting H from (L.23) and inserting it into (L.22) while assuming ¢ and y to

be scalars (i. e. isotropic) formally yields:
curl(uteurl E) — w? (s + i) E=—iwnJ,
iw
the so-called electric source problem. Likewise,
curl@ teurl H) — w?uH = curl(@ 1),

the so-called magnetic source problem.
Assuming no charge density (inthecaseo = 0),i.e. p = 0, implies

divuH =0and diveE = 0.

These have to befulfilled for all solutions of (1.21).
The appropriate space for (L.21) is

H(curl; D) := {u € L%D)¥: curlu € L%(D)%}.

(1.24)

(1.25)

(1.26)

(1.27)
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1 PROJECTION METHODS

For a finite electro-magnetic energy, it is required that both fields E and H be-

long to H (curl; D). The curl-curl formsin ([I.24) and (1.25) are not defined for

functionsin H (curl; D) and will be dealt with later in the variational formulation.
The boundary conditionsfor ([L21) of Dirichlet type are

E xn=0, H-n=0 (1.28)
and those of Neumann type are

nx (utcurl E)=g, nx (& tcurlH) = h.

The homogeneous Dirichlet boundary conditions ([L.28) are the so-called perfect
conductor boundary conditions on the boundary of the domain D.

Remark 1.29 In two dimensions, the curl operator can be defined for a vector
field and for a scalar field: curl E = 91E2 — 92E; (result is a scalar field) and
curlg = (32, —01¢) | (result is a vector field). The variational space (I.27) is
defined as

H(curl; D) := {u € D'(D)?: u e LAD)?, curlu € L%(D)}.
Variational Formulation

Starting from (1.24) and (1.26) (and assuming ¢ constant),

curl(uteurl E) — 0%E = —iwJ, (1.30)
diveE = 0, (1.31)

the “minimal’ choice for the variational space would be
{fue H(curl; D):uxn=00ndD and diveu = 0}.

A conforming discretisation would then impose the use of divergence-free ele-
ments.
A ‘maximal’ and more widely used choice for the electric variational spaceis

Ho(curl; D) :={u € H(curl; D) : ux n=00nadD}. (1.32)
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1.3 EXAMPLES

The corresponding electric variational formulation for ([1.30) and (I.31) is then:
Find E € Ho(curl; D) such that

/(/flcurlE-curlv—a)zéE-v)dx=/ f.vdx Vv e Ho(curl; D), (1.33)
D D

by using

/curlu-vdx:/u-curlvder/ nxu-vds
D D aD

where f = —iwJ. The associated hilinear operator is not elliptic and the diver-
gence condition (L.37) is an independent constraint for w = 0.
Maxwell’s equations are discussed in more detail in Chapter [41

1.3.4 Eigenvalue Problem

Eigenvalue problems need a different setting and give different results (most no-
tably: more than one solution). Anyway, projection methods can also be applied.
In this section, the basic facts on Eigenvalue problems are reviewed. These facts,
their generalisations and more results can befoundin, e.g., [[9].

Variational Formulation

Find EigenpairsA e Rand0# u € V (V C H aHilbert space) such that

a(u,v) = Ab(u,v) Vv eV, (1.34)

where a(., .) is a symmetric, coercive bilinear form and b(.,.) is a symmetric
positive definite bilinear form. An Eigenvector of ([1.34) is not unique and therefore
lullm = lisrequired. If a(., .) is not symmetric, complex Eigenvalues occur.

AssumeV C H isacompact embedding. There exists a unique bounded opera-
tor T satisfyinga(Tu, v) = b(u, v). T isself-adjoint and compact. The Eigenpairs
(1, u) from (L34) fulfil A”Tu = u and vice-versa. Therefore, (A ~1, u) is an Eigen-
pair of T.

The spectrum of a self-adjoint compact operator is bounded and only clusters at
0. Therefore, the Eigenvalues of (1.34) only cluster at oo and are bounded from
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1 PROJECTION METHODS

below: 0 < A1 < A2 < ---o00. In addition, the 1j can be characterised by the
Rayleigh quotient

a(u,u)
R) := 1.35
(u) YR (1.35)
and the Minimum principle:
A1 = min R(u) = R(u1)
ueV
Ak = min Ru =Rk k=23,....
ueV,a(u,u;)=0
fori=1,...k—=1

Choosing afinite dimensional subspace Vn C V in (1.34) yields afinite number
of Eigenvalues0 < A1.N < A2N < --- < AN,N and corresponding Eigenvectors
Ui,N, U2 N, ..., UN, N Satisfying

a(uin, vn) = A nb(Ui N, vN)  Yun € UN. (1.36)

Approximation Estimates

It follows directly from the Minimum principlethat Ax < Ak N-
Let

M () := {u : u an Eigenvector correspondingto A, |ul| 4 = 1},
en() = sup inf [u—wN|H.
ueM(r) INEWN
Proposition 1.37 Using (1.36) with a finite dimensional subspace Vy C V vyields

2
lui —uinllH < Cen, [Ai — Ai,Nn| < Ceq,

i. e. the Eigenvalues converge twice as fast as the Eigenvectors. For single Eigen-
valuesAi: C1e2 < [Ai — Ain| < Caed.

Remark 1.38 Generalisations of Proposition [I.37] to the case of multiple Eigen-
values can befound in [[9].
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Heat Equation

Asbefore, let D ¢ RY, d = 2 or 3, be abounded domain. The heat equation reads
ou(x, t) — div(A(x, tH)Vu(x, 1)) = f(x,1), (2.39)

with a sufficiently smooth coefficient matrix A and homogeneous Dirichlet and
Neumann boundary conditions. A isthe heat conduction coefficient matrix and f
models an external heating.

(Z:39) should be reformulated as an Eigenval ue problemto look for Eigenmodes
of the heat equation. The Ansatz u(x,t) = v(X) - w(t) (so-called separation of
variables) while dropping f and assuming A and ¢ constant in time leads to

v(X)dw(t) — w(t) div(AVu(x)) = 0.

Assuming v and w # 0 allows

dtw div(AVv)
——() = ———— (0 = 1.
w v
— —_—
constant in x constantint
The right hand equation reads

Av = —div(AVo).
The bilinear forms
a(u,v) = /;A(X)Vu - Vvdx
b(u, v) =/ uv dx
D

show that ([L.39) fits into the framework of the Eigenvalue problem ([1.34) with
V= HrlD(D) and the Hilbert space H = L2(D).
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Finite Element Methods

The Galerkin projection reviewed in the previous chapter is based on finite dimen-
sional subspaces of thetest and trial spacesU, V. Oneway to build such subspaces
is the so-called Finite Element Method (FEM).

Thefirst section of this chapter reviews FE meshes and classical approximation
results. The second and third sections review more advanced geometric meshes
used in hp-FEM in two and three dimensions respectively. The chapter closes with
abrief outlook on other Finite Element Methods.

2.1 Finite Element Meshes

The basis functions of the finite dimensional subspacesUn C U and Vy C V
mentioned in the previous chapter are constructed combining shape functions de-
fined on small subdomains K of the domain of interest D.ff Thisis explained in
some more detail in Section

2.1.1 Definition
Following [[63], this section gives the definitions for FE meshes.

Definition 2.1 (Cellsand mesh) A cell K is an open subdomain of D with piece-
wise smooth, Lipschitz boundary.

A mesh 7 is a partition of a bounded domain of interest D ¢ RY into a finite
number of (digoint) cells K. The collection of cells {K} = 7 = 7(D), D =
UKe‘T K.

IMost of thetime, N = M, as a square stiffness matrix is required.
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2 FINITE ELEMENT METHODS

Figure 2.1: Regular meshes on the left and irregular meshes on the right hand side.

In a regular mesh, the intersection of any two cells Kj and K j, i # j, iseither
empty, a vertex or an entire sideA.

In two dimensions, the cells are typically triangles or quadrilaterals. In three di-
mensions, tetrahedra, hexahedra, prisms and pyramids are usually used. Examples
are shownin Figure2.1l

Remark 2.2 Normally, FE meshes are required to be regular. However, it is pos-
sible to weaken this requirement while still retaining the global continuity of the
basis functions of the FE space (c.f. Chapter §). In this chapter, we assume that
the meshes are regular.

Definition 2.3 (Element) Each cell K of the mesh 7 is assigned a polynomial
degreeﬁ pk € Np. The cell-wise polynomial degrees pk constitute the degree
vector p.

Let  be a finite dimensional space of functions (the shape functions) on the
cell K and & abasis of £’ (the set of nodal variables). Then, (K, &, &) isan
element [[19, [24] .

Asashort formof (K, £, &), wewrite (K, pk) where = Vp,, (the space of
polynomials with degree pg, c.f. Remark 217 below) and . the standard nodal
variablesfor & [19].

2 sidein two dimensions is an edge and in three dimensions, it is aface (i. e atriangle or aquad).
3Usually interpreted as degree of the local space of polynomials.
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2.1 FINITE ELEMENT MESHES

Figure 2.2: Anirregular mesh 7 (left) and a possible (irregular) refinement (right).

Definition 2.4 (Extension / refinement) A subdivisionof acell K isany partition
of K into a finite number of cellsKj, i € k. K; iscalled achild of K. A mesh-
degree combination (7, p) isextended or refined by:

e Asubdivision of someor all cellsK in 7. h-extension]
e Anincrease of some or all polynomial degrees pk . p-extensi o]
e A combination of both. hp-extension®

A uniform extension refines all elements (K, pk) inthesameway (inh and/ or
p).

Remark 2.5 When subdividing a cell K, the associated degree pk is typically
inherited by the children K of K.

An extension (or a refinement) without further information may be regarded as
either h-extension, p-extension or hp-extension.

Example 2.6 Figure[2.2 shows a mesh 7 and a possible refinement. Note that
both meshes areirregular.

4The diameter of acell K is usually denoted by h. The h-version is decreasing the maximal h in the
mesh 7.

5In p- and hp-extensions, the maximal diameter of a cell in general does not tend to zero during
successive refinements.
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2 FINITE ELEMENT METHODS

2.1.2 Finite Element Subspaces

Using amesh 7 = {K} and a degree vector p, the Finite Element space V is
usually constructed as follows.

Each cell K in the mesh has a master (reference) cell K. In two dimensions,
triangles K typically are assigned thetriangle K = {§ e R2: & > 0, &1+ & < 1)
as reference cell and quadrilaterals K are typically assigned one of the reference
cellsK = (0,1)2 or K = (—1, 1)2. For tetrahedra, the typical reference cell is
again the unit simplex and for hexahedra either K = (0, 1)3 or K = (-1, 1)3is
used. The choice of the reference cell aso fixes the element map F : K — K.

Remark 2.7 Contrary to the examples of cellsin Figures22and 2.3, also curved
boundaries are allowed. In such a case e. g. isoparametric or exact geometry (us-
ing blending maps) representation is used. However, this is not covered in this
work.

For cells with straight edges, an affine (triangle and tetrahedron), bilinear
(quadrilateral) or trilinear (hexahedron) element map is sufficient.

In addition to the reference cell and the element map, reference shape functions
N; of degree pk are chosen on the reference cell. These reference shape functions
Ni are mapped onto the physical cell using the element map: goiK oFk = N;. The
¢; are called the (physical) shape functions.

Example 2.8 Figure 2.3 shows an element map Fx for a quadrilateral cell K
together with an example for a reference shape function N; and the respective
shape function ¢; on the physical cell.

The global basis functions ®; of the FE space V are constructed by combining
the shape functions on adjacent elements, the so-called assembly of global basis
functions. How thisis achieved depends on the continuity requirements of the FE
space. Typically, one requiresglobal @° continuity of the basis functions. A rather
general method to assemble the global basis functionswill be shown in Chapter

Definition 2.9 (FE space) Onamesh 7 = {K}, define
SPI(D,7) :={ue H' (D) : ulg o Fk € Vp (K), K € T}, (2.10)

i. e. piecewise polynomials of degree px on the reference element K.
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2.1 FINITE ELEMENT MESHES

Fk

~

Figure 2.3: The top figure shows the element map Fx : K — K. Below, there is a reference shape
function N; on the left and the corresponding shape function ¢ on the physical cell on the
right.

Remark 2.11 The polynomial space 'V, in Definition[2.9 denotes:

e The space of polynomials with maximal degree p in quadrilaterals and hex-
ahedra: Vp = @p := span{x® : aj < p}.

e The space of polynomials with total degree p in simplices (triangles and
tetrahedra): Vp = Pp := span{x® : |a| < p}.

In classical FEM, | = 1. There are other possible choices, though. Refining
$P1(D, 7) by p-extensioniscalled p-FEME. Refining P! (D, 7') by h-extension
is called h-FEM[]. A combination of h- and p-FEM (hp-FEM) is introduced in
SectionsP2and 2.3

6in p-FEM, the mesh 7 is usually regular.
7In h-FEM, the degree p is usually uniform and low, i.e. p = Lor 2.
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2.1.3 Approximation Properties

This section gives approximation properties for h- and p-extensions on simple
meshes. A thorough discussion and more results can be found in [[25,[97]. More
complicated meshes are discussed in Sections[2.2 (two dimensions) and[2.3 (three
dimensions).

Definition 2.12 (Mesh properties) Let {7} beafamily of mesheswith cellsK. In
acell K denotewith

ok radius of the maximal inscribed circle of K,
hk theradius of the circumference of K.

e {7 }iscalled s-shape-regular, if

0 < s < minfhx/pk : K € T} < max{hx/px : K € T} < 571 < 0.

e h(7) := max{hk : K € 7} isthe mesh width of 7.
o {7} iscalled >z-quasi-uniformiif

. Mmaxker hk . _
O<%§_7€§% 1.
mmKeThK

Proposition 2.13 (Approximation property of h- and p-FEM)
Let 7 be a shape-regular and quasi-uniform mesh with mesh width hin D ¢ R¢
a polygon (d = 2) or a polyhedron (d = 3).

Then (see e.g. [[10] and the references there), for a uniform polynomial degree
p,

min_Jlu— vl < CK) (yp™MPHERT ) 4oy Yu e HY(D).
vedPL(D,T)

Combining Proposition with Proposition [L.8 or [1.37] gives the usual con-
vergence results for sufficiently smooth solutions.
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2.2 Geometric Meshes in Two Dimensions

Proposition 2.13 shows the approximation properties for h- and p-extensions.
However, piecewise analytic solutionswith asingular behaviour near cornersyield
only algebraic convergence with h- and p-extensions. The solution is to combine
h- and p-extensionsin asuitable way to regain the exponential convergence[(8,197].

Remark 2.14 (Geometric meshes necessary for exponential convergence)
Given smooth data, the solution of a reaction diffusion equationﬁ is analytic in
D\ € (€ the set of corners of the domain D) [8,197] . The singularities spoiling the
convergence of the p-FEM only occur at cornersin €. Inany cell K ¢ D\ G, the
solution can be approximated by polynomials of degree p at an exponential ratein
p aslong astheratio

infyek dist(x, C)

diamK

can be bounded from above and below. In geometric meshes as described below
(and constructed in Chapter [3), thisis fulfilled.

The description of these geometric hp-meshes follows [[8,[29]. How the meshes
are realized algorithmically is shown in Chapter [3 The three dimensional case is
treated in Section23

2.2.1 Domains

Let D ¢ R? be a bounded Lipschitz polygon defined as follows. The definition
also includes domains in S? as this is needed later for the definition of Lipschitz
polyhedrain three dimensions.

Definition 2.15 (Lipschitz polygon in two dimensions) Let the domain D ¢ R2
or S? be bounded. At each point a € 9D, thereexistsr 5 > 0 and a diffeomorphism
Xa such that the neighbourhood V4 := D N By,(a) of a is transformed into a
neighbourhood of the corner 0 of a plane sector T 5 of opening anglewa € (0, 2r)
with a being sent into 0. Assume that the diffeomorphism y 5 is an isometric trans-
formation at a. Therefore, the opening angle w 5 isan intrinsic parameter of D.

8This does not only hold for reaction diffusion equations but also for other elliptic PDEs (like linear
elasticity). However, each problem has to be treated separately.
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The set € of cornersof D consists of pointsa € 9D where
o the corresponding sector I'g isnon-trivial (i.e. wa # 7),

o thetype of boundary conditions change.

Definition2.I3 splits D into the neighbourhoods V4 for all cornersina € € and
the regular part 'V° such that no vertex a belongsto V0 (all unions are disjoint):

D =v°u(U va).

aeC

2.2.2 Assumptions on Cells

Consider quadrilateral cells K inamesh 7 = {K} Coverjng the whole domain
D. Fk denotes the bijective map from the reference cell K = (-1, 1)2 onto K:
Fk : & > X = Fg (§). Leth(K) > 0 be ameasurefor the size of the element and
assume;
1. Forany |e| = m > Oandany & € K, there holds
|D*(Fk)i (§)| < Codf'(mHh(K), (2.16)

form>landi =1, 2.

2. The Jacobian determinant is positive and satisfies

C1h2(K) < det dd% < Coh%(K). (2.17)

Here, the constants Cg, C1, Co and dg are the same for all cells K.

Remark 2.18 The above conditions guarantee the usual assumptions asthe angle
condition and a bounded aspect ratio of the cells K etc.

The cells K in the regular part 'V° and the corner neighbourhoods 'V 4 are con-
sidered separately.
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Cells in a Corner Neighbourhood V4

Let K ¢ Vaanda ¢ K. Denotewithr4(x) = |a— x| the distance from the corner
and

2(K) = minra(x), 7(K) = maxra(x). (2.19)

xeK xeK
Assume constants A € (1, 0o), C and C exist such that

#Z(K) _

— 2.20
=(K) — (220)
and
C =(K) < h(K) < C3(K). (2.21)
There exists 2K)
yaa
1< A" . 2.22
RS (222
Denoting by ||K || the area measure of K, there holds
C 2 (K) < K|l < T3(K). (2.29)
For the cells K 5 containing the corner a: a € K, assume (2.21).
Cells in the Regular Part Vo
Let B
C=<hK)=C (2.24)

forall cellsk ¢ VO.
The constants A, A*, C and C arethe samefor all cells K in V4 and V0,

2.2.3 Geometric Meshes

Consider themeshin V5. Because of (2.19) and (2.20), the notion of layers of cells
iswell defined. The terminal layer Lo consists of all cells whose closure contains
the vertex a:

K e Lo(a) = aeK. (2.25)
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+

Figure 2.4: Layersin asquare. The darkest region is the regular part 10, the rest of the domain is the
neighbourhood V5 of the bottom left corner. The different shades distinguish the different
layers. The white cell isthe only cell in the terminal layer L.

Definition 2.26 (Layer of cells L) The k-th layer Ly is defined as the set of all
elements K C V4 such that they do not belong to the layers £, 0 < j < k— 1,
but touch the layer L1

Kn ( U W) £ 0.
K’eLy_1
Further, analogousto ([2.20) and (2.22) hold for all k > 1:

?(UKeka_K) <A 1< A < 2#(Uk eer K)
%(UKeka) B B E(UKe,ckK)

Example 2.27 (Layers) Figure[2.4] gives an example of four different layers with
respect to the bottomleft corner a and a regular part in a square.

Proposition 2.28 (Number of cellsin alayer) The number of cellsin a layer is
bounded by a constant L o for all layers L in 7. Lo dependsonly on the constants

in (2.16)<2.21) and not onthemesh 7 = {K}.

Proof: It follows from (2.16)—(2.21) that there exists a constant Lo bounding the
number of cellsin any layer L [63]. O
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Themesh in aneighbourhood 'V 5 is described by the size of the smallest element
Ka inthis part of the mesh. Assume the geometric grading parameter o < 1 and
the number of layersn > 0. Let K5 C Va,a € K4 and

Co" <3(Kq) < Co™. (2.29)

Increasing n resultsin agrowing number of layers(aslongaso < 1). Usingo = 1
results in a mesh with the number of layers independent of n8 The meshin the
different neighbourhoods V 5 can depend on different parameters (o, n).

The number and size of the cells in the regular part V° does not need to fulfil
any constraints: the mesh remains the same in this region for different parameters
(o, Nn).

Definition 2.30 (Geometric mesh) A mesh 7 asdescribed by (216)—(2.29) (Sec-
tions2.22 and[2.2.3) is called a geometric mesh in a two dimensional Lipschitz
polygon D with n layers and geometric grading parameter o .

2.2.4 hp-Approximation Properties

So far, only the cells K of the geometric mesh 7 have been discussed. hp-FEM
couples mesh refinements with changes in the polynomial degree vector p.

Definition 2.31 (hp-FE spacein two dimensions) Let 7 = {K} be a geometric
mesh, geometrically refined towards the corners a € € of D, and m > 0 a degree
distribution parameter. Define a linearly distributed degree vector p = {pk }ke7
as follows: For an element (K, pk) on layer Lk in a corner neighbourhood V3,
define the degree px := max{1, [mk]}. Additionally, define px = maxk s { Pk }
in the regular part V°. Then, $P%(D, 7) from (2.10) is called an hp-FE space.

In contrast to Section (h- and p-FEM), Definition[2.31] prescribes a differ-
ent polynomia degree pk for every element K € 7. The hp-extension is typi-
cally realised by refining the elements in the terminal layers (h-extension) and by
increasing the degreein all elements but those in the terminal layer ( p-extension).
This results in a degree distribution parameter m = 1. If the h-extension in the
terminal layer is done via bisection, then the geometric grading factor o = 1/2. A
more precise algorithm is givenin Section

9This can be used in the neighbourhood of vertices where the solution is known not to behave singu-
larly.
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Lemma 2.32 Thedimension N of a sequence of hp-FE spaces 8 P!(D, 7) in two
dimensions behaves like @ (p®) where p = maxk p.

Proof: According to Proposition there are at most Lo elements per layer L.

Typically, an element with degree p has (p + 1)? degrees of freedom associated
to it Therefore, there are Lo - (mk + 1)? degrees of freedom on one layer.
Summing over all layers and using

n+1 n
Zizz (n+DH(n+2(2n+3) N ZLO-(mk+1)2=(9(p3),
. 6
i=1 k=0
where f[mn] = p. O

Thefollowing results holds for hp-FE spacesin two dimensions|[[8, 31, [97].

Proposition 2.33 (Convergence of hp-FEM in two dimensions) Let D bealLip-
schitz polygon. Let {(7.", pm)In be a sequence of hp-mesh-degree combinations,
where the meshes 7. are refined towards the corners a € € of D with grading
parameter 0 < o < 1 and the degree vectors py, are linearly distributed with
slopem > O (c.f. Definition[2.3T)). Let u be the solution of the diffusion problem

—V-AVu= finD, u=0onTp, n-Avu=gonly

with analytic data f, g and A(x) on T and D respectively.
Then, for N = dim §P»-1(D, 7."),

min = vl = Cep(-bNY),
vesPh1(D, 7

where b dependsonmand o

Remark 2.34 (Piecewise analyticdata) If f, g and A are only piecewise ana-
Iytic, the previous result still holds, however, the sequence {7} of geometric
meshes must then be refined also to the corners a of the domains of analyticity of
the data. No geometric refinement is necessary;, if the domain of analyticity isitself
bounded by an analytic curve.

1OUsing trunk spaces, this can be lessened somewhat. However, the (9(p2) behaviour remains, c.f.
Remark [6.7] on page[I771
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2.3 Geometric Meshes in Three Dimensions

As in the previous section, the description of the meshes follows [[8, [29]. Re-
mark [2.14] al so hold in three dimensions. How these meshes are realized algorith-
mically is shown in Chapter B

2.3.1 Domains

The description of the domain D and its associated parts is more involved com-
pared to the situation in two dimensions. Regions close to corners but far from
edges and vice-versa have to be distinguished.

Let D ¢ R3 be a bounded Lipschitz polyhedron defined as follows (refer to
Example[2.38 and Figure[2.5 below to illustrate the following definitions).

Definition 2.35 (Lipschitz polyhedron in threedimensions) Let the domain D
in R3 be bounded. At each point a € 9D, there exists Rq > 0 and a diffeomor-
phism x5 such that the corner neighbourhood V4 := D N Br,(a) is transformed
into a neighbourhood of the corner 0 of acone 'y = {X € RS : X/|x| € Ga}
with G, a Lipschitz corner domain of S? and a being sent into 0. Assume that the
diffeomorphism yx 5 is an isometric transformation at a.

The set € of cornersof D isthe set of pointsa € D where the corresponding
cone 'y isanon-trivial cone (i. e. it is neither a half space nor a wedge).

An edge e in the set & of open edges of D consists of points x € e such that
the local cone I'x isa wedge I'e(X) x R and D is diffeomorphic to this wedge in
the neighbourhood Ve(x) := D N Br,(X). Here T'e(X) is a plane sector whose
opening is denoted by we(X). Like for two dimensional domains, this opening is
intrinsic.

Definition 2.36 (Edge distance functionsre and pe) For x € D, define the dis-
tancere fromtheedge e as

re(x) := dist(g, x).
The distance function pe is defined as follows

1. if € contains no corner, thenit isa closed curve and pe(X) 1= re(X).
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2. ifecontainsexactly onecorner ¢ € C, thenitisaclosed curvewith a corner.
Define pe such that there holds

re(X) = pe(X)re(X).

3. if e containsexactly two corners cand ¢’ € €, then define pe such that there
holds

re(X) = pe(X)re(X)re (X).

Inthe neighbourhood Ve(X), thefunctionre isequivalent to theradial coordinate
inTe(Xx). Clearly, pe isequivalenttore/rcin Ve andtore outsideof VU V. The
idea of pe isto be able to separate corners and edges with the blow-up of pe close
to corners.

Apart from the neighbourhoods 'V ; and Ve(X) defined above, domains relating
corners and edges are necessary.

Definition 2.37 (Corner and edge neighbourhoods)

e Corner-edge neighbourhood Ve(a) including edge: Let a € C be a corner
of D. The corners ¢ = c(e) of the spherical domain G, ¢ S? correspond
bijectively to the edges e € & such that a € & The function pe(X) isequiva-
lent to the radial coordinate at the corner c(e) in G,. The domain Ve(a) is
defined by the sectorial coordinated™] (ra, pe, 0e), Wherery < ¢, pe < land
e isthe angular coordinatein V¢ C Gj is a neighbourhood of the corner
c e Ga.

e Corner neighbourhood Vg excluding corner-edge neighbourhoods: Let Vg
be an open set such that eN 'V = ¢ for all edgese € & and such that

Va =20 (| ve@).

ecéy

o Edge neighbourhood 'Vg excluding corner neighbourhoods: Let 'Vg be > an

open set such that no corner or any other edge but e is contained in V2.
Additionally, €is contained in

veu (U7©)

cee

11Interpretation ascylindrical coordinates with @ = re/rc < 1(thisisallowed asry isnearly constant
closeto ).
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2.3 GEOMETRIC MESHES IN THREE DIMENSIONS

Definition237 splits D into the neighbourhoods Ve(a), VS, VS and the regular
part VO (disjoint unions):

D =vou({Jve)u (U vu(U ve(a))).

ecé aeC ecéy

Example 2.38 (Polyhedral domain) Let D = (0, 1)3 seen from the first octant
with a = (1,1, 1). Figure[2H shows the different neighbourhoods mentioned in
Definition[2.371

2.3.2 Assumptions on Cells

Consider hexahedral cells K inamesh 7 = {K} Coveang the whole domain
D. Fk denotes the bijective map from the reference cell K = (-1, 1)% onto K:

Fk : & — x = Fk(§).
The cells K in the different regions introduced in Section [2.3.7] are considered

separately.
Cells in Edge Neighbourhood "Vg excluding Corner Neighbourhoods
Let K ¢ V0 and K Ne = ¢. Denote

=(K) = g;igre(X), #(K) = max re(X). (2:39)

The following assumptionson K and Fg hold:
e Thereexistsaconstant A € (1, oo) such that
) A (2.40)
#(K)

o Assumethat the edge e is parallel to thelocal x3 axis of the cell K. For any

le| =m, m > Oaninteger, h := 32(K) andany & € K:
|D*(Fk)i (§)] < Codg'(mhh, fori =1,2, 24D
|D¥(Fk)3(&)| < Codd"(mhHH, for H < Ho, '

with Cgp, dp and H independent of m and h (and Hg such that K vg). H
isameasurefor the size of K along e.
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2 FINITE ELEMENT METHODS

(a) Vertex aand edgesgq,i = (b) Corner neighbourhood (c) Spherical domain Ga C
1,2,30f D = (0, 1). Va := DN Br,(a). S2 with its corners ¢ and
the corner neighbourhoods

Vg C Gafori=1,23.

N

Ve, (8) € €

(d) Corner-edge  neighbour- (e) Corner neighbourhood (f) Edge neighbourhood
hood Ve, (a) including Vg excluding corner-edge V9 excludi ng corner
edge. neighbourhoods. neighbourhoods.

Figure 2.5: D = (O, 1)3 seen from the first octant with a = (1, 1, 1). (a) shows the edges meeting in a,
(b)~(f) depict the domains Va, Ga C §?, Ve, (@), V3 and V.
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2.3 GEOMETRIC MESHES IN THREE DIMENSIONS

e The Jacobian determinant is positive and satisfies

dF
CiHh? < det d—; < CoHh2, (2.42)
where C1 and Cp areindependent of h and H.
There exists 2K)
x yaq
1< A" < 2K’ (2.43)

The cells K touching the edge (i. e. Ke N e # ¢) satisfy (2.41) and (2.42).

Remark 2.44 The cellsin this neighbourhood are needle elements, i. e. they have
a very large aspect ratio. In a slice perpendicular to the edge e, the cells look
similar asin the vicinity of a corner in a two dimensional domain.

Cells in Corner-Edge Neighbourhood Ve(a) including Edge
Let K C Ve(a) and K N e = @. Denote

71(K) = g;igra(xx 71(K) = maxra(x), (2.45)
#,(K) = g;igsinw(xx 72(K) = gla%sinw(xx (2.46)

wheresing(x) :=re(X)/ra(x). Thefollowing assumptionson K and Fk hold:

o Thereexist constants A1, Ao € (1, oo) such that

21(K)
(K < A1, (2.47)
322(K)
0 S Ao (2.48)

o Assume that the edge e is parallel to thelocal x3 axis of the cell K. For any
] = m, m > Oaninteger, h := 371(K), s :=32(K) andany & € K:

|D*(Fx)i (§)| < Codg'(mhs, fori = 1,2,

2.4
|D*(Fk)3(&)| < Codg'(mbh, (249)

with Cp and dg independent of m, h and s.
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e The Jacobian determinant is positive and satisfies
dF
C1h3s? < det d—; < Coh3s?,

where C1 and C areindependent of h; and h.

Thereexist
2(K)

1 . - 71(K)
ﬂz(K)-

< —9
1= 50(K)

1< A<

(2.50)

(2.51)

The cells K¢ touching the edge e but not containing the corner a do not satisfy

but satisfy the rest of the properties given for Ve(a) above.

Cells in Corner Neighbourhood "Vg excluding Corner-Edge
Neighbourhoods

Let K ¢ V9 and K N a = ¢. Denote
2(K) = minra(x), 72(K) = maxra(x).
xeK xeK
The following assumptionson K and Fk hold:

o Thereexists A € (1, co) such that

7Z(K)
) = A

e Forany |a| =m, m > Oaninteger,h :=3(K) andany § € K:
|D*(FK)i (§)| < Codg'(mh, fori =1,2,3,
with Cp and dg independent of m and h.

e The Jacobian determinant is positive and satisfies
dF
C1h3 < det d—; < Czhd,

where C1 and C, areindependent of h.
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There exists
7(K)

1< A <2,
2(K)

(2.56)

Remark 2.57 The cells K in the neighbourhood vg do not have a large aspect

ratio and their size depends on the distancer 5 from the corner a.

Cells in the Regular Part V0

Let K c VO. Denote
2(K) = minre(X).
ecé

Thefollowing assumptionson K and Fg hold:

e Forany |a| = m,m > Oaninteger, h := »(K) andany & € K:

|D*(Fi)i (§)] < Codg'(mbh, fori =1,2,3,
with Cp and dg independent of m and h.
e The Jacobian determinant is positive and satisfies
dF
3 K 3
C1h®° < det dE < Coh®,
where C1 and Cy areindependent of h.

Vertex Cells

Let a € K4 wherea e € isacorner of the domain D. Denote

The assumptions (2.48)—(2.50), (2.53) and (2.54) on K and Fx hold.

(2.58)

(2.59)

(2.60)

(2.61)

The constants A, A1, Az, A*, A:, A%, Cp, do, C1 and C, are the same for all
1> N2

cellsK inthemesh 7.
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2.3.3 Geometric Meshes

Similarly to the two dimensional case, the assumptionsin Section 232 allow the
definition of layers of cells in the mesh 7. The terminal layer .£¢ in the neigh-
bourhoods Ve(a), V2 and V¢ consists of all cells whose closure contain the ‘ main
feature’ of the neighbourhood: the edge e and the corner a respectively.

The layers Lk, 0 < k < n are defined similarly to Definition Assume a
geometric grading parameter o < 1.

Layers in Edge Neighbourhood “Vg excluding Corner Neighbourhoods

The mesh is geometric (in the two dimensional sense given in Definition
perpendicular to the edge e. The cells K¢ in the terminal layer £ touching the
edge e are constrained by

7(Ke) < Co. (2.62)

In the direction along the edge e, several levels are allowed. Nonetheless, the
number of cellsin alayer is bounded and the total number of cells in this neigh-
bourhood is of order @ (n).

Layers in Corner-Edge Neighbourhood Ve(@) including Edge

The mesh in this neighbourhood is geometric perpendicular to the edge (arranged
in layers) and along the edge (arranged in levels). The cells K fulfil

7%2(Ke) < Co™, Co" < min 3 (K) <Co". (2.63)

K CVe(a)

Thetotal number of cellsin this neighbourhood is of order @ (n?).

Layers in Corner Neighbourhood ”Vg excluding Corner-Edge
Neighbourhoods

The mesh is geometric in the distancer 4 to the corner a with

Co" < min (K) < Co". (2.64)
Kcvl

Thetotal number of cellsin this neighbourhood is of order @ (n).
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Regular Part V0

In the regular part, there are no layers and the number of cellsis independent of n.

Vertex Cells
The size of the cells K5 fulfils
Co" < diam(Ka) < Co". (2.65)

Definition 2.66 (Geometric mesh) A mesh 7 as described by (2.39)—(2.65) (Sec-
tions23.2and[23.3) is called a geometric mesh in a three dimensional Lipschitz
polyhedron D with n layers and geometric grading parameter o .

2.3.4 hp-Approximation Properties

So far, only the cells K of the mesh 7 have been discussed. Now, we address the
combination of mesh and polynomial degree.

Definition 2.67 (hp-FE spacein three dimensions) On a geometric mesh 7 =
{K}, alinearly distributed degree vector p with slopem > 0 is defined as follows:

e The elemental degree px € Ng is allowed to be anisotropic in all elements
(K, Pr): Pk = (PLK, P2k, P3.K)-

o Vertex elements (K4, pk,): define px = (1,1, 1).
e Regular part VO: define px = maxk c7{ Px} =: (Pmax> Pmax> Pmax)-
e Corner neighbourhood Vg excluding corner-edge neighbourhoods: define
Pk = (max{1, [mkT}, max{1, [mk]}, max{1, [mk1})
for an element (K, pk) onlayer L.

o Edge neighbourhood v excluding corner neighbourhoods: without loss of
generality, let thelocal x3 axis be parallel to the edge e. An element on layer
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2 FINITE ELEMENT METHODS

e Corner-edge neighbourhood Ve(a) including edge: again, let the local x3
axis be parallel to the edge e. An element in layer L and level £ has
Pk = (max{1, [mk]}, max{1, [mkT}, max{1, [mlT}).

Then, 8P1(D, 7) from (2.10) is called an hp-FE space.

Lemma 2.68 Thedimension N of a sequence of hp-FE spaces § P! (D, 7) inthree
dimensionsbehaveslike O (p%) where p = max{ pmax.i }ig':1 and ppax = Maxk Py -
s = 4 if the geometric mesh is only refined towards vertex singularitiesand s = 5
if there are also edge singularities taken into account for the mesh.

Proof: Analogous to the proof of Lemma by taking into account the layers
and levels along singular edgesfor s = 5. O
The hp-extensionis typically realised by refining (anisotropically) the elements
in the terminal layers (h-extension) and by increasing (anisotropically) the degree
in al elements but those in the terminal layer (p-extension). A more precise algo-
rithmisgivenin Section3.2
Thefollowing result holds for hp-FE spacesin three dimensions 18,32, 197].

Proposition 2.69 (Convergence of hp-FEM in threedimensions) Let D be a
Lipschitz polyhedron. Let {(7), ph)}n be a sequence of hp-mesh-degree com+
binations, where the meshes 7, are refined towards the corners a € € and the
edges e € & of D with grading parameter 0 < o < 1 and the degree vectors
p, are linearly distributed with slope m > 0 (c.f. Definition [2.67). Let u be the
solution of the diffusion problem

—V-AVu= finD, u=0onTp, n-Avu=gonly

with analytic data f, g and A(x) on "\ and D respectively.
Then, for N = dim §P»-1(D, 7."),

pnmlin Iu = vllpy < Cexp(—bN"®),
vesPh1(D,7m)

where b dependsonmand o.

Remark 2.70

o Itisnot necessary to distribute the degrees py anisotropically as described
in Definition [2.67 sotropic degrees pk or even a uniform degree p would
suffice (even for the exponential convergence of Proposition [2.69). How-
ever, given a desired accuracy, using a non-uniform, anisotropic py savesa
considerable amount of degrees of freedom.
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o Note that only piecewise analyticity of the data f, g and Aisrequiredif 7.
is refined accordingly, c. f. Remark [2.34l

2.4 Further Examples (Formulations and Operators)

The following two subsections give some outlook to other Finite Element Methods
which (at least partially) fit into this setting. Importantly, the methods discussed fit
into to software design which is presented in Part [l

2.4.1 Discontinuous Galerkin Finite Element Methods
Reaction Diffusion

A typical variational form for discontinuous Galerkin FEM (DGFEM) of the prob-
lem described in Section[1.3.7] reads [[112]:
Findun € Vn such that

B (un, un) =1 (on)  Vun € Wi, (271)

where

Bh (u,v) := Z/(Vv AVU + cuv) dx

KeT

— > [ ((AVu) - [v] F [u] - (AVv)) ds

ecéint.p €

+ ) /5 [u] [v] ds, (2.72)

ecéint.p

IF(v) = / fodx

KeT

+ onvdsF (AVv -np)gp ds+/ sdgpvds
I'n I'p I'p

and § = §(p, h) the so-called discontinuity stabilisation function. Here, the non-
homogeneous Dirichlet boundary condition gp on I'p is weakly enforced, i. e, it
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is not part of the DGFE space. The finite dimensional space V is defined as
VN :={ueL?D): ulkoFk € Pp(K),K e T} =4P%D, 7). (273

In contrast to the FE spaces defined in Definitions and 2,67, (2.73) defines
discontinuous functions.

The DGFEM defined by the bilinear and linear forms in (2.72) are symmetric
(‘=" version) and non-symmetric (‘+’ version). For sufficiently smooth data ( f,
gn and gp), the functionals in (2.72) are well-defined and (2.71) is consistent.
The bilinear forms Bﬁﬁ(u, v) are continuous and coercive over appropriately de-
fined energy spaces and | 7 (v) is continuous. Therefore, this method fits into the
framework of Section The approximation results for the DGFEM are givenin
[112).

Stokes
Let D c R® be abounded domain. The Stokes problem reads:
—VAU+Vp= T, divu=0 inD (2.74)
with the boundary conditions
u=g onaD.

Here, u denotes the velocity field, v the viscosity and p the pressure. The inf-sup
condition [120, [61]
- — [p adivvdx

>Cp>0
0£L2(D)/Rosyendpye 111 lAlo

guarantees a unique solution (u, p) € H}(D)® x L%(D)/R of (274). Here, |.|;
denotes the H *-semi-norm.

The Stokes problemis a saddle-point problem. Classically, mixed FEM are used
to approximately solve (2.74): degree p for thevelocitiesand p—k for the pressure.
Conforming methods need k = 2 and discontinuous methods k = 1 [[108]. [96]
shows the stability of pressure stabilised hp-DGFEM for k = 0 (so-called equal
order methods).

The framework for vector valued problems given in Section [7.3] allows mixed
methods (k # 0) aslong as the underlying mesh 7 is the same in all components
of the vector valued FE spaces.
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2.4.2 Non-local Operators: Boundary Element Methods

Boundary Element Methods (BEM) are used to discretise boundary integral equa-
tions which can be derived from a homogeneous partial differential equation
Lu = 0with Neumann (un) or Dirichlet (up) boundary conditions[93]. A bound-
ary integral equation in general form reads:

Findu € HS2(I") [A] such that

(AU), v) =:a(u,v) = (f,v) Yve HY(I), (2.75)

where f € H=S/2(I"), s € {0, +1} and +(.) is one of the following integral opera-
tors:

Up(X) = V(@)(X) :=/ro<y>k(x, y) ds,.

Up(X) = —=12¢(X) + K (@) (X) := —L/2¢(X) + fr o(Y)y1,yK(X, y) dsy,
uN(X) = Y20 (X) + K'(0)(X) := Y20 (X) + |f>V/r o (Y)yLxk(x, y) dsy,

UN(X) = = W(p)(X) := —fpfr P(YyLxyLyK(X, y) dsy.

y1.x denotesthe normal derivative with respect to x and o (x) and ¢(X) are used to
describe the solution u(x) using the kernel k(x, y) of the PDE .Lu = O:

U(X)=/Fo(y)k(x, y)dsy or U(X)=/r<p(y)n,yk(x, y) dsy.

The kerndl k(x, y) fulfils LKk(., y) = §(y). (f, v) denotes the L2 duality pair-
ing extended to H ~S/2(I") x HS2(T") by continuity. a(u, v) is the bilinear form
[ AW (X)v(x) ds fulfilling

e continuity,
o Gardinginequality: There exists ¢ > 0 and a compact operator
K : HY2() — H~S2(T)
such that Yu € HS/%(T):

a(u, u) + (Ku, u) = ¢ lullfz ) -

51
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e injectivity in H2(I"): a(u,u) = 0= u = 0.

Then, (2.75) admits a unique solution V f € H ~S/2(I") [93]. This method fitsinto
the framework of Section[I.7and also into the software desing presented in Part [T1l
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Algorithmic Realization
of hp-Finite Element
Spaces in R3

In two dimensions, to resolve corner singularities of elasticity and Maxwell prob-
lems at an exponential rate of convergence in polygons, geometric vertex meshes
are sufficient. To resolve boundary layers due to singular perturbations as, e. g., in
viscous, incompressible flows and reaction diffusion problems, geometric bound-
ary layer meshes are necessary.

In three dimensions, geometric vertex and edge meshes are necessary to resolve
the singularities which arise in elasticity and Maxwell problems at an exponential
rate of convergence. To capture the features of viscous, incompressible flows and
reaction diffusion problems, again geometric boundary layer meshes are needed.
Solutions of eddy current interface problems also exhibit these boundary layers at
internal interfaces. A class of geometric edge, vertex and face meshes in general
polyhedrain R® areintroduced in Section[3.11

Thiswhole chapter is devoted to the al gorithmic reali sation of mesh-degree com-
binations (7, p) used in hp-Finite Element Methods to get exponential conver-
gence. The implementation, which closely follows these guidelines, is described
in Part[[Tll The main results presented in this chapter are:

1. an algorithm to create geometric vertex, edge and boundary layer meshes
built from trilinearly mapped hexahedra in arbitrary combination in any
polyhedronin R3 with a proper polynomial degree distribution asintroduced
in Chapter 21

2. ageneric assembly procedurefor irregular mesheswith arbitrary, anisotropic
polynomial degree distribution.
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Thefirst result is presented in the first two sections and the second one in the third
section. The last section gives some numerical examples with convergence plots
and run-time measurements.

Contrary to popular believe, we are convinced that it is beneficial to work only
with hexahedral meshes:

e Shape functions, interpolants and S matrices (c.f. Section [3.3.5) have ten-
sor product structure. Also, it is obvious what the effect of anisotropically
reducing the local polynomial degree in one direction is—which is not the
case in atetrahedron.

e It is straight forward to mesh special engineering features like thin plates,
thin films or coatings. Meshing such thin structures with a good tetrahedral
mesh is amost impossible.

o Geometric refinements towards a geometric feature like an edge or face are
simple to achieve.

The drawback of hexahedral meshesisthat local mesh refinementsintroduceirreg-
ularitiesin the mesh. Itis not straight forward to handle these in an anisotropically
refined mesh with general, anisotropic local polynomia degrees. However, we
have solved these problems.

The main task treated in the section devoted to the assembly procedure (Sec-
tion[33) isto form globally continuous basis functions from local shape functions
(defined on the cells of the mesh). Problems arise across cell boundaries where
the mesh is irregular. In this case, the shape functions in the smaller cell have to
be constrained by their larger neighbours. There are different methods to enforce
these constraints[[14, 15,141 42, 143,147, 50, [68] —the one shown hereisflexible (al -
lows for anisotropic refinement in arbitrary number and order and an anisotropic,
arbitrary degree) and still remains fast (pre-computed coefficients used during the
assembling).

3.1 Creating Geometric Meshes in Three
Dimensions

Inthe presence of singularities or boundary layers, geometric meshes (and degrees)
adapted to the specific situation have to be used in order to get exponential con-

54
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vergence rates. The geometric grading factor o € (0, 1) and the number of layers
n characterise the meshes. Refer to [[8, 183, 185,198, [109] and the references therein
on how to chose these parameters and Chapter @ for a theoretical description of the
meshes. We only work with o = 1/2 for implementational reasons.

After amoativation of geometric meshes, arough description of geometric vertex,
edge and boundary layer meshes is given. The geometric vertex and edge meshes
fit into the setting of Section the geometric boundary layer meshes are not
considered there. Finally, we present an algorithm to create these meshes.

3.1.1 Exponential Convergence Needs Geometric Meshes

The use of geometric meshes in Chapter [2]is motivated below such that a simple
refinement rule can be drawn as conclusion. Thisruleisthe basisfor the algorithms
below.

Let u be afunction we try to approximate with hp-FEM. The bounded domain
of interestis D c RY. uisanalyticin D \ S. Here, Sisthe set of ‘singularities’
(corners, edges and faces—typically on the boundary of D but possibly also inthe
interior of the domain in case of jumping coefficients). Inacel K € 7 away
from S, ul|k is analytic. Therefore, it can be approximated exponentialy with
polynomials of increasing order p.

Example 3.1 (Onedimension) Let D = (0, 1) and u = r* (a model for the sin-
gularities arising in one dimensional problems). u isanalyticin D \ S = (0, 1].
Inthe cell K = (%/2, 1), u can be approximated exponentially by polynomials of
order p:

inf Ju— vl (k) < Ce™PP.

vEPp

Other normsthan L>*(K), e.g. L%(K), are possible too.
Generally, the convergence rate b depends on

diamK
dist(K,S)"

The basic mesh design principlefor exponential convergenceisto keep theratio
(3.2) constant over successive mesh refinements. Consequently, the convergence
rate b is also constant. The cellsin the terminal layer touching S do not need any
special treatment as their size is exponentially decreasing with successive refine-
ments (and so does their error contribution).

(3.2)
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3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R3

In three dimensions, the basic idea stays untouched, only the interpretation
of diamK in ([8.2) has to be changed. The set of singularities S is anisotropic
(i.e. contains corners and edges). Therefore, the geometric mesh must aso be
anisotropic and aligned to S. This keeps

diamt K
dist(K, S

constant. Here,

diam! K — |dianK if K C vy,
| diameter of largest inscribed sphere  if K c Ve(a) U V0.
Similarly for two or three dimensional problemswith a boundary layer.
Conclusion: A geometric mesh is refined by subdividing the elements in the
terminal layer aligned to the singularities in S. Simultaneously, the polynomial
degreeisincreased in al other elements. In addition, if an element is subdivided
anisotropically, the polynomial degree is increased in those directions which are
not broken. This ensures exponential convergence in the presence of singularities
in three dimensions.

3.1.2 Description of Geometric Vertex, Edge and Boundary
Layer Meshes

A mesh 7 inadomain D can consist of various regions where different refinement
strategies have to be used. Three basic strategies can be distinguished:

o A geometric boundary layer mesh 7 (c.f. Figure[3 on the lft) is given by
a one dimensional geometric mesh 7 with grading factor o and n layers
and atwo dimensional domain Q:

T={1xQ:leqh.

Themeshesin the middle and on theright of Figure 3. Ilare geometric bound-
ary layer meshes towards two and three faces respectively.

e A geometric edge mesh 7 (c.f. Figure 3.2 on the left) is given by a two
dimensional geometric mesh 72 (an irregular vertex mesh refined towards
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A

Figure 3.1: Geometric boundary layer mesh with grading factor o =1/2 and 5 layers towards one (l€ft),
two (middle) and three faces (right).

one corner with grading factor o and n layers) and aone dimensional interval
I:

T={Qx1:QeT?.
The meshes in the middle and on the right of Figure [3.2 are geometric edge
meshes towards two and three edges respectively.

o A geometric vertex mesh (c.f. Figurel3.3) is an irregular vertex mesh refined
towards one corner with grading factor o and n layers.

The right most meshes in Figures 3.1 and (geometric boundary layer mesh
and geometric edge mesh respectively) look the same from ‘outside’. However,
looking inside the domain by dropping /8 of the cube reveals the differences, c.f.
Figure3.4

3.1.3 Algorithmic Realization

Algorithm 3] is a simple algorithm which can be used to geometrically refine
meshes in any bounded polyhedral domain given the following information and
tools:

e ahexahedral initial partition 71, (3.3)

e a-priori information which vertex, edge (or even face) is singular (i.e. a
singularity of the solution does or might occur there),
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1/8 of the cube is cut away to revea details inside the

vertex Figure 3.4: Meshes with grading factor o = 1/2 and 6 layers. Here,
domain.

mesh with grading
= 1/2 and 4

Figure 3.3: Geometric
factor o
layers.

e means to subdivide every given hexahedron in one of the seven possibilities

shown in Figure[3.15

Algorithm [3.1] computes a cell-wise refinement indicator §l

noting what changes should be made to the current cell K of the mesh

of 0in any component of 51 mean ‘no change’. A value of 1in sl x meansthat the

x axis of the hexahedron should be broken, similarly 5l y = 1 = break y axis and

3l

1 = break z axis. The eight possibilities offered by §l; € {0, 1} are covered
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Loop over al cells K inthe mesh 7°:
e Letsl = (0,0, 0) (the subdivision indicators for the three directions).

Loop over al vertices of the cell:
— If avertex ismarked assingular, set §| = (1, 1, 1).
e Loop over dl edges of the cell:

— If an edge is marked as singular, set the corresponding two entriesin §l to 1:
if the edge is parallel to the x axis, set 8y = 8l = 1,
if the edge is parallel to the y axis, set 8l = 8l = 1,
if the edge is parallel to the z axis, set 8k = 8ly = 1.

e Loop over al faces of the cell:

— If aface is marked as singular, set the corresponding entry in §l to 1: if the face is
perpendicular to thei axis, set 8 = 1,Vi € {x, Y, z}.

o Refine the cell K with the refinement indicator §1.

Algorithm 3.1: Geometric, anisotropic mesh refinement in three dimensions. Given a hexahedral mesh
7 of abounded polyhedron D and a marking of singular vertices, edges and faces, this
algorithm applies one anisotropic refinement step and returns the resulting mesh 7.

by the seven subdivisions in Figure and ‘no subdivision’. Note that Algo-
rithm[3.1] does not change the polynomial degrees. Thisis done in Algorithm
below.

Remark 3.4 (Algorithm[3.1)
e Thealgorithmis also applicablein two dimensions with obvious changes.

o Ifavertexincel K ismarked as singular, then the loops over the edges and
the faces can be economised because all entries of 51 are already set to 1.

The notion of ‘x axis’ etc. islocal to the cell.

e The algorithm also works for geometric meshes towards internal vertices,
edges or faces. This is needed in eddy current interface problems where
boundary layers also arise at internal boundaries.

The requirement ([3.3) is not essential as shown by the result below.
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Figure 3.5: Breaking atetrahedron into four hexahedra. Thethick lines show theinitial tetrahedron. The
dotted lines represent new edges in the interior of the tetrahedron while all other new edges
are on the surface of the tetrahedron. The pictures on the right show the four individual
hexahedra.

e Thegenerated meshes are 1-irregular (only singly constrained nodes).

Proposition 3.5 Given any bounded polyhedral domain D c R 3, there exists a
shape-regular, hexahedral initial mesh 7 in D.

Proof: It is possible to mesh any bounded polyhedral domain D ¢ R 2 with shape-
regular tetrahedrall Any tetrahedron can be broken into four trilinearly mapped
hexahedra as shown in Figure 3.5 Every face of the tetrahedron is broken into
four quadrilateral s by introducing edges joining the edge-midpoints and the centre
of gravity of the face. An additional vertex is introduced in the middle of the
tetrahedron and linked with the face-centres.

Breaking each tetrahedron into four hexahedra creates a shape-regular, hexahe-
dral mesh. The shape-regularity is preserved by choosing edge mid-points and
centres of gravity. |

Example 3.6 In simple geometries, it is beneficial to create the meshes by hand:
A tetrahedral mesh in the cube (—1, 1)2 needs 6 tetrahedra resulting in a mesh

1There even exist good algorithms and software for this task to create high quality tetrahedral meshes.
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Figure 3.6: Edge mesh in the Fichera corner. The right picture shows an enlarged version centred at the
origin.

with 24 hexahedra using the procedure described in Proposition However,
a hand-made mesh needs only one hexahedron. All meshes in the present thesis
are hand-made. In addition, in the hand-made mesh, the reference hexahedron
(0, 1)® is affinely mapped to the physical hexahedron whereas in the automatically
generated mesh, all hexahedra are trilinearly mapped. In thin geometries (like a
plate), a hand-made hexahedral mesh is even more superior.

Example3.7 Algorithm BT used on D = (—1,1)3\ (-1, 0)3 (the so called
‘Ficheracorner’) creates a mesh as shown in Figure3.6l Thethreereentrant edges
and the reentrant corner (at the origin) were marked as singular.

3.2 Creating hp-Finite Element Spaces

Algorithm[3:2 shows asimple extension of Algorithm[3.to hp-refine mesh-degree
combinations (7, p). In addition to the refinement indicator §1 computed by Al-
gorithm 3.} Algorithm computes a degree indicator 5 p = (8px, 8Py, 5p2)-
Similarly to §l, § p indicates what changes should be made to the polynomial de-
gree pg of the element (K, pk) of the current mesh-degree combination (7, p).
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Loop over al elements (K, pk ) in the mesh-degree combination (77, p):
o Determine the subdivision indicator §1 = (8lx, dly, 8lz) according to the rules given in Algo-
rithm[31
e Vi e{X,y,z}: setdpj = 0if 8l = 1and §p; = 1 otherwise.
o Refine the element (K, py ) with the refinement indicators 51 and § p.

Algorithm 3.2: Geometric, anisotropic hp-mesh-degree refinement in three dimensions. Given a hexa-
hedral mesh 7 of a bounded polyhedron D, a marking of singular vertices, edges and
faces and a degree vector p, this algorithm applies one anisotropic refinement step and
returns the resulting mesh-degree combination (77, p').

e Create an initial regular hexahedral mesh 72 of D and choose the initial degree vector pt =
{pk = (1,1, D}y 5 Thismesh has one layer.

e Mark vertices, edge and faces as ‘singular’ towards which the mesh-degree combination should
be refined.

o Call Algorithm[B:2n — 1 times.

Algorithm 3.3: Create an hp-mesh-degree combination (7, p™) with n layers, degree distribution pa-
ramaersm = 1 and geometric grading parameter ¢ = 1/2 in any bounded polyhedron
D c R®.

Values of 0 in any component of § p mean ‘no change’. A valueof 1in§p x means
that the x component of py should be increased by 1 and so on. The polynomial
degree distribution parameter ism = 1: In an isotropic mesh, the polynomial de-
gree pk of anelement K onlayer kis px = max{(1, 1, 1), ([mk], [mk7], [mk])}.

Remark 3.8 (Simultaneous change of mesh and polynomial degree)

Note that Algorithm[3.2 simultaniously refines the geometric mesh 7" and the poly-
nomial degrees p contrary to p-FEM software like StressCheck [[69] or Nesctar
[72]. These software packages take an initial mesh and do not change it but only
increase the polynomial degrees.

The meshes presented in Section (geometric vertex, edge and boundary
layer meshes) with geometric grading parameter o = 1/2 and n layers can be gen-
erated using Algorithm To create a geometric boundary layer mesh, the faces
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with boundary layers have to be marked as ‘singular’. Similarly for a geomet-
ric vertex (edge) mesh: there, the singular vertices (edges) have to be marked.
Arbitrary combinations of geometric vertex, edge and boundary layer meshes are
possible by marking the respective vertices, edges and faces. Thereisno restriction
that they have to be on the boundary of the domain D: geometric meshes towards
internal singularities or internal layers are also possible.

Finally, an hp-FE space is created using the mesh-degree combination (7", p")
with n layers from Algorithm B3 Vy = 5#;’1(D, 7M.

Remark 3.9 (Sequence of hierarchic hp-FE spaces)

o Algorithm[3.3 creates a sequence of mesh-degree combinations {(7 ", p™}n
by calling Algorithm[3.2 several times. It is straight forward to generate a
sequence of hp-FE spaces {Vn}n from {(7", pM)}n.

e The hp-FE spaces generated by Algorithm[3.3 are hierarchic, i. e. let V, =

n n-+k
SIPD’l(D, 5™ and Vi, = 819; (D, 7MK) be the resulting spaces gener-
ated by Algorithm[3.3with n and n+k layersrespectively. Then, Vi, € Vn,
for anyk > 0.

(250) is a key property of the determinant of the Jacobian of the cells in the
corner-edge neighbourhood Ve(a) including edge. It is verified in the result below.

Proposition 3.10 Given any bounded polyhedron D € R 3, Algorithm[3.3 gener-
ates a mesh 7" fulfilling (2.50).

Proof: The condition on the Jacobian determinant for cells in the corner-edge
neighbourhood Ve(a) including edge (2.50) is

dF
C1h3s? < det —< < Coh3s2,
dé
where

h :=3721(K) = maxra(X),
xeK

_ . re(X)
S = K) = maxshe(X) = max .
72(K) xeK () xeK ra(X)
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The element map Fx : K — K of anelement K € 7" is a composition of a
trilinear element map F : K — K with K ¢ K € 771 and an affine element map
Fyait:

Fk = Fg o Fgat,
where the affine map Fyat describes the subdivision in the reference situation, i. e.
it maps the reference element of K to achild of the reference element of K.
The determinant of the Jacobian of Fk is

dFk _ dFK dFgat _ dFK dFyar
det dE _det[dé;' OFde-T}—da[KOFKaﬁ]-de‘: dE

The factor det [dd% o Fx aff] can be bounded from above and below independently

of the number of layersnin 7" only depending on theinitial hexahedral mesh 7 1.
Likewise,

CollFg I Fgar ()1l < I1Fg o Far ()1l < C2ll Fg Il Fgart (51
Therefore, it suffices to study

F
Ci¥h3s? < det dd—ga‘f < Cc¥'n3s?, (3.11)

i.e. we are in the reference situation (here, h and s are also taken in the reference
situation). The condition (8.11) needs to be verified for the cellsin Ve(a), €. g. the
grayed cellsin Figure3.7

The layers are denoted with 1, = 0, 1, ... perpendicular to the edge e and the
levels are denoted with 1, = 1, 2, ... along the edge. Figure [3.7 shows the layers
1 =0,1,2andthelevelsl, = 1, 2, 3. In amesh with n layers (Figure[3. 71 has 5
layers),

det d Zigdf _ 93(-D)Hp+2max(0l; -1}

To estimate the upper and lower bounds in (3.11)), upper and lower bounds for h
and s in each layer-level combination (I 1, 1) are required:

réup =2 22(—n+1+I1)’ rélw — 92(=n+1+ly) + 22(_n+|1)’
2 _ 52(—n+2+l 2 2 _ o2(—n+2+l 2
hip = 2 ( 2 4 F&up> h2,, = 2% 2y 2 o (312)
2 2
2 = feup 2 Telow
SUP 22(_n+1+|2) + réup ’ leW 22(—n+1+|2) I rglow .
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Figure 3.7: Cells in the corner-edge neighbourhood Vx(a) including edge. This mesh has5 layers.
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Figure 3.8: Plot of for each cell in Ve(a) in 7" against I for n = 4, 21 and 51 (from left to
right). x and + are computed with hyp, sup and hjoy, Sow respectively.

Figure3.8 shows plots of the quotient

det —

3
Thes (.13
for different number of layersn for the upper and lower boundsof h and s. Clearly,
the quotient is bounded from above and below. It is also possible to compute the

bounds manually. O

Theorem 3.14 Given any bounded polyhedron D e R 3, AlgorithmB.3 generates
a mesh-degree combination (7", p") fulfilling Definition with degree distri-
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bution parameter m = 1 and grading factor o = 1/2. 7" consists of trilinearly
mapped hexahedra.

Proof: The proof consists of three parts. First, the initial mesh-degree combination
(71, pb) is specified. Then, the second and third part inductively deal with the
degrees and sizes of the elementsin an invocation of Algorithm

1. As shown in Proposition 3.5, there exists a shape-regular mesh consisting
of trilinearly mapped hexahedrain any bounded polyhedronin R 3. Theini-
tial coarse grid (71, p') generated in the first step of Algorithm 33 fulfils

Definition2.67
2. Applying Algorithm[3.2to a degree vector p (induction over the number of
mesh layers):

66

The vertex cell K is newly created. Therefore, its degree pgis not
increased, i.e. it staysat px = (1,1, 1).

The degree py of acell in the regular part VO is increased isotropi-
caly.

The degrees py of the cells K in the corner neighbourhood V3 ex-
cluding corner-edge neighbourhoodson layer L, k > 1 areincreased
isotropically as all elements not touching a singular edge or vertex are
treated the same as an element in the regular part. The elements on the
layers Lk, k = 0, 1, are created in thisinvocation of the algorithm. The
elements on Lo are vertex elements, i.e. px = (1, 1, 1), and those on
L1 aso have py = (1,1, 1).

The degrees pk of the cells in the edge neighbourhood vg excluding
corner areincreased isotropically aslong asthey do not touch the edge.
For these cells, the same arguments as in the corner neighbourhood
vg excluding corner-edge neighbourhoods holds. If the cell touches
the edge €, it is split up anisotropically along the edge and its degree
is increased in the direction along the edge. Assuming this is the n-
th invocation of Algorithm and e is paralléel to the z axis (in local
coordinates of the cell), the degree of these newly created cellsis px =
1,L,n+1).

Combining the arguments for V2 and V2 shows that the degrees py
of the cells in the corner-edge neighbourhood Ve(a) including edge
behave as required.
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3. Denoteby 7 = {K} and 7" = {K'} the old and new mesh respectively. L et
n be the number of layersin 7. Applying Algorithm [32to 7 only changes
the cells K touching asingular corner or edge. Hence, 7' hasn + 1 layers.

e For avertex cell K}, diamK/ = 1/2diam K4 holds. Therefore, (2.65)
holds: _
Co™?! < diam(K}) < Co™L.

e Most célls K in the corner neighbourhood ”Vg excluding corner-edge
neighbourhoods are not changed. However, the old vertex cell K 5 is
split up. Therefore, (2.64) holds with

min 32(K’) = 12 min 7(K).
K’'cvl Kcvy

e Asbefore, the cell K¢ in theterminal layer of the edge neighbourhood
V9 excluding corner fulfils (Z62) with

(Ko = Y272(Ko).

e The second part of (2.63) is asserted by the same argument as for V9.
Thefirst part of (2.63) for the cellsin the terminal layer of the corner-
edge neighbourhood Ve(a) including edge:

%2(Ké) < Co"
isfulfilled by 322(Kg) = 1/2372(Ke) for sufficiently small cells Ke.

Summarising stepsZ and[3, an old mesh-degree combination (7, p) fulfilling Def-
inition[2.67 is transformed into another valid mesh-degree combination (7', p’).
Together with the fact that the coarse grid (71, pt) also fulfils Definition[Z.67(step
(1), this concludes the proof. O

Proposition 3.15 (Complexity of Algorithm [3.3) The run-time complexity of Al-
gorithmBB3is
rta(n) = O(n?),

i.e. the complexity for generating the hp-mesh-degree combination (7", p")
grows quadratically in the number of mesh layersn.
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Proof: Obviously, Algorithms[3.2land[38.2 have run-time complexity @ (#7°), where
#7 isthe number of cellsinthe mesh 7. The number of cells per layer is bounded
by Lo independently of n [63]. Therefore, the run-time complexity of the Algo-
rithmsBland B2 on themesh 7' isrty(i) = O(i).

It takes n — 1invocations of Algorithm [3.2to generate a mesh with n layers:

n-1

ra(n) = Y rti) = O (Y2n — H(n - 2)) = O(n).

i=1

(|
3.3 Generic Assembly Procedure
A general variational formulation for FEM reads:
Find u € V such that
a(u,v) =1(v) YveV. (3.16)

To approximate u € V numericaly, recall that a discretisation of the space V
is defined using a finite dimensional set of linearly independent functions {®}
forming abasisof Vy C V. Thebilinear formac., .) and linear form|(.) are used
to generate the stiffness matrix A and load vector | on the space V. Finaly, the
linear system ATu = | issolved for u, uy = ® "u an approximation for u.

Algorithmically, A and | are built element-wise, i. e. atriangulation of D into a
mesh 7 = {K} isused. On these cells K, the local shape functions are defined
according to the degree py . The shape functions are assembled by T matricesinto
the global basis functions.

3.3.1 T Matrices

Definition 3.17 (T matrix) Let mk the number of local shapefunctions{cij}'jnﬁ1

in the element K and N the number of global basis functions {®i} ;. The T
matrix T, € R™K <N of the element K describes how the restriction of the global
basis functions { ®; }i’\‘:1 onto the element K are constructed from the local shape

functions:
my

dilk = Z[IK]“ <PjK

=1
and in vector notation: ®|x = T} oK.
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4 3 4 3
3 2 3 2
3 3 2
K
Kg 3
1
3 Ko
K1 K
1 1
1 2 1 2
1 2 1 2

Figure 3.9: Regular (left) and irregular (right) mesh with two elements with three local shape func-
tions (linear) each and four global basis functions (hat functions). The hanging node in the
irregular mesh is marked with ao.

In classica FEM, the basis functions have to be continuous. From the point of
view of the element shape functions, the T matrices ensure the continuity of the
global basis functions by assembling them correctly. In others methods like the
discontinuous Galerkin FEM (DGFEM) and Boundary Element Method (BEM)
(c.f. Sections2.4.1 and respectively), the basis functions are usually discon-
tinuous. This can also be described by means of T matrices.

Example 3.18 (T matrix of a regular mesh) Inaregular meshd, thereisa* one-
to-one” correspondence of local shape functionsand global basis functions. Every
local shape function contributesto at most one global basis function. On the other
hand, the restriction of a global basis function onto an element gets contributions
from at most one local shape function.

Consider the regular mesh shown in Figure 3.9 on the left. Assume standard
linear nodal shape functions on the elements K1 and K4 forming the usual hat
functions. The elements K1 and K4 havethe T matrices

1 000 0100
T¢,=|0 1 0 OJandTy,=(0 0 1 O]. (3.19)
0 001 0 001

2The intersection of any two elements is either empty, a vertex or aside, c.f. FigurdZ.Zon page[28
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The row and column indices in the T matrices in (3.19) correspond to the indices
of the local shape functions (numbers inside the triangles in Figure [3.9) and the
global basis functions (numbers outside the triangles in Figure [3.9) respectively.

As a result of the “ one-to-one” correspondence of local shape functions and
global basis functions, every row and every column of the two T matricesin (3:19)
have at most one entry equal to 1.

Example 3.20 (T matrix of an irregular mesh) Consider the mesh shown on the
right of Figure[3.9l The meshiisirregular. Clearly, there is no such “ one-to-one”
correspondence of local shape functions and global basis function as it was the
case for the regular mesh.

Using Definition[3.17, the T matrices of the elements K, and K3 are:

0 1 0 0 0 12 0 12
T,=(0 0 1 ofandTy,=(0 0 1 0. (3.21)
0 Y2 0 12 0 0 0 1

3.3.2 Assembly Procedure

Restricting the bilinear form a(. , .) and thelinear form|(.) to an element K makes
it possible to compute the element stiffness matrices and element |oad vectors. The
global stiffnessmatrix A isassembled from the element stiffness matrices using the
T matrices:

A=ap(®, @) = (;IIer,ZIEwK)
K
= Y Tha k@, 0T = > TR ATk
K,K K,K

Here, ap(.,.) denotes the bilinear form a(.,.) from (8.16) and a, ¢ (.,.) the

bilinear form over the domain K U K taking as input local shape functions ¢ i

ay g (-, .) isevaluated by extendingthe ¢ j withOto D and using a(., .).
Thisleads to the formal definition of the assembly operator:

Definition 3.22 (Assembly operator) The assembly operator # is defined as fol-
lows:
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o for assembling matrices

A=Ay ger Bk = D ThAkTk (3.23)

o for assembling vectors

| = Akerli =) Tilk. (3.24)
Keg

Remark 3.25 In classical FEM, the double sumin (3.23) collapses into a single
sumsince A, ¢ = Ofor K # K. Thisis not the case for non-local operators as
e. g. thosein the Boundary Element Method or in the discontinuous Galerkin FEM.

Thisideaof T matrices separates the computation of the local element matrices
from the global stiffness matrix and the assembly process. The latter two can stay
unchanged even if new global basis functions, local shape functions or physical
problems (involving new element matrices) are introduced. This clear separation
on the algorithmic side allows clean interfaces on the implementation side and the
above mentioned properties carry over to the implementation (c. f. Section [6.1.2).

3.3.3 Generation of T Matrices

The generation of a T matrix for a regular mesh depends heavily on counting and
assigning indices with respect to topological entities such as vertices, edges and
faces. For an irregular mesh, this could also be donein a similar way. The present
and the following section describe away to simplify the generation of the T matri-
cesfor thecellsin anirregular part of the mesh.

Regular Meshes

Generating a T matrix for aregular mesh isjust amatter of counting and assigning
global and local degrees of freedom. A global degree of freedom corresponds to
aglobal basis function and alocal degree of freedom correspondsto alocal shape
function. All local degrees of freedom are associated to a topological entity of the
mesh (like a vertex, an edge, aface or acell).
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3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R3

An element’s T matrix is generated column by column: Every column holds a
global to local degree of freedom association. The column index is the number of
the global degree of freedom and the row index is the number of the local degree
of freedom. In Example the T matrices of the elements K1 and K4 both
have four columns. Every column is associated to a global degree of freedom (see
Figure[3.9 for the degrees of freedom)—every row is associated to a local degree
of freedom.

Irregular Meshes

Irregularitiesin meshes (c. f. Figure[3.9) can arise from different sources: overlap-
ping meshes, moving parts of a mesh or local refinements. We consider meshes
with hanging nodes (like to ones in Figures[3.9, [3.10 and B:12) which result from
(possibly recursive) local refinements of ainitially consistent mesh: the mesh on
theright of Figure[3.9is arefined version of theinitially regular mesh on the | ft.

In many other algorithms and implementations, several situations such as singly
constrained nodes (also referred to as 1-irregular meshes) or doubly constrained
nodes have to be distinguished and treated %parately.ﬁ Inthefollowing, we present
an approach that extends the simple construction rules for regular meshes to the
irregular case and is not restricted to 1-irregular meshes. Briefly, if an element has
hanging nodes, the T matrix for the regular parent is generated and modified by an
S matrix (defined below).

Consider amesh 7 for which al elements and associated T matrices have been
generated. Suppose the mesh 7/ is the result of splitting several elements of 7.
Thebasisfunctions B := {®4, ..., &N} defined for 7 may be partitioned into two
sets—one denoted by Brepiace CONtaining all basis functions that can be described
solely by elements of 7 that are not part of 7~ and another one denoted by Bkeep
representing the rest:

Note that Brepiace IS €asily determined; the support of basis functions in Breplace
consists entirely of newly inserted elements.

The set of basis functions B’ related to the mesh 7’ contains al basis func-
tions in Byeep plus an additional set Binsert Of basis functions generated by regular

3There exist many implementations of this so-called constrained approximation, many of them with
different ideas and algorithms [14] (15, 41} 42, 43,147, 50, [68] .
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® 4 ® © 4 ®

[ L ® O L | J

4 L 4 L ] L 4 L ]

(@) Initiadl mesh 7 with indicated refine-  (b) Refined mesh 7/ with hanging nodes o,
ment. Basis functions B located at  and o € Byeeps X € Bipgart-

[ & € Byeep and [J € Brepjace-

Figure 3.10: Refinement of the lower left quadrilateral of amesh 7~ consisting of four quadrilaterals (a)
into the new mesh 7/ consisting of seven quadrilaterals (b). Indicated are the elements of

B = Breplace U Bikeep in (8) and B” = Bingart U Byeep in ().

components of mesh 7/ formed by elements not part of 7:
B/ = Binggrt U Bkeq)

The remaining basis functions in Byeep are not modified athough this could
increase the efficiency. On the other hand, we are able to exploit the tensor product
structure (c. f. Section[3.3.5).

Example 3.26 In Example[3.I8§we find B = B’ since Breplace = ¥ = Binsert.

Example 3.27 Consider the mesh in Figure[3.10 resulting from refining the lower
left quadrilateral. Assume bilinear nodal basis functions indicated by different
symbolsin the vertices of the mesh.

The mesh 7 is the one containing the four quadrilaterals and B consist of the
nine hat functions indicated by Byeep = {#} and Byeplace = {{J} in Figure[3.10(a).

73
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Figure[3.10(b) shows how B is split into Byeep = {#} and Binsert = {x}. o indicate
hanging nodes.

Every element of a set of basis functions B or B’ has a column in the T ma-
trix of every element. The entries in such a column give the coefficients of the
respective local shape functions with respect to the chosen global basis function.
As mentioned above, generating a T matrix for a regular mesh is just a matter of
counting and assigning indices to topological entities. This holds for Bipsert C B’
since Binsert cONsist of the basis functionsin the regular part of 7. The columnsin
the T matrices of the basis functionsin Byeep have to be modified by aso called S
matrix.

3.3.4 S Matrices

An S matrix follows the sameideaasa T matrix: it describes how the larger func-
tions are constructed from the smaller ones.

Definition 3.28 (Smatrix) Let K’ ¢ K betheresult of an h-refinement of element
K. The Smatrix Sy € R™«*MK describes how the restriction of the shape
functions {(,oJK }?1(1 onto K’ are constructed from the shape functions (g} of
K/.
' my
K K’
¢j )K, = [Scljo

=1

and in vector notation: X |, = Si,¢¥". Inthetrivial case K = K’ (i.e. no
refinement), the Smatrix Sy k is equal to the identity matrix.

Similar ideas can be found in the construction of prol ongation operatorsin multi-
grid methods.

Proposition 3.29 (Application of Smatrix) Let K’ ¢ K betheresult of arefine-
ment of an element K. Then, the T matrix of K’ can be computed as

T =SckTx + Tk

where T ¢ denotesthe T matrix of element K with columns not related to functions
in Byeep Set to zero and T ¢, the T matrix for functionsin Binsert With respect to K.
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Fk :K - KandFg/: K > K/ K > K

K — K’

. Fk
FK OH = FK/

Figure 3.11: Element maps for K and K’.

Proof: If K = K’, nothingisto be proved. Let now K’ ¢ K with strict inclusion.
Consider the global basis function ®; restricted to the element K-

mg mg Mg/
il = Pilklk = Z[IK]“ ‘PjK)K/ = Z[IK]“ Z[§K/K]|j §0|K )
j=1 j=1 I=1

i.e [IK’]i = SkK [IK]i for al ®; € Byeep. FOr @i € Binsert, the assertion holds
by definition. |

The S matrices do not depend on the exact geometry of the elements but only on
the topology and the subdivision ratio.

Proposition 3.30 (Smatrix in referencesituation) Let K: C K be the result of
a refinement of the reference element K with H:K — K’ the sgbdivision map
(see Figure[3.11). The element mapsare Fx : K — K and Fx : K — K’ and

FK/ o] H -1 = FK (331)

Proof: The local element shape functions and the reference element shape func-
tions are connected by the element map:

<P,K0FK=Nj,

K’ (3.32
¢ o Fk’ = Nj.
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Using Definition[3.28

Mg

" = Z [§K’K]Ij (P|K/.

=1

of

Taking the local element shape functions back to the reference element K by Fg
yields

mg

I=1

Using (331) and ([8.32), it follows:

mg

Nilg = [Sc]j Mo H™ (3.33)
=1

Comparing (3.33) and the definition of the S matrix Sy, ¢

mK/

Nilg =D [Segly NoH™
=1

concludesthe proof. O

Example 3.34 (Examples of Meshes) The meshesin Figure[3.12 can be handled
by the algorithms with T and Smatrices presented in this section. The subdivision
ratioused hereiso = 1/2, i.e. the children all have the same size.

Mesh (@) is constructed by a geometric refinement towards the lower |€eft corner.
Thismesh is 1-irregular and could also be handled by an algorithmwhich is able
to eliminate only singly constrained nodes.

Mesh (b) shows a quadrilateral (the top left one) which is refined three times
recursively, i.e. it is divided into 22 - 23 = 64 small quadrilaterals. This can no
longer be handled by an algorithmwhich is ableto handle 1-irregular meshesonly.
An Smatrix can be applied recursively asit was donefor the subdivision algorithm,
though.

The mesh (c) does not ook very different to mesh (a) but the constrained nodes
are not just singly constrained. Again, the Smatrix hasto be applied several times.
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+

+

(a) l-irregular mesh, geomet- (b) 3 uniform refinements of (c) Geometric refinement of
ric  refinement towards top left quadrilateral, not the top right quadrilateral
lower |eft corner. l-irregular. towards its top left corner.

Not 1-irregular.

Figure 3.12: Different meshes which can be handled by applying the S matrices recursively.

Figure 3.13: One dimensiona reference element with left and right child.

3.3.5 Generation of S Matrices

If, in higher dimensions, the reference element shape functions are tensorised one
dimensional reference element shape functions, the S matrices also have a tensor
product structure. Therefore, we only consider reference elements which allow
tensorised element shape functions: quadrilaterals and hexahedrain two and three
dimensions, respectively.

For other element types like triangles or tetrahedra, the S matrices need to be
computed directly by solving a linear system asiit is done in one dimension (see
below).
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S Matrix in One Dimension

Let the reference element shape functions {N;} be defined on J = (01 (c.f.
Figure[3.13). In one dimension, the S matrices can be computed by solving a
linear system. Given the subdivisonmap G : J — J/, &€ — &/2, there holds

. _al -1
N|j =S} ;NoG™, (3.35)

Evaluating (8.35) in m; distinct points in the interval [0, 1/2] results in a linear
system which can be solved for S, ;. The same holdsfor Sj;, ;.

Example 3.36 For the reference element shape functions (c. f. Section [6.3.2)

1-¢ =1
Nj () = 1 & j=2 (3.37)
EL-HPML2 -1 j=3,....m;

the Smatricesare (m; = 4):

Y2 12 Y4 O 1 0 O 0
. _10 1 0 O | Y2 y2 ya O
§J’J - 0 0 1/4 3/4 and §J*J - 0 0 1/4 _3/4

0O 0O O s 0O 0 0 s

Remark 3.38 If thereference element shape functionsare hierarchical—ikethose
givenin ([337)—the Smatricesarehierarchical too. Therefore, ina FEM code, itis
only necessary to store the Smatrices for the highest occurring polynomial degree.
If only moderate polynomial degrees are used, a computation (and caching) of the
Smatrices only when needed is feasible.

S Matrix in Two Dimensions

Only quadrilaterals shall be considered as they alow tensor product reference el-
ement shape functions. The three different subdivisions of a quadrilateral (0, 1) 2
shown in Figure[3.14 are treated. The reference element shape functions are ten-
sorised one dimensiona shape functions:

Ni,j = Ni ® N;j. (3.39)
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K* Rd K¢
K’ K*
K’ Ka Kb
(b) Horizontal. (c) Intofour.

(a) Vertical.
Figure 3.14: Variants of subdividing a quadrilateral.

Consider the vertical subdivision variant in Figure [3.14(a) with the subdivision

£1/ 2)

map
H:K—)I{’,’;‘l—)(gz

for theright child K’. By Definition[3.28, the S matrix Sy i isdefined as

Nijlg = Z [§K/K](k,l),(i,j) Nii o H™™,
k|

Inserting (B:39) into thisyields

(Ni ® Nj)

-1
[§K’K](k,|),(i,j) (Nk® N)oH™™. (3.40)

R =

kI
The S matrices for the one dimensional reference element shape functions used

in (3.40) are
Nilj =Y [Sj 5]y NmoG™ for the £1 part and

m
Nj = Z[H]nj Nn
n

Note that the &> part is not refined and therefore, the S matrix is theidentity matrix

for the &> part.
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I. Plugging this into the left hand side of (3.40) gives:
= Nil5; @ Nj =Y ([S55]y N o G™) @ ([T No)

m,n
=3 " [S55]y - [Mnj Nmo G+ ® Ny
m,n

comparing with the right hand side of (3.40)

-1
kZ (kl)(IJ)NKOG ® N

resultsin (using the definition of matrix tensor products of Fiedler [52]):

Sek =S53®1 for the left quadrilateral K'.
Theright child K* in the vertical subdivision variant has the S matrix

Sk =S5 ®L

Similarly, the children of the horizontal subdivision variant in Figure [3.14(b) have

for the bottom quadrilateral K’ and
55 for the top quadrilateral K*.

It remains to compute the S matrices for the subdivision into four children as
in Figure3.14(c). Since only the topology and the subdivision ratio influences the
S matrix, the subdivision of K into the four children K2, KP, K¢ and K¢ can
be constructed by subdividing K horizontally into two children and subdividing
both children vertically into two children. Thisis reflected by concatenating the S

matrices of the two subdivision processes above:

(S350 - (I®S;j),  Ske
=(Sj;00)- (I®Sj3),  Sgog = (S5.3010)-(I®S;

d

n 1n
e
>

Il

>

K a
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Figure 3.15: Subdivision variants for a hexahedron in three dimensions.

Remark 3.41 It is possible to simplify the above results for the S matrices of the
subdivision into four children. For instance,

Sker = Sjij ® Sjujs

but the original formulation has a much simpler implementation: A matrix tensor
product where onefactor isan identity matrixiseasier to implement than a general
matrix tensor product and the computational efficiency is not spoiled. This is so,
especially, if only the application of the whole product is sought.

S Matrix in Three Dimensions

With the same idea which was used to derive the two dimensional S matrices, the S
matrices in three and higher dimensions can be derived from the one dimensional
S matrices with matrix tensor products.

Inthree dimensions, the S matrices for the subdivision shown in Figure B. 15 into
two (three variants), four (three variants) or eight children take the form

In each of the factors of the above product, exactly one of A, B or C is a ‘one
dimensional’ S matrix; the other two are identity matrices. A subdivision into two
children results in one factor, into four children gives two factors and into eight
children yields three factors in the above product.

81



3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R3

3.3.6 Complexity Estimates

The Sand T matrices make local refinements possible. This flexibility has to be
paid for by ahigher computational cost for the entries of the T matrices of elements
inirregular parts of the mesh. We show how expensive these computations are in
case of geometric vertex and edge meshes. Experiments in Section [3.4] confirm
these results and approve the conjecture that the computation of the T matricesis
the most expensive part in building an hp-FE space.

To compute the costs in the whole mesh, we first look a single application of an
S matrix:

Lemma 3.42 (Complexity of the application of an Smatrix) The complexity ts
of the application of an Smatrix to a column of the T matrix is:

e ts = O(p?) inonedimension,

e ts=0O(p)-t(A) intwo dimensionsfor an Smatrix of theform A® 1, where
t (A) isthe complexity for the application of the one dimensional Smatrix A,

o ts= O(p?) -t(A) inthreedimensionsfor an Smatrix of theform AQ I Q I.

In three dimensions, the complexity of the application of an Smatrix to one column
of the T matrix is @ (p%).

Proof: In one dimension, the S matrices are nearly upper triangular (c.f. Exam-
ple3.36) and of size px p. Therefore, the matrix-vector product costst s = @ (p?).

In two dimensions, a T column is of size p2. In tensor product notation, each
part of size p is applied to a one dimensional S matrix (costing t(A)). Therefore,
ts = O(p) - t(A). The same argument applies for the p2 partsof size pof aT
columnin three dimensions. O

Proposition 3.43 (Creation of all T matricesin a geometric mesh)

Let (7", p") be a three dimensional geometric mesh-degree combination with n
layers generated by Algorithm[3.3 and the maximal polynomial degree p propor-
tional ton: p = [mn]. Then, the creation of the T matrices for all elements costs
ttr = O(p’) andtt = O(p®), in a geometric vertex and geometric edge mesh,
respectively.

Proof: The number of layersn is equal to the maximal polynomial degree p inthe
mesh-degree combination (7", p™).
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In elements without hanging nodes, the T matrix is computed in @ (p3). There-
fore, consider elements with hanging nodes. In an element with hanging nodes,
thereare 9 (p?) T columns modified viaan S matrix with costs of @ (p*). Inageo-
metric vertex mesh, there are p layers, therefore, tt = @ (p?+**1). In ageometric
edge mesh, there are p layersand levels, therefore, t1 = @ (p2T*t2). The number
of elements per layer is bounded by L ¢ independently of p (c.f. Proposition 2.28).
O

Remark 3.44 We do not consider geometric boundary layer meshes as there are
no hanging nodesin such a mesh (c. f. Figures B and[3.24).

3.4 Numerical Experiments

In the first numerical experiments, we compare the measured run-time costs with
the complexity estimates given in Section [3.3.60 Then, some convergence results
for the reaction diffusion equation in two and three dimensions are presented.

3.4.1 Run-Time Cost Analysis

Figures[3.16 and [3.17 show plots of the run-time costs of the hp-FE space gen-
eration algorithm and the stiffness matrix generation. The time measurements are
plotted versus the number of degrees of freedom (short ‘ndof’) and the number
of layers (up to 15) for three different meshes in the unit cube D = (0,1)3: a
geometric vertex mesh (c.f. Figure B.3), a geometric edge mesh (c.f. Figure
on the right) and a geometric boundary layer mesh (c.f. Figure [3.1] on the right).
The former two are irregular meshes while the latter is aregular mesh (no hanging
nodes).

The plotsin Figure[3.16 show the run-time costs of the two most expensive parts
of the hp-FE space generation algorithm (element creationincluding T matrix gen-
eration and the topological searches, c.f. Algorithm and its total time. There
are more tasks in the hp-FE space generation a gorithm than the two analysed here
but their run-time cost is barely noticeable compared to the computation of the T
matrices.

More precise estimates on the asymptotic behaviour of the run-time as shown
in Figure[3.16) can be found in Table B1l It shows an estimate for the order of
complexity of the most expensive part of the hp-FE space generation algorithm,
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ndof =N

time [s]
time [s]
time [s]

et

S / =

2 4 8 10 16 2 4 8 10 16 2 4 8 10 16
number of layers = p number of layers = p number of layers = p

Figure 3.16: Run-time cost analysis of the hp-FE space generation algorithm plotted versus number of

degrees of freedom (top) and number of layers (bottom). Plotted are the total space build
time (dotted line), topological searches (dashed line) and creation of elementsand T ma-
trices (solid line) for three different meshes: vertex mesh (+, left plots), edge mesh ([,
middle plots) and boundary layer mesh (O, right plots).
The dash-dotted lines show ©(N24) and @(p’) for the vertex mesh (+, left plots) and
O(N18) and @ (p®) for the edge mesh (I, middle plots) respectively for the number of
degrees of freedom N and the number of layers n (which is equal to the maximal polyno-
mial degree p).

the creation of elementsand T matrices (the solid line in Figure B.16). To estimate
the order, we use the Ansatz t(x) = « - x# where t(x) is the run-time of the
algorithm and x is either the number of layers (= highest polynomial degree) p or
the number of degrees of freedom N. Then,

= logt(x2) — logt(x1)
~ logxp —logx;

The values of 8 of the boundary layer mesh are not very meaningful as the algo-
rithmisstill inits pre-asymptotic range for the values of N and p shown.

Theresultsin Table[B.d comply with the theoretical estimates of the complexity
of the creation of all T columnsin Proposition 343, namely @ (p’) and O (p®) for
the geometric vertex and edge mesh respectively.
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B N | t[d | p B B N | t[d | p B
2442 5706 | 49.090 | 10 7.734 1873 23841 | 137110 | 10 8539
2287 7716 | 102600 | 11 7.354 1818 36813 | 309430 | 11 8.359
2340 10207 | 194570 | 12 7641 1847 54916 | 640410 | 12 8561
2327 13256 | 358680 | 13 7715 1825 79571 | 1270779 | 13 8521
2215 16947 | 635370 | 14 7446 1792 112455 | 2389701 | 14 8.422
21371 | 1062.089 | 15 155519 | 4272.718 | 15

B N | t[d | p B

1426 61080 | 2150 | 10 7.839

1469 103140 | 4559 | 11 8141

1575 167041 | 9260 | 12 8793

1663 261158 | 18719 | 13  9.349

1708 396135 | 37.429 | 14 9.666

585278 | 72.920 | 15

Table 3.1: Estimates for the order of complexity of the algorithm for the creation of elements and T
matrices with respect to the number of degrees of freedom N in the left hand part of each
table and the number of layers p in theright hand part. The top left and top right tables show
the numbers of the vertex and edge mesh respectively. The bottom table shows the numbers
of the boundary layer mesh. The timet is measured in seconds (information on the CPU
used and how the time measurements are conducted are given in SectionZ.3).
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ndof =N
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Figure 3.17: Run-time cost analysis of the hp-FE space generation agorithm and stiffness matrix com-
putation plotted versus number of degrees of freedom (left) and number of layers (right).
Plotted are the total space build time (solid line) and the time for the stiffness matrix gen-
eration (dashed line) for three different meshes: vertex mesh (+), edge mesh (CJ) and
boundary layer mesh (QO).
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To give an impression how the run-time costs for the hp-FE space generation
relate to other typical tasksin a FE simulation, Figure[3.17] shows a comparison of
the run-time costs of the space generation with the integration and assembling of

the stiffness matrix
/ Vu - Vudx.
)

The stiffness matrix eval uation takes about ten times longer on an irregular mesh—
on aregular mesh, the difference is even more pronounced.

3.4.2 Reaction Diffusion Equation

In this section, some numerical results of the reaction diffusion equation (intro-
duced in Section in two and three dimension are shown.

The convergence graphs are shown in the relative energy error versus a power
of the number of degrees of freedom (short ‘ndof’). If a(.,.) is symmetric, the
energy error satisfies [[106]:

2
lUexact — UNIIE = @(Uexact — UN, Uexact — UN)
= A(Uexact — UN, Uexact) — @(Uexact — UN, UN)

=0
Galerkin orthogonality (L.6)
= A(Uexact; Uexact) — a(UN, Uexact)
—_——
=l(un)=a(un,un)

2 2
= ||Uexact/lg — lUNIIE.

whereuy = @ "u is the Finite Element solution and ||Ue<act||2E is known exactly
(by symbolic integration performed by Mathematica or an overkill computation
using the same program). |jun ||2E = a(un, un) wherea(., .) isthe bilinear form
associated to the problem is computed by a(un, un) = u' Au. In the plots, the
relative energy error

2 2
[Uexact £ — IlUNIIE

(3.45)
| Uexact |2

is shown.
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Two Dimensions

The problem solved in the following to sectionsis always

—aAu+cu=f inD C R?,
u=20 onl'p,
a—u=g onI'y
on

on various domains D and with various sets of dataa, ¢, f and g.

Problem with a Boundary Layer The domain D is the unit square (0, 1)2, c.f.
FigureBI8and 'y = @, I'p = dD. Theright hand side f and the reaction coeffi-
cient ¢ are chosen to be 1. The diffusion coefficient a is chosen much smaller than
1. Thisresults in a boundary layer with a thickness of ¢ (+/a) near the Dirichlet
boundary I' p [83,98]:

—aAu4u=1 inD = (0, 1)% c R?,
u=20 onaD.

Figures[3.19and[3.20 show the convergence histories of the rel ative energy error
witha = 1072 and a = 1012 respectively. In the latter case, the energy of
the exact solution istaken to be 1 asthe boundary layer isthin: the error introduced
by thisis estimated to be of order +/10~12 = 106 which is much smaller than the
achieved accuracy of order 10~4.

Remark 3.46 Both convergence plots in Figures and give the conver-
gencein log- 4/ scale although Proposition predicts that the error was of the
order (9(exp(—bN1/3)). However, thisisno longer truefor boundary layer meshes,
where the number of degrees of freedom N behaveslike @ (p*) because of the lay-
ers and levels in the edge and corner neighbourhood (c.f. the situation in three
dimensions described in Section[2.3).

Singular Behaviour of the Solution The domain D is the L shaped domain
(=1, 1)2\ (0, 1) x (—1, 0), c.f. FigureB2T for the partitioning of 3D into I'p and
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Figure 3.18: Geometric boundary layer mesh in Figure 3.19: Convergence of therelative energy er-
the unit sguare generated using Al- ror versus number of degrees of free-
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Figure 3.22: Geometric vertex mesh in the L Figure 3.23: Convergence of therelative energy er-
shaped domain generated using Al- ror versus number of degrees of free-
gorithm[3:2 with the reentrant corner dom in log- 3/ scale for the two di-
marked as singular. The (isotropic) mensional problem with a singular-
degree pk islinearly distributed with ity: the straight line shows exponen-
m=1 tial convergence.

I'n. Theright hand side f and the reaction coefficient ¢ are chosen to be 0. With
the following Neumann boundary conditions

B 2 . —
% =37 [(;) sin(%/3p) + ( Xy> Cos(2/3<p):| : onln,

the problem —Au = 0 in the L shaped domain D has the exact solution u =
r3sin(2/3p), where (r, ¢) arethe polar coordinateswith respect to the origin. The
mesh and the convergence history are shown in Figures [3.22 and respectively.

Three Dimensions

Asin two dimensions, the following problem is solved:

—aAu+cu=f inDcRZ,
u=~0 onlp,
%zg onl'y
an

on different domains D and with different dataa, c, f and g.
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Figure 3.24: Geometric boundary layer mesh in Figure 3.25: Convergence of therelative energy er-

the unit cube generated using Algo- ror versus number of degrees of free-

rithm with the sides marked as dom in log—$/- scale for the three di-

singular. The (anisotropic) degree mensional boundary layer problem:

pk islinearly distributed withm = 1. the straight lines shows exponential
convergence.

Problem with a Boundary Layer The domain D is the unit cube (O, 13, c.f.
FigureB.24andI'y = @, I'p = 9D. Theright hand side f and the reaction coeffi-
cient ¢ are chosen to be 1. The diffusion coefficient a is chosen much smaller than
1. Thisresults in a boundary layer with a thickness of ¢ (+/a) near the Dirichlet
boundary I' p [183,198]:

—aAu+u=1 inD = (0, 1)% c R?,
u=~0 onaD.

Figure[3.25 shows the convergence with a = 102 while Figure[3.24 shows the
mesh.

Singular Behaviour of the Solution (Vertex Singularity) Theprobleminthree
dimensionsis similar to the problem with the singularity in two dimensions. The
domain D isthe Ficheracorner (—1, 1)3\ (=1, 0)3. The reentrant corner (located
at the origin) is marked as singular since it is known that the exact solution

U = /r sin(p) sin(®)
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Figure 3.26: Geometric vertex mesh in the Fichera
corner generated using AlgorithmB32
with the reentrant corner marked as
singular. The (isotropic) degree pk
islinearly distributed with m = 1.

hasasingularity there. The coordinates (r,

with respect to the origin.
The problem solved is

3.4 NUMERICAL EXPERIMENTS
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Figure 3.27: Convergence of therelative energy er-
ror versus number of degrees of free-
dom in log—4- scale for the three di-
mensional problem with a vertex sin-
gularity: the straight line shows expo-
nential convergence.

a4 gt

@, 0) aretheusua spherical coordinates

— AU+ U = /r sin(p) sin() <1+ 4—i2> inD = (=1, 1)%\ (-1,0)°3,

sin() sin(y)
u _ cosd) an(e)
an colly)
NG
u=20

onI'yn,

onI'p,

where only the quadrilateral with the corners (0, 0, —1), (—1,0, —1), (-1, 0, 0)
and (0, 0, 0) has the homogeneous Dirichlet boundary condition. The mesh and
the convergence history are shown in Figures and respectively.

Remark 3.47 Figure[3.27 givesthe convergence history in log— Y- scalealthough

Proposition states that the error should be of the order @ (exp(—bN¥5)).
However, there are no edge singularities in this problem. Therefore, there are no
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layersand levelsin the corner and edge neighbourhood, i. e. the number of degrees
of freedomis of order @ (p*).
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Maxwell’s Equations

Maxwell’s equations are used for modelling el ectro-magnetic wave phenomena.
The main physical quantitiesin Maxwell’'s equations are the el ectric and magnetic
fields. There are problems where they can have unbounded singularities (c.f. the
numerical experiments in Section [4.3). For this reason, the numerical treatment
of Maxwell’s equations was classically done using Nédélec's edge elements [[87,
88]. However, implementing such elements is not trivial. In addition, proving
p- or hp-convergence for Nédélec's edge element approximationsis still an open
problem in three dimensions (the two dimensional caseis studiedin[[5]). Recently,
Costabel and Dauge have introduced the wei ghted regul arisation to overcome both
problems [[29]. New results show that hp-FEM with weighted regularisation are
ableto resolve Maxwell problems at an exponential rate of convergence[ 31, [32] —
we give numerical evidencefor these results.

This chapter briefly reviewsthe weighted regularisation for Maxwell’s equations
in its second section. The first section reviews the variational formulation already
presented in Section The final section shows numerical results in various
domainsin two and three dimensions. There, numerical evidenceis given for the
conjectured exponential convergence of the Eigenvalues in terms of degrees of
freedom.
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4 MAXWELL'S EQUATIONS

4.1 Time Harmonic Maxwell’s Equations

The time harmonic Maxwell’s Equations are given in Section Formally, the
electric source problem reads (1.24)

curl(uteurl E) — w? (s + i) E=—iwJ,
12)
= (41)
diveE = 0.
Eigensolutions of the electric problem (4.1) are foundfor J = 0 and o = O:
curl(uteurl E) — w?cE = 0. (4.2)

The variational formulation for the electric source problem reads:
Find E € Ho(curl; D) such that

/D(u‘lcurl E-curl v — % E - v)dx =/I.3 f.vdx Vu e Ho(curl; D), (4.3)
where
H(curl; D) := {u € L%D)? : curlu € L3(D)%},
with the perfect conductor boundary conditions (.28):

Ho(curl; D) :={u e H(curl; D) : u x n=00n9dD}. (4.9

4.2 Weighted Regularisation

A well-known strategy for Finite Element computations of the Maxwell Eigenfre-
guenciesis the use of ‘spurious-free’ elements whose classical representatives are
the two families of Nédélec's edge elements [|87,[88]. There are also good reasons
why one may prefer a discretisation of the Maxwell problem which uses standard
and widely used elements like nodal elements. In this case, the compatibility con-
ditions between neighbouring elements are point-wise and scalar as opposed to
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4.2 WEIGHTED REGULARISATION

tangential and vector valued in the Nédélec case. Theidea [|67,(79] isto penalise
the divergence by adding (assume ¢ constant)

/ divudivvdx
D

to the variational form and introducing the variational space
Xn := {u € Ho(curl; D) : divu € L?(D)}. (4.5)

This method has drawbacks in domains with reentrant corners [[27,[28,[30]: it does

not capture the correct solution. The new idea developed in [[29)] is to introduce

intermediate spaces X,[Y] between (4.4) and (4.5) coupled with the corresponding

modification of the bilinear form in (&3), such that the space H, := H1(D)d is

densein Xp[Y], the associated operator is elliptic and the solution in X[ Y] of the

new problem coincides with that of (4.1) (the proof is givenin [[29], Section 2.1).
The new bilinear form with weighted regularisationis

ay(u,v) := / (;fl curlu - curl v — w?éu - v) dx + (divu, dive)y  (4.6)
D

where Y isaspace such that Hy isdensein
XnlY] :={u € Ho(curl; D) : divu € Y},

2 2 : . 2
Uy = llourlulZ, o a + (divu, divu)y + Ul o 0

and L2(D) ¢ Y ¢ H~L(D). Therefore, it suffices to concentrate on weighted L 2
spaces:
{p € L2.(D) : wg € L(D)}
with aweight w € C*°(D). ay(u, v) is a continuous, coercive bilinear form for
o = 0. Therefore, the source problem ([4.3) with the bilinear form ay (u, v) fits
into the general framework of Section [L.11
A simple choice for the weight w in three dimensionsis

w = dist(x, UeulJ é). 4.7)
ceC ecé

Other formulationsfor the weight w are possible, as long as they are norm-equiva-
lent to (A7) (c.f. Section[A.2.T below). Most importantly, it is possible to limit the
weight to 1 far away from singularities.
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4 MAXWELL'S EQUATIONS
Plugging the weight into yields

dist(x. | J eu é)zdivu-divvdx

ceC ecé

(divu, divv)y = /

w? div u-div v dx =/
D

D

for the simple weight (4.7).
The Maxwell Eigenproblem is solved combing ([4.2), and (4.6):
Find frequencies w and functions0 # E € Xn[Y] such that

/ u‘lcurl E -curlvdx + (divE, dive)y = wZ/ ceE-vdx Vv e Xp[Y].
D

D

(4.8

isarea Eigenproblemif the conductivity ¢ = 0, i. e. thereare only insula-
torsin the domain D. If X,[Y] c L%D)4 = H is a compact embedding, we can
concludethat (4.8) fits into the setting of Section[1.3.4l However, the compactness
of Xn[Y]in L2(D)? isnot straight forward—it is discussed in Section [4.2.1 bel ow.

Remark 4.9 (4.8) can be solved using standard nodal FEM in each component of
the solution E which discretise Hy,. If the boundary consists only of axi-parallel
planes, the perfect conductor boundary conditions ([1.28) can be applied as care-
fully chosen Dirichlet boundary conditions to each of the three components of
Hn = HY(D)3. The same applies to a two dimensional polygon with axi-parallel
edges.

d
According to [29], Hn e&*’ XnlY]. Therefore, using standard Finite Element
functionsuy € VN = 51951(7, D)3 can be used to approximate functions in

XnlY]. Suitable refinements of Vy generate convergent series of Galerkin approx-

. . . Compact L. . .
imations. Assuming Xn[Y] C L2(D)9, thisimpliesthat also Eigenvalues and

Eigenfunctions of can be approximated and the FE approximations converge
to the true solution.

On the other hand, convergence of Nédélec's edge elements using p- or hp-
extensions is not proven in three dimensions. However, there exists numerical
evidence for such a convergence[l4, 33, 144].

4.2.1 Selection of Weights in the Weighted Regularisation

In this section, some more details on the weights are presented, following [[29].
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4.2 WEIGHTED REGULARISATION

First, in each of the subdomains introduced in Sections [2.2.1] (two dimensions)
and[2.3.1] (three dimensions) except V9, a different weight w; should be applied.
In addition, in three dimensions, using the distance function p e (blowing up &t the
corners), the edges are also isolated from each other. Therefore, the product of
all individual weight functions [] w; is equivalent to the weight w; in each of the
subdomains.

Two Dimensional Weights

The domains V4 (vicinity of a corner a) and VO (regular part) and the distance
functionr a(x) = |x — a| referenced in this section arethe same asin Section[2.2.11
Theregularity in V4 implies [[29] that the weight should be chosen as

re. (4.10)
The exponent y, in (4.10) is
0<1-" <ya<1 (4.12)
Wa
Therefore, aglobal weightis
w=[]r¥ (4.12)
acC

The different . can be simplified to ymax:

w = (]‘[ ra)ymax. (4.13)

acC

The following, simple weight w is equivalent to (4.12):
w= dist(x, U a)y"‘ax. (4.14)

acC

Remark 4.15 (Compactness of Xp[Y] C L2(D)%) In the limiting case yq = 1
in @11), w” in ([4I0) is polynomial. This property is desired as it makes the
evaluation of w22 in ay (u, v) less expensive and the numerical integration more
accurate. However, the compactness of the embedding X ,[Y] into L2(D)Y is lost
for ya = 1[29]. Therefore, convergence of discrete Eigensolution to the true
solutions can only be asserted for ya < 1.
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4 MAXWELL'S EQUATIONS

Three Dimensional Weights

The domains V¢, Ve(c), V9, VO and distance functionsr ¢, re, pe referencedin this
section are the same asin Section 2,311

The regularity in the different domains V2, V0 and Ve(c) implies [29) that the
weights should be chosen as

rein vy, réein vy, ree. p&ein Ve(c). (4.16)
The exponents ye and y¢ in are

0<1-min
Xee C()e(x)

A = —Y2k \JuRl + Vs

and ME" the Eigenvalues of the Laplace-Beltrami operator on G (c.f. Sec-
tion[2.3.) with Dirichlet boundary conditions.
To sum up, aglobal weight is

w = (]‘[ ré’“) : (]"[ ng). (4.17)

ceC ecé

< ye <1, 051/2—)LCDE<)/C§1,

where

@17 isequivalent to (4.7). The different . can be simplified to ymax:
Vmax
w = (]‘[ re- l_[pe) . (4.18)
ceC ecé

Remark [4.15 also holdsin the three dimensional case.

4.2.2 Computation of Weights

In the computation of the div-div element matrix, the weight w 2 (x) is computed
together with the determinant of the Jacobian of the element map det F | (x) at
every quadrature point. This is used during the numerical integration with the
quadrature rule. The evaluation of the weight w(x) is done by an external routine
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which is given as a template argument to the DivDiv class at compile ti mefl This
routine needs as input the cell K and the reference coordinates & € K and returns
the value of w at this specific point.

Example 4.19 The simplest weight routine TrivialWeight always returns 1. The
compiler isable to completely eliminate the call to the weight function in this case.
Thisisfor computations without weight. There are two other implementations of a
weight function: ShortestDist implementing (4.7) and ProductOfAll implementing
for ymax = 1. Inthe case of ymax < 1, @ post-processing routine nested
around the weight raises w to the given power.

Both ShortestDist and ProductOfAll know about the corners and edges with sin-
gularities and compute the distances to these. In the case of ShortestDist, the
shortest distance is returned and in the case of ProductOfAll, the product of all
distancesis returned.

In this way, the spaces Xn[Y] can be implemented easily with good control of
the used weight. It can be concluded from [[29] that X,[Y] with the weight w
givenin and and the sketched implementation satisfy all assumptions
required to capture the correct solutions of Maxwell’s equations in the formulation

@.3).

4.3 Numerical Results

The numerical results for the benchmark problems|[[36] of (4.8) are obtained using
using Concepts (c.f. Part [TI) in two and three dimensions. The actual equation
solved here has an additional parameter s in front of the (., .)y-form:

Find frequencies w and functions0 £ E € Xp[Y] such that

/ wLeurl E - curl vdx + s(div E, divv)y =a)2/ eE-vdx Vve Xp[Y].
D

P (4.20)
This scaling parameter s > 0 can be chosen arbitrarily—it helps finding spu-
rious Eigenvalues. Physical Eigenfunctions E have divE = 0 and the (., .)y-
form disappears from ([4.20) whereas spurious (non-physical) Eigenfunctions have

1The template technique lessens the runtime flexibility: The user cannot easily be prompted for an
arbitrary weight to be used. On the other hand, the evaluation of the weight can be highly optimised
by the compiler as all information is there at compile time. Thisis especially useful in this case as
the weight function iscalled (9(p3) timesin each cell K.
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anon-zero divergence. The spurious Eigenvalues are scaled with this parameter s
whereas the physical Eigenvalues are independent of s.

Besides figures of the domains and meshes, al numerical examples below fea
ture plots of the convergence of the first three Eigenvalues and a plot of the Eigen-
values versusthe scaling parameter s. In the Eigenvaluesversus s plots, the Eigen-
values 1 = w? are categorised with the following criterion using the Eigenfunction
E:
>p physical Eigenvalue
<pt spurious Eigenvalue (4.21)
otherwise undecided.

Il curl E|3
s|| div E[|2

Thevalue used for p is 1.5—this gives good results ([[37] and our own experience).
The spurious Eigenvalues are lined up on straight lines through the origin in the
Eigenvalue versus s plots whereas the the physical Eigenvalues are lined up on
horizontal lines.

Note that we use y = 1 in al computations and loose the compactness of
Xn[Y] c L2(D)Y (c.f. Remark @.15). Nonetheless, in our numerical experiments,
we are able to achieve convergence of the discrete solutions towards the true solu-
tions.

Below, we give numerical evidence for the exponential convergence of hp-
FEM with weighted regularisation to solve Maxwell Eigenvalue problems. Very
recently, Costabel, Dauge and Schwab have been able to prove the exponential
convergencetheoretically [131} [32].

4.3.1 Sources of Errors in Eigenvalue Computations

The numerical results presented below are distorted by different errors.

Modelling error

We neglect this error source and take the model to be exact. The goal of the compu-
tations below is not the simulation of some physical phenomenon but studying the
performance of the method and its implementation (verification of the computer
program).
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4.3 NUMERICAL RESULTS

Discretisation error

Assuming all matrices are known exactly and all matrix Eigenvalue problems are
solved exactly, the estimates in Section[1.3.4] and the Rayleigh Minimax principle
apply for any value of s: A < A¢ N and div E = 0. By refining the hp-FE spaces,
the discretisation error is reduced.

Numerical quadrature error

In al examplesin this thesis, the numerical integration in the bilinear and linear
formsis done using atensor product Gauss Jacobi quadrature rule with p + 2 inte-
gration points in reference coordi nates This enables us to integrate polynomials
of order 2p + 3 exactly. Assuming an affine element map Fk and therefore a con-
stant determinant of the Jacobian in the integration in reference coordinates leaves
uswith 2p + 3 — 2p = 3 ordersfor the integration of the weight (2p is consumed
by the integration of div E - div v).

Non-affine element maps introduce a determinant of the Jacobian into the inte-
gration in reference coordinates which is arational function and therefore cannot
be integrated exactly by the given rule.

Another source of quadrature errors is a non-polynomial weight w. This hap-
pens for exponents y # 1 or weights including a minimum operation (e. g. (4.14)
and in two and three dimensions respectively). The polynomial degree of a
product weight (e.g. and in two and three dimensions respectively) is
(in most cases) too large to be integrated exactly by the given rule.

However, this does not harm the convergence as can seen by a Strang-type argu-
ment [[103]: Theintegration order in large elements far from the edges and vertices
in & and C respectively is increased and the small elements closeto € and C are
subdivided.

Eigensolver errors

For reasonably large Eigenproblems, only iterative solvers are feasible. We have
chosen ARPACK [[77,[78] in shift-invert mode as our Eigensolver—the linear sys-
tem inside the Eigensolver is solved by Umfpack [(38, [39, [40], Pardiso [91] or

2|n case of an ani sotropic polynomial degree py , the order of the tensor product quarature rule isalso
anisotropic. The sum factorisation technique for efficient evaluation of the numerical integration is
discussed in Section[6.4] (see also [84)).
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M3 My

M1 M2

Figure 4.1: L shaped domain (—1, 1)2 \ (0,1) x Figure4.2: Square (—1, 1)2 for the transmission
(-1,0). problem. The areas M; and My are
made of different materials.

SuperLU [[45]. ARPACK has a tolerance parameter to test for convergence which
we set to machine precision 2.2 - 10716, This should eliminate numerical errorsin
the Eigenval ue solver as much as possible.

However, ill-conditioned Eigenproblems can still create alarge dispersionin the
numerical results. The condition of the Eigenproblem depends on the distance
of the Eigenvalue to the rest of the spectrum of the operator [22]. When a spu-
rious Eigenmode comes close to a physical Eigenmode, the condition number is
large. Thisis the reason for non-monotonicity in the convergence histories of the
Eigenvalues. Large condition numbers increase the influence of distortions of the
operator which are introduced by inexact numerical integration.

4.3.2 Two Dimensions

The L shaped domain (Figure [4.1) and a square for transmission problems (two
different materials My and My in a checkerboard pattern, Figure [4.2) are treated.
In both problems, singularities arise. The different materials M1 and M> in the
transmission problem are modelled by different dielectricitiese 1 and e».

L Shaped Domain

The Maxwell Eigenvalues & = w? coincide with the non-zero Neumann Eigenval-
ues for the Laplace operator. Table [4.1] summarises the results of an overkill com-
putation for the non-zero Neumann Eigenvalues [36]. Notethat A3 = Aq4 = 2.
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A1 A2 A3 A Ag
1.47562182408  3.53403136678  9.86960440109  9.86960440109  11.3894793979

Table 4.1: Non-zero Neumann Eigenvalues of the L shaped domain [36].
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Figure 4.3: Geometric vertex mesh inthe L shaped Figure 4.4: Eigenvalues in the L shaped domain
domain refined towards the reentrant (ordinate) plotted versus s (abscissa).
corner. For this plot, 15770 degrees of free-

dom are used. The horizontal dashed
lines denote the exact Eigenvalues ac-
cording to Table[d1l

Thefirst and fifth Eigenfunctionshave astrong principal singularity which does not
belong to H1(D) whereas the second belongs to H 1(D) and the third and fourth
Eigenfunction are even analyticin D.

Figure[4.3 shows a geometric vertex mesh for the L shaped domain with refine-
ment towards the reentrant corner (0, 0). It is generated with the grading factor
o = 1/2(c.f. Section[2.2).

Figurel4.4 shows a plot of the Eigenvalueson the ordinate versus different s val -
ues ontheabscissa. x denotes spurious Eigenvalues, + denotesphysical Eigenval-
ues and o denotes undecided (none in this case). The categorisation is done using
the criterion (4.21). The Eigenvalues from Table [4.1] are indicated by horizontal
dashed lines. It is clearly visible that the spurious Eigenvalues (x) are lined up on
straight lines through the origin of the plot whereas the physical Eigenvalues (+)
are very close to the horizontal dashed lines.

105



4 MAXWELL'S EQUATIONS

10° T T - 10° T T -
SN §=9 —— s §=9 ——
101 E ThyRigoinas =6 4 107 - s=6 a
T AL s=2 ke SO S=2 -
-2 N S -2 o ¥
. 10 - . 10 LRy
s % % & S
5 107 —— 5 107
= 104 bl %\T?\ 2 10% ¥ gj\@
© i RS, © U
° = VAN ) RN
= 10° 'y = 10° ks
10 e 10 o
7 7 H R
10 10
o® 52 108 15° 208 258 o® 52 108 15° 208 258
dof dof

Figure 4.5: Convergence of the 1st Eigenvalue in the L shaped domain in log-3/ plot. The plots are
done with m = 1 (left) and m = 1/2 (right).
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Figure 4.6: Convergence of the 2nd Eigenvalue in the L shaped domain in log-3/~ plot. The plots are
done with m = 1 (left) and m = 1/2 (right).
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Figure 4.7: Convergence of the 3rd Eigenvalue in the L shaped domain in log-3/- plot. The plots are
done with m = 1 (left) and m = 1/2 (right).
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Figures[4.544.7 show the convergence history of the first three Eigenvalues for
selected values of s. In each figure, there are two plots: the one on the left hand
side with the classical refinement rule as introduced in Section and the one on
theright hand side with a modified refinement rule; only in every second step also
the degrees were increased resulting in a polynomial degree distribution parameter
m = 1/2. The first Eigenvalue (convergence plot in Figure has a strong un-
bounded singularity. Nevertheless, the plot in log- & scale shows the anticipated
exponential convergence. The second Eigenval ue (convergenceplot in Figure [4.6)
has its Eigenfunctionin H1. The convergenceis also exponential but much faster.
The third Eigenvalue (convergence plot in Figure [4.7, coinciding with the fourth
Eigenvalue) has an analytic Eigenfunction. The convergenceis still exponential in
log- /- scale but even faster.

Itisobserved that in Figures[4.5H4.6, the modified refinement rule wins over the
classical refinement rule. However, in Figure [4.7] the classical refinement is seen
to be more beneficia. It iswell known that the optimal grading factor o is close
t0 0.15[63]. A geometrical hp-mesh with the modified refinement ruleis closer to
the optimal o = 0.15 mesh than a mesh created with the classical refinement rule.
The exception in the last case (Figure 4.7, convergence of the third Eigenvalue):
the third and fourth Eigenfunction are known to be analytic. Analytic functions
are best approximated with a p-extension. The classical rule is closer to the p-
extension than the modified rule and therefore results in a faster convergence.

Transmission Problem

The transmission problem in the square (—1, 1) (c.f. Figure[4.2) features a sin-
gularity in the centre of the domain and jumps of the normal components over the
interfaces between the different materials M1 and M». The materials M1 and M»
are modelled by different dielectricitiese1 # 1 and 2 = 1. Below, we present the
threecasese; = /2,1 = 102 and ¢; = 1078,

The same Eigenvalues as for the Maxwell Eigenproblem can be computed by
the following Eigenproblem [[36]:
Find frequencies w and functions0 # u € H (D) such that

/ YeVu - Vodx = a)Z/ uvdx Vv e HYD). (4.22)
D D

Using (@22), the Eigenvalues A = w? summarised in Table.2 can be computed.
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g1 =1/2 &1 = 10_2 & = 10_8
A1 3.3175487634 4.89319332489 4.9348021587
A2 3.3663241572 7.20667542249 7.2252112326
A3 6.1863895624  15.53698165311  24.6740046478
Agq | 13.9263233310  24.46225024727  24.6740107936
A5 15.0829909612  24.48745601340 24.6740108178

Table 4.2: Non-zero Neumann Eigenvalues of the transmission problem with different g and e = 1,
solved via {@.22) [36].

The use of the weighted regularisation in order to take the jJumps into account
cannot be validated, because the exponent y of the weight w has to satisfy two
incompatible conditions [[37]:

e Compactness of Hy C Xu[Y]. In order that the number of spurious modes
does not tend to infinity as the meshisrefined, y < lisrequired.

e Density of H, C X,[Y]. For the transmission problem only, to ensure the
approximation of the solutions, y > 1isrequired.

A possible solution is to use so-called node doubling at the interface and enforce
the conditions between the different materials with additional constraints. These
constraints are [[70]:

e Thetangential component of the electric field has to be continuous over the
interface.

e The normal component of the electric field has to satisfy
(Er-n)er + (Er -nr)er =0, (4.23)

i.e. when g = ¢, the continuity of the normal component is enforced (g
and ¢; take the values of ¢1 and &2 depending on which interface we are
looking at). Here, n| and n, arethe outward unit normal vectors, and E| and
E, arethe electric field on the interface from the | eft and right respectively.

At the origin of the domain, where the four subdomains meet, the conditions
over the four interfaces for the normal and the tangential component should
not be inforced individual IyB but asasum [[70].

3Thiswould result in enforcing the Eigenfunction to be zero at the origin.
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4.3 NUMERICAL RESULTS

This Ansatz introduces a set of homogeneous, linear constraints to the Eigenvalue
problem. A constrained matrix Eigenvalue problem can be solved using a QR
factorisation of the matrix of constraints [[62].

Asbefore, plots of the Eigenval ues versus the scaling parameter s are shown. In
these plots, x denotes spurious Eigenvalues, + denotes physical Eigenvalues and
o denotes undecided. The categorisation is done using the criterion (4.21). Ad-
ditionally, the Eigenvalues shown in Table are indicated by horizontal dashed
lines.

Basic Weighted Regularisation ¢1 = 1/2isthe easiest case with respect to the
size of thejumpsat theinterfaces. We try to computethefirst two Eigenvalueswith
basic weighted regularisation using the weight w = min (|X|, |y|) accomodating
for the jumps at the interfaces and the (possible) singularities at the origin.

Figures[4.10H4.117] show the convergence history of the basic weighted regulari-
sation method (without node doubling). Figure [4.8 shows the geometric edge mesh
in the transmission domain D = (—1, 1)2. The refinement towards the interfaces
between the different materials should enable the method to resolve the jump in
the normal component of the solution. The number of spurious Eigenvaluesis—as
predicted—unbounded for increasing number of mesh layers n (c.f. Figure [4.9).
The convergenceis not very good, however, the method seems to be able to find
the correct Eigenvalues, at |east in the pre-asymptotic range.

Weighted Regularisation with Node Doubling at the Interfaces We compute
the first three Eigenvalues for the values of £1 = 1/2, 1072 and 10~8. In addition
to the results of the weighted regularisation, we present results of an edge element
codd] [3, [76] and the results of the equivalent problem (Z.22) both on the same
mesH] as the weighted regularisation computations (c. . Figure 4.12).

Figure[4.13 shows the Eigenvalues computed with the weighted regularisation
for the different values of ¢1. The number of spurious Eigenvalues is no longer
unbounded and the spurious and physical Eigenvalues are separated more clearly.
The plots in Figures show the convergence histories for the first three
Eigenvalues: The weighted regularisation with node doubling is able to resolve the
Eigenvalues at an exponential rate of convergence—in most cases (see below). In

4The implementation of hp-edge elements in Concepts is due to Kersten Schmicit.
5This means we are using the same refinements and same polynomial degrees in all three cases. The
spaces and the number of degrees of freedom N are different in al three cases.
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Figure 4.8: Geometric edge mesh towards the in-
terfaces in the transmission domain
D = (-1, 12

relative error

Figure 4.10: Convergence of the 1st Eigenvalue in

110

the transmission domain with ¢ =

12inlog- &- scale computed with the
weighted regularisation without node

doubling at the interface.
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_::l::i:l::.::::g::::?::::§:::::::g:::::::i::::::::::izz_
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Figure 4.9: Weighted regularisation without node

relative error

doubling in a geometric edge mesh
(20766 degrees of freedom). Eigen-
values in the transmission domain
D = (-1, 1)2 (ordinate) plotted ver-
sus s (abscissa) for e7 = 1/2. The
Eigensolver computes only Eigenval-
ues above 3 viathe shift-invert method.

Figure 4.11: Convergence of the 2nd Eigenvaluein

the transmission domain with & =
1/2inlog- &~ scale computed with the
weighted regularisation without node
doubling at the interface.
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Figure 4.12: Geometric vertex mesh towards the origin in the transmission domain D = (-1, 17.
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Figure 4.13; Eigervalues in the transmission domain D = (—1, 1% (ordinate) plotted versus s (ab-
scissa) computed with node doubling at the interface for g = 1/2 (left), 102 (middle)
and 10~8 (right). The horizontal dashed lines denote the exact Eigenvalues according to
Table[d.2l 7680 degrees of freedom are used for these plots.

addition to the weighted regularisation, the plots also show the results of the edge
element code and the equivalent problem (4.22).

Choice ¢1 = 1/2 All three methods show exponential convergence for the first
three Eigenvalues in the Ieft plots of Figures The exponential rate of
convergence of the weighted regul arisation and the edge elementsis the nearly the
same for the first two Eigenvalues.

Choice ¢1 = 1072 The edge elements and the equivalent problem show ex-
ponential convergence for the first three Eigenvalues in the middle plots of Fig-



4 MAXWELL'S EQUATIONS

el Hted r‘eg., é = 6‘—»‘— 4 102 | ' \‘Neigh‘ﬁed r‘eg., é = 2‘—»‘— 4 102 F \‘Neigh‘ﬁed r‘eg., é = 6‘—»‘— 4
lements - *\ edge elements ---x--- -~
quivalen blem - - equivalent problem -- - 4 % uivalent problem ---%---
_ . _ NG _10t Ry Ly
s ] e s 5 . w
& 5 < 3 10 S
o @ X @
= = YA 2 0% N
< < * <
° eyl 8 . < . ™
- . 1010 . :
= S < *: < e X
* 12 X > 12 gy NI
10 <] 10 K% - RSy
2 6° 8 10° 12° 14% 16 18° 20° 4 6 8° 10% 12° 14° 16° 18° 20° 4 6 8® 10% 12° 14° 16° 18° 20°
ndof ndof ndof

Figure 4.14: Convergence history of the 1st Eigenvalue for g = 1/2 (l€ft), 10~2 (middle) and 108
(right). The results of the weighted regularisation with node doubling, the edge elements
and the equivalent problem all show exponential convergence in the log-3/- scale plots.

The problems for ¢1 = 10~2 are described in the text.
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Figure 4.15: Convergence history of the 2nd Eigenvalue for & = /2 (Ieft), 102 (middle) and 10~8
(right). The results of the weighted regularisation with node doubling, the edge elements
and the equivalent problem all show exponential convergence in the log-3/ scale plots.

The problems for &1 = 102 and 10~8 are described in the text.
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Figure 4.16: Convergence history of the 3rd Eigenvalue for g = 1/2 (left), 10~2 (middle) and 10~8
(right). The results of the weighted regularisation with node doubling, the edge elements
and the equivalent problem all show exponential convergence in the log-3/- scale plots.

The problems for 1 = 108 are described in the text. Note the different scales for in the
plot for &1 = 102 (middle).
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uresl4.14H4.16. The weighted regularisation only does so for the third Eigenvalue.
The convergence histories for the first and second Eigenval ue deteriorate at alevel
of the relative error of 10~6. This does not depend on s, the chosen Eigenvalue
sorI{\?/Ier (orits parameters)[ﬁ or the formulation of the constraints (4.23) at the ori-
o]

The middle plot in Figure [4.16 shows the convergence history for the third
Eigenvalue: It is approximated poorly. The reason is that the third Eigenfunc-
tion has a strong unbounded singularity at the origin.f This can also be seen in
Figure [4.13(b): The Eigenvalues computed with the weighted regularisation are
above 20 for s > 2 and even above 25 for s > 16—the true value is expected to be
closeto 15.

Choice g1 = 1078  All three methods show exponential convergencefor the first
three Eigenvalues in the right plots of Figures [4.14H4.16 with the following two
exceptions:

e The equivaent problem (4.23) is only able to resolve the second Eigenvalue
up to a relative precision of 10~7. This has been confirmed for different
meshes, refinements and parameters for the Eigensolver.

e Thethird Eigenvalue can only be resolved up to arelative precision of 10 .
Thereason is that the third and fourth Eigenval uel are very close:

M3 107,

A
thisresultsin an ill-conditioned matrix Eigenproblem[[22]. The Eigensolver
ARPACK [78,77] has problemsyielding high accuracy under these circum-
stances.

e normally use ARPACK [77, [78] with Umfpack as linear solver [38,[39, [40] but also tried the
Eigensolver JDBSYM [59] and the linear solvers Pardiso[91] and SuperLU [45]. The shift param-
eter for the shift-invert method and the number of Eigenvalues to be computed were varied.

"Tested variants are: individually over each interface, as a sum or no constraints at the origin at all.

8In the case of the equivalent problem [2.22), the third Eigenfunction has a jump between the two
subdomains with 7.

9n fact, the fourth Eigenvalue is double: 24 = As.
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Figure 4.17: The thick L Shaped domain is the Figure 4.18: Fichera corner (—1, 1)3 \ (=1, 0)3
Cartesian product of the two dimen-
sional L shaped domain (—1, 1) \
(0, 1) x (=1, 0) with (0, 1) inthethird
direction.

4.3.3 Three Dimensions

Thethick L shaped domain (Figure[4.17), the Fichera corner (Figure[4.18) and the
doubleFicheracorner aretreated. Thethick L shaped domain featuresasingularity
at the reentrant edge whereas the Fichera corner produces singular solutions at all

three reentrant edges and the reentrant corner. The double Fichera corner has two
cubes cut out opposite each other where the Fichera corner has only one. The open

domain D of the double Fichera corner is not simply connected and it features a
so-called topological singularity which behaveslike 1/r at the origin.

The Thick L Shaped Domain

The reference solutions for the first few Eigenvalues 1 = w? of (@8) are

1. either the sum of a non-zero Neumann Eigenvalue (NA1, NA2, ...) inthe
two dimensional L shaped domain and aDirichlet Eigenvalue(DJ1, DJ2,...)
in(0,1) (i.e. 72, 4xn2,...),

2. or thesum of aDirichlet Eigenvalue (DAL, DA2,...) inthetwo dimensional
L shaped domain and a Neumann Eigenvalue (NJO, NJ1, ...) in (0, 1) (i.e.
0, 2, co )

The numerical values of the first nine Eigenvalues are shown in Table
Figure[4.19 shows geometric edge meshes for the thick L shaped domain. The
left hand mesh is generated with the grading factor o = /2. It is essentidly a
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Figure 4.19: Geometric edge meshes in the thick L shaped domain refined towards the reentrant edge.
The meshes on the left and right have grading factors o =1/2 and o = 0.15 respectively.

tensor product of atwo dimensional mesh for an L shaped domain with geometric
refinement towards the reentrant corner (c. f. Figure[4.3) and a sSimple one-element
mesh in the third direction. It is treated and built as a three dimensional mesh in
Concepts, though using the algorithm introduced in Section The right hand
mesh in Figure[4.19 shows a geometric mesh with grading factor o = 0.15. For
each number of layers, it is created using a hand written mesh generator.

Figure [4.20 shows a plot of the Eigenvalues on the ordinate versus different
s values on the abscissa. x denotes spurious Eigenvalues, + denotes physical
Eigenvalues and o denotes undecided. The categorisation is done using the crite-
rion (4.21). The Eigenvalues from Table [4.3 are indicated by horizontal dashed
lines. Itisclearly visible that the spurious Eigenvalues (x) are lined up on straight
lines through the origin of the plot whereas the physical Eigenvalues (+) are very
close to the horizontal dashed lines.

Figures show the convergence history of the first three Eigenvalues
for selected values of s. In each figure, there are two plots: the one on the left hand
sidewith o = 1/2 and the one on the right hand side with o = 0.15. Figures [4.24-
show the convergence history of thefirst three Eigenvaluesfor selected values
of s. In each figure, there are two plots: the one on the left hand side witho = 1/8
and the one on the right hand side with ¢ = 1/10. The second Eigenvalue shown
in Figure[d.22 has a strong singularity at the reentrant edge, the first and third are
in H1 and could therefore also be captured by a method with a constant weight
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A1 =DA1+NJ Ap=NA1+DJL 25 . . . .
9.6397238447 11.3452262252 Y % . s X
rrrrrrrrrrrrrrr x,,,,,,,Y,,,,,,;t,,,,,,,4,,,,,;,,,,,,4,,_
)\SINAZ"’DJ]_ )\.4:DA2+N\D 20 —:::::::::%::::i:::::::j::::::j:::::::I::::t::::::¢:
13.4036357679 15.1972519265 15 b gix 7777777 — Y R L
rrrrr §,§,,,,%,,,,,,,x,,,,,,ff,,,,,,,+,,,,+,,,,,,+,
a5 =DAL+NJL Ag=DA3+NJ O - S S
195093282458  19.7392088022 I S
A7=NA3+DJ1 ig=NA4+DJ 5F B
19.7392088022 19.7392088022
O 1 1 1 1
X9 = NA5+ DJL 0 5 10 15 20
21.2590837990 s
Table 4.3: Numeric values of the first nine Eigen- Figure 4.20: Eigenvalues in the thick L shaped do-
values in the thick L shaped domain. main (ordinate) plotted versus s (ab-

scissa). For this plot, 18276 degrees
of freedom are used. The horizontal
dashed lines denote the exact Eigen-
values.

(i.e.y = 0). None of these Eigenvalues are multiple. All plots are in log- &~
scale and show the anticipated straight lines. This gives experimental evidence for
the conjectured exponential convergence of Maxwell Eigenvalues in polyhedra.
Similarly to the two dimensional L shaped domain, the mesheswith o = 0.15 give
test best convergenceresults out of the four geometric grading parameters.

Fichera Corner

Figure[4.27 shows a geometric edge mesh for the Fichera corner. Note, that thisis
not atensor product type mesh. These refinements (with the many small elements)
do not reach far into the domain and are not visible ‘from the other side’ of the
domain.

As seen in the case of the thick L shaped domain, Figure shows a plot of
the Eigenvalues on the ordinate versusthe s values on the abscissa. Again, one can
see that the spurious Eigenvalues are lined up on straight lines through the origin
inthes vs. Eigenvalue plot.

Figures show the convergence history of the first three Eigenvalues
for selected values of s. In each figure, there are two plots: the one on the left hand
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Figure 4.21: Convergence of the 1st Eigenvalue in the thick L shaped domain in log-4~ plot. The
left and right plots were done with o = 1/2 and o = 0.15 respectively. Note that the
convergence histories are identical for all three values of s.
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Figure 4.22: Convergence of the 2nd Eigenvalue in the thick L shaped domain in log-4/~ plot. The left
and right plots were done with o = 1/2 and o = 0.15 respectively.
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Figure 4.23: Convergence of the 3rd Eigenvalue in the thick L shaped domain in log-4/- plot. The left
and right plots were done with o = 1/2 and o = 0.15 respectively.
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Figure 4.24: Convergence of the 1st Eigenvalue in the thick L shaped domain in log-4~ plot. The
left and right plots were done with o = 1/8 and o = 1/10 respectively. Note that the
convergence histories are identical for all three values of s.
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Figure 4.25: Convergence of the 2nd Eigenvalue in the thick L shaped domain in log-4/~ plot. The left
and right plots were done with o = 1/8 and o = 1/10 respectively.

107 e 10° e
2 s=20 —— . o s=20 —— .
10 s=9 3 10 s=9 3
_ 1073 F3 S S=6 ---¥-- - _ 103 G S=6 ---¥-- -
2 10 2 10 :
[0 [0
2 10° 2 10°
=1 pN =1 N
S 10® N T 10® 3
3] % 3] %
107 107
108 108
10° 4 4 4 4 4 4 4 4 10° 4 4 4 4 4 4 4 4
2 44 6 gt 10" 12* 14* 16 2 44 6 gt 10" 12* 14* 16
ndof ndof

Figure 4.26: Convergence of the 3rd Eigenvalue in the thick L shaped domain in log-#- plot. The left
and right plots were done with o = 1/8 and o = 1/10 respectively.
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Figure 4.27: Geometric edge mesh in the Fichera Figure 4.28: Eigenvalues in the Fichera corner (or-
corner refined towards reentrant dinate) plotted versus s (abscissa). x
edges and corner. denotes spurious Eigenvalues, + de-

notes physical Eigenvalues and o de-
notes undecided. For this plot, 45102
degrees of freedom are used.

side with the simplified weight (4.7)
w = dist(x, Ueu Ué)
and the one on the right with the weight (4.18)

u):l_[rc~1_[pe.

ceC ecé

The second Eigenvalue shown in Figure [4.30 is a double Eigenvalue and the next
shown in Figure [4.31] is suspected to be either a double or even a triple Eigen-
value. All these plots are in log- &/ scale and show the anticipated straight lines.
This gives experimental evidence for the conjectured exponential convergence of
Maxwell Eigenvaluesin polyhedra. As no exact values for the Eigenvaluesin the
Fichera corner are known, extrapolated values were used to generate the conver-
gence graphs. These values are shown in Table Comparing the left and right
plotsin Figures[4.29-H4.3T reveas only dlight differencesin the convergence rates
for the weights (4.7) and (4.18).

Figures show the convergence history of the first three Eigenvalues
for selected values of s for h- and p-extensions as opposed to hp-extensionswhich
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Figure 4.29: Convergence of the 1st Eigenvalue in the Fichera corner inlog-5/ plot. The left and right
plots were done using the weights w @.7) and {@1I8) (ymax = 1) respectively.
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Figure 4.30: Convergence of the 2nd Eigenvalue in the Fichera corner in log-3/- plot. The left and right
plots were done using the weights w [@.7) and {I8) (ymax = 1) respectively.
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Figure 4.31: Convergence of the 3rd Eigenvalue in the Fichera corner in log-3/- plot. The left and right
plots were done using the weights w [4-7) and (4.18) (ymax = 1) respectively.
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3197 5878 10.6955
2 4 4

extrapolated Eigenvalue
reliable digits

Table 4.4: Extrapolated Eigenvalues for the Fichera corner

6.82 8806 9.72
2 3 2

extrapolated Eigenvalue
reliable digits

Table 4.5: Extrapolated Eigenvalues for the double Fichera corner

were shown so far. In each figure, there are two plots: the one on the left hand
side with h-extensions and the one on the right hand side with p-extensions. The
chosen weight was the simplified weight (4.7). In the h-extension case, the degree
of al elementswas p = 2 and al refinements were uniform. In the p-extension
case, 7 - 82 = 448 elements were used and the degree was uniform and isotropic in
the whole domain D. Two (expected) conclusion can be drawn from these results:

e The hp-extensions (Figures [4.29H4.3T) give a higher precision than h- or
p-refinement at the same number of degrees of freedom.

o Neither the h- nor the p-extensions can deliver exponential convergencelike
the hp-extensions.

4.3.4 Double Fichera Corner

The computationsin the double Fichera corner are done with the simplified weight
@D, ymax = 1. Themesh is created by marking the origin and the reentrant edges
using Algorithm

Figure[4.35 shows a plot of the Eigenvalues on the ordinate versus the s values
on the abscissa. As before, the spurious Eigenvalues are lined up on straight lines
through the origin in the s vs. Eigenvalue plot and the physical Eigenvaluesare on
horizontal lines. The horizontal, dashed lines have the values given in Table
The third and fourth Eigenvaluesare double (A3 = A4 and A5 = Ag).

Figures[4.3644.38 show the convergence histories of the first three Eigenval ues
for selected values of s. As before, we can observe a non-monotone convergence
behaviour for the smallest value of s shown here (s = 6), c.f. Section [£.3.1
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Figure 4.32: Convergence of the 1st Eigenvalue in the Fichera corner in log-5/ plot. The left and right
plots were done using uniform h- and p-extensions respectively.
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Figure 4.33: Convergence of the 2nd Eigenvalue in the Fichera corner in log-5/- plot. The left and right
plots were done using uniform h- and p-extensions respectively.
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Figure 4.34: Convergence of the 3rd Eigenvalue in the Fichera corner in log-3/- plot. The left and right
plots were done using uniform h- and p-extensions respectively.
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4 MAXWELL'S EQUATIONS

4.3.5 Conclusion

The weighted regularisation is able to deliver the conjectured exponential conver-
gencein thetwo and three dimensional exampleswith constant coefficients consid-
ered. The singularities introduced by the reentrant corners and edges in the given
domains are resolved as predicted.

However, the weighted regularisation fails to deliver exponential convergence
in some cases of the two dimensional example with jumping coefficients. The
instability of the weighted regularisation is not systematic. In the example with
the jumping coefficients, the weighted regularisation is compared to the ‘ classical’
discretisation method for Maxwell’s equations (Nédél ec’s edge el ements): the edge
elements yield exponential convergence on the same mesh-degree combination as
the weighted regularisation.

Experience with Scaling Parameter s

The equation (4.20) solved in the numerical examples contains a scaling parameter
s not present in the formulation (4.8). We discuss our numerical experiencein the
selection of the parameter s and itsimpact in the presence of spurious Eigenvalues.

Larger values of s move the spurious Eigenvalues further up while they increase
the gap to the exact value.

Consider the Eigenvalues versus s plots. The lining-up on straight lines through
the origin of the spurious Eigenvalues is good—already for moderate numbers of
degrees of freedom. However, only in the asymptotic limit, the physical Eigenval-
ues are lined up on horizontal lines. The plot in the middle of Figure shows
this most clearly (and can also be observed in all other examples). The numerical
values for the third Eigenvalue (15.5...) are found on a slightly curved line be-
tween (s = 2, L = 20) and (s = 13, A = 25). Increasing the number of degrees of
freedom brings this curve more and more down to the exact value.
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Elliptic Partial Differential
Equations with
Stochastic Coefficients

If oneis able to control the discretisation error, and assuming that the modelling
error inherentin the selected partia differential equationsisnegligible(i. e. that the
adopted PDEs precisely describe the physics of the system under consideration),
the gap that remains between simulation and observation must be dueto uncertainty
in the input data.

This requires new developmentsin several areas of applied mathematics and en-
gineering: input parameters are to be replaced by random variables, whose statis-
tics must be estimated, and the governing PDES must be reformul ated as stochastic
PDEs. Traditional deterministic Finite Element solutions must be reformulated to
allow for randomnessin input data and solution.

This chapter focuses on this latter aspect, i. e. the formulation, design and im-
plementation of deterministic Finite Element-based solution methods to stochastic
elliptic PDEs. Moretheory and the related proofs can be found in [[99, [107].

After a short introduction in the first section, the Karhunen-L oéve expansion of
the stochastic diffusion coefficients to separate stochastic and physical variablesis
introduced in the second section. The third section gives a detailed description of
the stochastic Galerkin method. The fourth and fifth sections carefully explain the
two key computational tasks: the fast computation of the Karhunen-Loéve expan-
sion and the parallel solution of the deterministic problems, respectively. Finaly,
the last section shows some numerical examples.
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5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

5.1 Introduction and Problem Formulation

The model problem is a stationary elliptic diffusion problem in a domain D with
stochastic diffusion coefficient a(x, w) assumed for simplicity to be isotropic. To
specify assumptions on the coefficients a(x, w), let (2, ¥, P) be ao-finite prob-
ability space and D ¢ RY a bounded open set with Lipschitz boundary I' = 9 D.
Assumethat a € L*(D x Q) is strictly positive, with lower and upper bound «
and S respectively,

O<aoa<alXx,w)<B<oo, AxP-ae (X,w)eDxgQ, 5.1

where A isthe Lebesgue measurein RY. impliesa € L2(Q, dP; L®(D)).
Consider the following model problem, with stochastic |eft hand side,

—div(a(x, ) Vxu(x, w)) = f(x) inD

P-ae we Q. (5.2)
uxX,w) =0 onaoD

The coefficient a(x, w) as well as the solution u(x, w) are random fieldsin D C
RY, i. e. they are random variables X € (2, , P) in every physical location x €
D. a and u are both jointly measurable functionsfrom D x Q to R.

Assume that the known information about the diffusion coefficient a includesits
mean field and its two-point correlation, given by

Ea(x) :=/a(x,a))dP(a)) and Ca(x, x) ::/ a(x, o) -a(x’, ) dP(w),
Q Q

i.e that Eq(x) and C4(X, x”) are explicitly and exactly known Equivalently, the
covariance V5 could be given, since

Va(x, X) = Ca(x, X") — Ea(X)Ea(X").

For Ca, Va to exist, a(x, w) must have finite second moments (which is assured by
E.D).

Given this information on a(X, @) and a known deterministic source term f (x)
(this could be relaxed as well, see e.g. [99, [100]; but here, our aim is to solve

IThisisarather optimistic assumption since often afunctional form of Gy (x, x’) is postulated with a
finite number of free parameters which are stetistically estimated from the available data. However,
this problem has to be solved on the modelling side.
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5.1 INTRODUCTION AND PROBLEM FORMULATION

(B.2), u(x, ) is a mathematically well-defined object. However, the task ‘com-
pute u(x, w)’ isless obviousto realize numerically and of limited interest in prac-
tice. In applications, only certain statistics and moments of u(x, w) are of interest,
and thisis also our goal of computation: given statistics E; and C, of the data,
compute statistics of the random solution u, like E,, C or probabilistic level sets,

D} :={x e D:P(ux, )| > 8 <e}.

Overview of Numerical Methods
Monte Carlo Method

The simplest approach to a numerical solution of (5.2) is Monte Carlo simulation.
Thereisavast choice of literature on this subject of which only [[66, [71] are men-
tioned. Thismeansto generate numeroussamplesof a(X, w) with prescribed statis-
tics, solve (5.2) for each sample, and to determinethe statistics of u(x, w) fromthe
set of solutions. Due to the generally slow convergence of Monte Carlo methods,
this approach requires a rather large number of ‘samples’, i. e. alarge number of
solutions of deterministic boundary value problems. Conceptually, Monte Carlo
simulation correspondsto a‘collocationin w’.

Perturbation Methods

Perturbation methods (see e. g. [[17]) to solve (5.2) represent the stochastic solution
as an exponentially convergent infinite series, in which each term solves a problem
with the same deterministic coefficient (that is, independent of ) but different
stochastic loadings. It turns out that in order to compute exactly even the simplest
statistic of u, namely Ey, one has to know the distribution function of a(x, -) at
any x € D—avery strong requirement.

Stochastic Galerkin Methods

In this chapter, we outline a stochastic Galerkin method [|55] for the numerical
solution of (5.2) which can be understood as Galerkin discretisation in probability
space. Theideaof reducing a stochastic equation to alarge system of deterministic
onesis not new—stochastic Galerkin methods have attracted considerable attention
in recent years, we mention here only [[60] and the references therein.
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5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

Unlike the ‘collocation’ type Monte Carlo approaches, in stochastic Galerkin
Finite Element Methods the stochastic ‘variable’ w is discretised by an orthogo-
nal projection with respect to the probability measure P onto afinite dimensional
subspace of (2, X, P). The probability space being infinite dimensional, the feasi-
bility of a stochastic Galerkin discretisation of (5.2) strongly depends on the avail-
ability of a good basis of L2(€2, dP). In numerous works [60, [113], the use of a
so-called Wiener Chaos expansion [[110, [111] has been advocated. Here, a Kar-
hunen-Loéve [180, 81] expansion of the random field a(X, w) is used to generate
coordinates with certain optimality conditions for the deterministic approximation
of the random solution. This is made possible by a kernel independent Fast Mul-
tipole Method [93, [94] to compute the Eigenpairs of the covariance operator for
a(x, w) inlog-linear complexity per Eigenpair.

The stochastic Galerkin FEM s, like the deterministic FEM, based on a vari-
ational formulation of (5.2). To define it, introduce the Hilbert space #2(D) of
Hol(D)-vaI ued random fields with finite second moments

HE(D) := L%(Q, dP; H(D)).

Then, the variational form of (5.2) reads
Find u € #3(D) such that for every v € #3(D)

/(/ a(x,a))qu-vadX)dP(w)=/ (/ f(X,w)v(X,w)dX)dP(a)).
Q D Q D

(5.3)

We conclude this section by mentioning that under assumption (B.J), the ex-

istence and uniqueness of a solution u to (53) follows from the Lax-Milgram
Lemma.

5.2 Karhunen-Loéve Expansion

Toreduce (5.2) to adeterministic (albeit infinite dimensional) problem, determinis-
tic and stochastic variablesin the coefficient a(x, w) are separated. Thetheoretical
tool required to achieve this is the so-called Karhunen-L oeve expansion.

Let the random diffusion coefficienta € L2(D x ), then Va4 € L2(D x D) and
its covariance operator

Va: L2(D) — L%(D), (VaU)(X) :=/ Va(x, xHux)dx’ Vu e L%(D)
D
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5.2 KARHUNEN-LOEVE EXPANSION

relative L2-norm of remainder

relative L2-norm of remainder
relative L2-norm of remainder
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Figure 5.1: Convergence rates of the Karhunen-Logéve series in one (left plot), two (middie) and three
dimensions (right). All plots show the relative decay of the Karhunen-Loéve series remain-

der after truncation at level M in the L2-norm plotted against the truncation parameter M.
The kernel is exp(—10]x — x'|2) and the domain D is the unit box (—1, 1)¢.

is a symmetric, positive semi-definite and compact integral operator. Therefore, it
has a countable sequence {Am, ¥m}m>1 Of Eigenpairswith real, bounded Eigenval-
Uesiy > Az > ... With Am — 0asm — oo.

Moreover, there exists a sequence of random variables {Xm} -1 such that

Q Q

and a(x, w) can be expanded in a Karhunen-Loéve expansion:

a(x, ) = Ea() + Y v/Amem(¥) Xm(@). (54)

m>1

Remark 5.5 (Conver gence of the Karhunen-L oéve expansion)
In (5.4), the Karhunen-Logve series convergesin L%(D x Q) at the same rate as
the sum of Eigenvalues, c.f. Figure

Additionally, if the sequences {¢m}ms1 and {Xm}m>1 are uniformly bounded in
L°°(D) and L*°(2; dP) respectively, and if

3 Vim < o, (56)
m=1

then the Karhunen-L oéve (5.4) convergesuniformly on D x Q.
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5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

Below, a(x, w) is approximated by a deterministic function ap (X, @) of the
first M random variables {Xm}n'\ﬁ':1 by truncating the Karhunen-L oéve expansion
(5.4). Since truncation of the Karhunen-L oéve expansion after M terms will later
be seen to lead to an M + d dimensional deterministic problem, the complexity
of our approach strongly depends on the size of M which in turn (compare ([5.6))
depends on the decay of the Karhunen-Loéve Eigenvalues A 1.

5.2.1 Decay Properties of the Karhunen-Loéve Eigenvalues

Decay criteria for the Karhunen-L oéve Eigenvalue sequence {Am}m-1 are crucial,
since the Eigenvalue decay determines the complexity of the stochastic Galerkin
FEM as we shall see below.

The decay rates for the Karhunen-L oéve Eigenvalues are shown to depend on
the regularity of the covariance kernel V. Roughly speaking, the smoother the
covariance kernel of the coefficient, the faster the Karhunen-Loéve Eigenvalues
decay, with analyticity implying exponential decay and finite Sobolev regularity
giving rise to algebraic decay. Remarkably, these results hold true aready for
piecewise regularity of the covariance kernel. For proofs, refer to [[99, [107].

Definition 5.7 (Piecewiseregularity) Let D be a bounded domain of R9. A cor-
relation functionV : D x D — R is said to be piecewise analytic/smooth/H P-4
on D x D if there exists a finite sequence {D }le of subdomains of D such that

D= Uleﬁj and V is analytic/smooth/H P ® HY in an open neighbourhood of
Dj x Dj for any pair (j, j".

The decay rates of the Eigenvaluesdepend heavily on the regularity of the kernel
V:

Proposition 5.8 (Eigenvaluedecay rates) Let V € L?(D x D), D ¢ R% bea
symmetric correlation kernel defining a compact, self-adjoint and positive integral
operator via

V:L%D) — L4D), (Vu)(x) =/ V(x, X)u(x) dx’. (5.9)
D

Let {Am}m>1 bethe Eigenvalue sequence of V.
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5.2 KARHUNEN-LOEVE EXPANSION

o Analytic kernel:
If V is piecewise analyticon D x D , then there exist constantsc1, ¢, > 0
such that
0 < Am < crexp(—com¥9)  vm > 1. (5.10)

e Entirekernel:
Let V be a Gaussian covariance kernel given by

2
VX, x') = o2exp (—%) (5.11)

where o, y > 0 arereal parameters and § is the diameter of the domain D.
Then, there holds

1/d
0<im< 02% vm > 1, (5.12)
where I' is the Gamma function interpolating the factorial.
e Sobolev kernel:
IfV € L2(D x D) issymmetric and piecewise H P-% (p > 1), then
0<im<m @P-D/Md yms>1q, (5.13)
Remark 5.14
e Many covariances which occur in engineering practice are piecewise ana-
Iytic [92].

e The parameters o and y of the entire kernel in (511) are referred to as the
standard deviation and the correlation length of a respectively (given V is
the covariance of a as shown in Section[5.1). This kernel admits an analytic
continuation to the whole complex space C¢ (an entire function). Therefore,
the Eigenvalue decay is even faster than in (5.10).

e The decay estimate (5.12) is sub-exponential in dimensiond > 1. Thisis
essentially due to the higher multiplicity of the Eigenvalues in dimensions
larger than 1. To visualise this effect, the largest 2000 Eigenvalues of the
three dimensional, factorisable kernel V (x, x’) = exp(—10|x — x’|?) are
plotted in Figure[5.2 together with a theoretical estimate obtained by drop-
ping the (asymptotically negligible) numerator (1/y) m442 i GI12.
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40 80 120 160 0 500 1000 1500 2000
m m m

Figure 5.2: Eigenvalue decay of analytic covariance kernel exp(—10|x — X12) in one (left plot), two
(middle) and three dimensions (right). Plotted are the Eigenvalues iy against their index
m (solid line), multiplicity taken into account. The dashed line shows the approximation
1/ T (my21/d) from (B12). The domain D isthe unit box (—1, 1)¢.

e The Eigenvalue decay rate of a Sobolev kernel can only deteriorate by a
multiplicative factor in case of a small correlation length.

Example5.15
o Thekernd

N 2 |X _ X/|1+e
V(X,X) =0 @(p(-m
admits only Sobolev regularity for 0 < ¢ < 1. § isthe diameter of D.

e For D = (-1, 1), thefirst ten Eigenvalues of the analytic kerndl V (x, x’) =
exp(—|x — x’|?) are plotted in Figure[5.3 The plot also shows the first ten
Eigenvalues of the kernel V (x, x’) = exp(—|x — x'|1*¢) for various values
of ¢.

5.2.2 Karhunen-Loéve Eigenfunction Estimates

The point-wise convergence of the Karhunen-L oéve expansion is essential for the
error control in (52) when truncating the Karhunen-Loéve expansion after M
terms. So, beside criteria ensuring a fast decay of the Eigenvalues, the Eigen-
functions of the covariance kernel need to be estimated in the L *°(D) norm. It
turns out that the smoothness assumption on the covariance kernel alows also a
good point-wise control of the Eigenfunctions.
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Figure 5.3: Eigenvalue decay depends on the regularity of the kernel. The plot is in one dimension,
D = (-1, 1) showing the Eigenvalues for the kernel exp(—|x — X |1*e) for (from top to
bottom) ¢ = 0,6 = 1/4, ¢ = 1/2, ¢ = 3/4, ¢ = 9/10, ¢ = 0.99, ¢ = 0.999 (all have Sobolev
regularity) and ¢ = 1 (an entire kernel, solid line).

Proposition 5.16 Let V € L?(D x D) be symmetric and piecewise smooth. De-
note by {Am, ¥m}m=1 the sequence of Eigenpairs of the associated covariance op-
erator via (5.9), such that [l¢mll 2(py = 1, Ym > 1. Then, for any s > 0 and any

multi-index & € N9, there holds
10%mliL~mD) < 1Aml™S Ym> 1,

where the constant dependson s, e and J (Definition [5.7).

5.3 Stochastic Galerkin Method

In this section, the stochastic Galerkin method used to solve (5.2) is developed
along with appropriateerror estimates. In afirst step, a isreplaced by its Karhunen-
Loéve expansion ay. Secondly, the random variables X, in ay are replaced by
deterministic variables ym, € R. These yny, are discretised with a spectral Finite
Element Method. Eventually, detailed algorithms sum up the whole process and
show how (5.2) can be solved approximately in parallel.

Throughout this section, assume that the diffusion coefficient a satisfies ([5.1)
and possesses a Karhunen-L oeve expansion (5.4) such that the following assump-
tions are satisfied:
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5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

1. Thefamily X = {Xm}m>1 of random variables is uniformly bounded in the
probability space L*° (22, dP),i.e.

Jex > 0,  [[XmllLe@dp)y <Ccx € R Vm=> 1. (5.17)

2. Thefamily X = {Xm}n>1 of random variablesis independent.

Remark 5.18 Theerror analysisof (5.2) when truncating the Karhunen-Loéve se-
ries (5.4) of a can be carried out without Assumption [2—it is made only to simplify
the exposition (for details see [[107]).

5.3.1 Truncation of the Karhunen-Loeve Expansion of a

Assumption [, coupled with the decay estimates in Proposition implies the
uniform convergenceon D x 2 of the Karhunen-L ogve expansion of a.
For any M € N, define the truncated coefficient

M
am (X, @) = Ea(¥) + Y vAmgm(0) Xm(®). (5.19)

m>1

Thefollowing point-wiseerror estimates for the truncated coefficient hold, depend-
ing on the smoothness of the coefficient a(x, ).

Proposition 5.20 (Truncated coefficient error estimates) If V, is piecewise an-
alytic/smoothon D x D and holds, then the Karhunen-Loéve expansion of
a converges uniformly on D x 2 at therate

exp (—c2(Y2 — s)MY/Y) v, pw. analytic
_ o <
la—amlliLemxe) S M1-(p—D(1-29)/d Vs pw. smooth VM e N,
(5.21)
for any s > 0, p > 1 and with a constant depending on the spatial dimensiond, s
from Proposition[5.16, ¢; and ¢, from Proposition[5.8, cx from Assumption [ and
J from Deéfinition[5.7

Remark 5.22

e Since p can be chosen arbitrarily large and s arbitrarily close to O in (5.27),
the remainder of the Karhunen-Loéve series of a after truncation is rapidly
and uniformly decayingon D x €.
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5.3 STOCHASTIC GALERKIN METHOD

o If thefamily X = {Xin}n>1 isindependent (Assumption[2), it can be shown
that the ellipticity (therefore the existence and uniqueness of a solution) of
the stochastic problem (5.2) is preserved with the same upper and lower
bounds «, 8 in (B1) for any M > 0 when replacing the diffusion coefficient
abyay.

Combining Proposition[5.20 and a Strang-type argument showsthat the error due
to replacing the diffusion coefficient a by its truncated Karhunen-L oéve expansion
ay in (B2 is rapidly decaying as M — oo, at least in the case of piecewise
analytic/smooth covariance kernel V5. Thisis essential since the number of terms
M retained in the Karhunen-L oéve expansion will later determinethe deterministic
dimension necessary for the stochastic Galerkin method.

Proposition 5.23 Consider a diffusion coefficient a satisfying (5.1) such that Vy is
piecewise analytic/smoothon D x D. If u and uy arethe solutions of (5.2) and

—div(am (X, @) Vxum (X, )) = f(X) (5.24)
respectively, then

< exp (—c2(Y2 — s)MY/9) i V, piecewise analytic
lu=umllsezo) S MUty | \ya-cp-na-29/a if Vi, piecewise smooth,

forall M >0and p > 1.

5.3.2 Associated Deterministic Problem

We study (5.24), obtained by truncation at level M of the Karhunen-L oéve expan-
sion of the diffusion coefficient a in (5.2). The random variables X, in (519)
are replaced by deterministic variables y, € R. Without loss of generdlity,
cx = /2 (Assumption[d) is assumed in the following, so that for {Xm} =1 in (&.4),
Range Xm C | := [—1/2,1/2] Ym > 1. Denote by pm the probability measure
associated to the random variable X,

om(B) := P(Xy € B) for any Bordl set B C R,
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and define a probability measureon RM by p := p1 x p2 x ... x pMEAssociate
the mapping am with am by
av:D x IM S R,

M 5.25
06 Y1 - YM) = Ea(O) + Y VAmem ) Y. 529

m=1

Consider the deterministic problem with the variational form
Find Gm € HY(D) ® L2(1M, dp) such that

—div@m (x, ) Vxlm(x, y)) = f(x) (5.26)

The uniform ellipticity of al truncatesay (which followsfrom (5.27) for large M
or Remark [5.22) ensures the well-posedness of (5.26).

The solution of (5.24) can be obtained by solving (5.26) by backward substitu-
tion:

Proposition 5.27 If (i isthe solution of (5.26) and uy solves (5.24), then
Um (X, @) = Gm (X, X1(@), ..., Xm(@)),

A x P-ae (X,w) e Dx Q.

5.3.3 Stochastic Regularity

The solution Gy of the deterministic elliptic problem (5.26) has an analytic exten-
sioninto a subset of CM asis shown below. As simplification, assumethat p ~ A
is the Lebesgue measureon | M,

Remark 5.28 Thisassumptionisvery strong: it impliesthat the randomvariables
{Xm}n"ﬁ'>1 are independently identically distributed with a uniform distribution on

The solution Gy solves
Find Gm € H3(D) ® L2(1M) such that

—div@m (x, y)Vxam(x, y)) = f(x). (5.29)

2Notethat p # P (P ist the continuous probability measure in BI)~G3)): p — P asM — oo ‘in
law’. However, p(2) = 1VM, i.e. p isaprobability measure on 2.

136



5.3 STOCHASTIC GALERKIN METHOD

If the number of terms M retained in the truncated Karhunen-Loéve expansion
is large, the number of degrees of freedom necessary for the accurate solution of
Problem (5.29) appears to be prohibitive. However, thisis not the case in general
dueto favourable regularity properties of the solution G v (X, y) with respect to y.

To show this, aresult on stochastic regularity is presented which allows to show
that the computational effort in solving (5.29) is moderate, even for large M.

Proposition 5.30 Let Gy be the solution of (5.26). Then, as an H&(D)—valued
function on I, Gy can be analytically extended to an open neighbourhood of
IMin CM, whose size in ym isincreasing for m — M like /vy, Where vy =
VAmll@mllLe(p) for m > 1.

5.3.4 Stochastic Spectral Discretisation

The analyticity of Gy as afunction of y ensures an exponential convergence rate
of its Finite Element approximations obtained by a p-method with respect to .
Therefore, definefor r € N, the space of polynomials of degree at most r,

P = span{l,t,t2, ..., t"} c L2(1)

and, forr = (ry,r2,...,rm) € NM, an anisotropic polynomia space by tensor

product
M

Pr = Q) Py c L2AM).
i=1
Further, for r € NM, we shall denote by Gwm,r the solution of the variational
problem (5.29) in the subspace H}(D) ® #r,

/M / A (X, )Vl £ (X, Y) - Vxu(x, y) dx dy
| D

=fo f(x)v(x, y)dxdy. ¥ve H3}(D)® #. (531)
| D

Based on the quasi-optimality of any Galerkin projection of (5.29) and on Propo-
sition the convergencerate of the y-semi-discretisation of ([5.29) is estimated
in terms of the overall numberof deterministic problems N, to be solved, inde-
pendently of the number of terms M retained in the truncated Karhunen-Loéve
expansion.
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Proposition 5.32 Leta € L>®°(D x ) satisfy (5.1). Supposethat Vj is piecewise
analytic such that (5.10) holdswith two strictly positive constants ¢, and c. Define

Ml/d

Then, there holds, with constants depending only on c1 and ¢z and with c3 a true
constant,

Nr :=dim®, < %M

and

~ ~ -1/d
v — Our g oy S &P (—c2MY?) < exp (—cacs ™ dog Ny M)
(5.34)

Remark 5.35

e Dueto the y-analyticity of G, one can show that the asymptotic error esti-
mate (5.34) also holdsin H}(D) ® L= (1 ™).

e The convergence rate (5.34) is algebraic for d = 1 and sub-algebraic for
d > 1, which makes the computation in these cases rather expensive. How-
ever, using different polynomial FE spaces for the y-discretisation, which
are not of tensor product type, the convergence rate can be improved beyond
algebraic. The construction of these spaces as well as their properties will
be addressed in [[107] .

Nonetheless, the use of tensor product FE spaces has an important advan-
tage: an appropriate choice of the basis decouples the problem into exactly
N, deterministic diffusion problems, which can be solved in parallel (see

Section5.3.6).

o In Proposition exact Eigenpairs {(Am, ¢¥m)}m of the Karhunen-Loéve
expansion are assumed. However, a similar result holds for approximated
Eigenpairs {(A!, 1 )}m after choosing M =~ [logh|?, in order to balance
the Karhunen-Loévetruncation error and the Eigenval uediscretisation error
(c.f. [107)).
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5.3 STOCHASTIC GALERKIN METHOD

. Choose a steering parameter 0 < 6 < 1.

2. Choose an overkill level K € N (in practice K < 15).

3. Compute

UM ken Y1<k=K,1<m=<M,
with {e1, e, ...ey} abasisof RM.

. Compute the decay rate of the relative error (size of domain of analyticity of Gy with respect

to yk)
- UM, k-em — UM, (k—1)-em |l
m 15, (k—1)-em

forall<k<K,1<m< M.

5. Initialise the polynomial degreer := (0,0,...,0) € NM,

6. Compute the ‘active’ stochastic dimensions

Mg = {m: >0 - max }
0 Tm,rm+1 = 15nem n,r+1

. Compute the new polynomial degree (raiserm for all m € My)

Mew =T+ Z em
meMg

. If maxmrm < K goto 6 otherwise stop.

Algorithm 5.1: Adaptive selection of stochastic degree fim.

5.3.5 Adaptive Selection of Stochastic Degree

Proposition[5.32 gave an error estimate of the spectral discretisation in the stochas-
tic variable based on the assumption of piecewise analyticity of the correlation
function Va(x, x’) in D x D and based on the a-priori selection (533) of the
stochastic polynomial degrees r, which are in turn based on the stochastic reg-
ularity result Proposition[5.30

Alternatively, it is possible to numerically determine the polynomial degree r,
using Algorithm 5.3 which successively identifies the coordinates ym, in which the
largest change in the Finite Element solution occurs when the polynomial degree
I'm isincreased.
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Remark 5.36 (Simplification of Algorithm

o AlgorithmB.Ito generate the adaptive polynomial degreer can be simplified
by replacing the stochastic PDE by a stochastic algebraic equation,

(Bo+ > Bmym)u = 1
m=1
where

Bo := iBf Ea and Bm := v Amll¢mllL=(D) = v/Amfor m > 1.

e Moreover, {;7m,|<}|'f:l can be computed only for a small value of K and use
a-priori knowledge (exponential decay in k) to predict nm for all k > K by
linear regression on {lognmk}_;-

Figures[5.4H5.7] show the results obtained using the algebraic version of Algo-
rithm 5.1l (Remark [5.36) for different correlation lengths (y = 1, 1/2, 1/5 and 1/10)
on the unit sguare and the L-shaped domain. The plots all have the same scales
for the Eigenvalues A, (shown on the left ordinate) and the polynomial degreer m
(shown on the right ordinate).

5.3.6 Complete Algorithm

The analyticity of the covariance kernel V, can be exploited to semi-discretise
(531) with respect to y at a polynomia convergence rate, as stated in Proposi-
tion6.32

It is possible to obtain the solution of the semi-discrete problem ([5.31) numer-
ically by solving a large number (depending on r) of independent deterministic
elliptic boundary value problems with different data: the corresponding algorithm
is derived below. Consequently, to compute the solution of (5.31), already avail-
able deterministic solvers combined with the algorithm derived in the following
can be used.

The semi-discretisation of (5.31) with respect to y can be done using any basis
of Pr. Generally, thisresultsin a coupled system of deterministic elliptic boundary
value problems. However, there exists a choice of a basis of #, which leadsto a
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Figure 5.4: Eigenvalue decay (left ordinate, solid line) and adaptive polynomial degree (obtained using
the algebraic version of the Algorithm[5.1) (right ordinate, dashed line) in the unit square
(Ieft plot) and L-shaped domain (right plot) for the entire kernel exp(—|x— X|2) (correlation
length y = 1) in two dimensions. The polynomial degree r results in 26,624 and 165,888
deterministic problems on the left and right respectively.
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Figure 5.5: Eigenvalue decay (left ordinate, solid line) and adaptive polynomial degree (obtained using
the algebraic version of the AlgorithmB) (right ordinate, dashed line) in the unit square
(left plot) and L-shaped domain (right plot) for the entire kernel exp(—4|x — X|2) (corre-
lation length y = 1/2) in two dimensions. The polynomial degree r results in 69,120 and
147,456 deterministic problems on the |eft and right respectively.
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Figure 5.6: Eigenvalue decay (left ordinate, solid line) and adaptive polynomial degree (obtained using
the algebraic version of the Algorithm[5.1) (right ordinate, dashed line) in the unit square
(left plot) and L-shaped domain (right plot) for the entire kernel exp(—25|x — X 12 (corre-
lation length y = 1/5) in two dimensions. The polynomial degree r results in 32,768 and
262,144 deterministic problems on the left and right respectively.
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Figure 5.7: Eigenvalue decay (left ordinate, solid line) and adaptive polynomial degree (obtained using
the algebraic version of the Algorithm[B) (right ordinate, dashed line) in the unit square
(left plot) and L-shaped domain (right plot) for the entire kernel exp(—100|x — X|2) (cor-
relation length y = 1/10) in two dimensions. The polynomial degree r results in 524,288
and 524,288 deterministic problems on the left and right respectively.
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5.3 STOCHASTIC GALERKIN METHOD

decoupled system. Denote, for r € N, the Eigenpairs of the symmetric bilinear
form

12
(U, v) — / u(t)v(t)t dt (5.37)
_1/2

in = span(1,t,t2, ...t} by {ujr, Pi.r}j—o-
For convenience of notation, define on the index set NM the ordering

J<r << 0< jm<rm Vi<m=<M.
Further, set

M
Pir =@ Pjr (5.38)
i=1

for j <r e NM. Clearly,

Pr=9pan{Pj; :0< jm <rmvl<m< M},
and {Pj r}j<r isthebasis of £ used to decouple the semi-discrete problem.
Proposition 5.39 For agiven r € NM, let Gy, be the solution of (5.31). For

every multi-index j < r, denoteby G, j € Hol(D) the solution of the deterministic
diffusion problemin D

—div(@m,;Viwm, j) = fj (5.40)
where
M
am.j () = Ea0O) + Y v/Am - om0 jm -
m=1
M (5.41)
fi(x) = f(x)- ]‘[f Pjum.rm (D) dt.
m=1Y %2
Then,
O, r (X, Y) = Y Gm,j OO Py (V). (5.42)

j=r
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The statistics of uy, solution to (5.24), can be then obtained by backward sub-
stitution, via Proposition For the simplest statistics, the mean and the corre-
lation, there holds

Proposition 5.43 If uy solves (5.24) and Gy, j solves (5.40) for all j < r, then

M 12
Euy ) =Y _am,j00 [ ] f y Pjim,tm (Ym) dym
m=1" "2

j=<r

M 12
Cuy (6, X) =D " m j00m, j () T f , Pt (Ym)* dyim
m=1" 7?2

j=r

Algorithm[5.2 summarises the steps developed for solving (5.2).

5.4 Fast Computation of Karhunen-Loeve
Expansion

In order to use the (truncated) Karhunen-L oeveexpansion ([5.4) in practice, itsfirst
M Eigenpairs must be computed efficiently and accurately in arbitrary domains D.
In one dimension, for particular kernels, explicit Eigenfunctions are known (e. g.
[6Q]). These can be used to obtain explicit Eigenpairs also for multidimensional
tensor product domains D, if Va(X, X’) is separable. This is often the case in
subsurface flow problems, where D is a box.

To deal with random coefficients in arbitrary geometries, however, an efficient
numerical approximation of the Eigenpairs of the operator associated to the co-
variance kernel via (5.9) is an essential step in solving (5.2). Note that only the
Eigenpairs {Am, Um} with Ay # O are of interest. The Karhunen-Loéve Eigenvalue
problem reads in variational form:

Find Am and 0 # ¢m € L2(D) such that

/ Va(X, XYom(X)v(x) dx’ dx = km/ em(X)v(X)dx Vv e L2(D).
DxD D

(5.47)
Since the Eigenpairs of V, are used to approximate the diffusion coefficient a, L *°
approximations of the Eigenfunctions are needed.
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1. Computation of the deterministic part of the Karhunen-Loéve expansion of a:

e Assume Vj.

e Choose truncation order M.

o Compute the first M Eigenpairs {Am. gm}M_; of Va. (5.44)
2. Computation of the polynomial basis used for semi-discretisation:

e Compute anisotropic polynomial degree r = (rm)lr"r’]':1 € NM according to Algo-
rithmB1
o Compute Eigenpairs {i4j,ry» Pj,rm}rjrlo in P, = span{l, t, t2,... t'm} of (5.45)

1/2
u,v) > / u(v ()t dt.
—1/2

3. Semi-discretisation:

e Assume Eg and f.
o Compute Uy, j solution of the deterministic diffusion problemin D (5.46)

—div(am, jViwm,j) = fj

where
M
am,j 0 = Ea00) + Y Vam - om0 jon s
m=1
M 12
fjx)=f(x)- ]_[/ Pim.rm () dt
m=1 —-1/2
andforal j = (jg, j2,..., jm) e NM with0 < jm<rm Vi<m< M.

4. Post-processing:

M
m=1"

o Compute statistics of up (X, w) via backward substitution

o Assume {Xm}

M
UM @) =Y am, 0O [ Pimutm (Xm(@))
j

m=1

Algorithm 5.2: Complete algorithm for solving [£.2).
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To compute Karhunen-Loéve Eigenpairs, a FE discretisation of (B.47) with
piecewise constants on a regular triangulation 7, of D with mesh-width h is used
(which will later also be used for the FE approximation of (5.2)). Assume that 7o
is partitioned asin Definition[5.7 Thisensuresthat a is analytic/smooth/H P @ HY
in an open neighbourhood of every element of 7, depending on the (piecewise)
regularity of aiin D. Let 7 be an extension of 7. Let

8PO(Th, D) := (v e L3(D) : vl € Pp VK € Th)

denote the FE space of discontinuous, piecewise polynomials of order p on 7.
Then, the Galerkin approximation of (5.47) with the Finite Element space Vy =

8P0(7;, D) C L2(D) reads:

Find 0 # AR, ol € Vi such that

/ Va(x, Xl (X yv(x) dx’ dx =x',;/ Pl x)u(x)dx Vv e Vn. (5.48)
DxD D

Proposition 5.49 Suppose that a € L°(D x ) such that Va € HPYL(D) ®
L2(D). Let (Am, Um) be an Eigenpair of Va with A # 0. Then, for every p > 0
holdsfor h — 0

llom — emllLeoy < hPFL, |Am — Ayl < hPTE
where the constants depend on V5 and m.

For the proof, refer to [[99].
The calculation of Karhunen-L oéve Eigenpairsinvolvesthe solution of the dense
matrix Eigenproblem corresponding to (5.48), i. e. of

Vo =AiMg. (5.50)

Here, both matrices V. and M are symmetric and positive definite, with M being
diagonal if the basis of 8%9(71,, D) is chosen as the characteristic functions of the
dementsK € Th.

For physical domains D in three dimensions and realistic meshes 7}, the size of
the Eigenproblem can be as large as 108 and standard Eigensolvers are not appli-
cable.

An iterative Eigensolver based on Krylov subspaces [58, [59] which requires
only matrix vector multiplies is used. The multiplication ¢ — V¢ is donein
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O(N log N) operations using a variant of the Fast Multipole Method for general
kernels.

The main idea of the Fast Multipole Method for general kernelsisto expand the
kernel V (x, x”) in a series which decouples the variables x and x’. Truncation of
the expansion introduces a controllable error for x and x ’ far away from each other.
On the other hand, evaluating the truncated expansion of the kernel and especialy
¢ — Vg isvery fast (where V ' denotes the matrix for the far field only). The
near field matrix V" for x and x’ close together is then evaluated traditionally
resulting in a sparse matrix.

The following subsections review the Fast Multipole Method for general kernels
[93,94].

5.4.1 Kernel Expansions in Fast Multipole Methods for General
Kernels

Definition 5.51 (Valid kernel expansion) Let n € [0, 1) and 4 an index set and
V : D x D - C akerne function. Then, V is said to have a valid kernel
expansionif for all xo, Xy € D, Xo # X; and expansion ordersm € N, there exists
an approximation Vp, of the form

V (X, X) & Vm(X, X; X0, Xg)

= Z H(,v) X (X; XO)Y\)(X/; X6)
(1, v)€dm

for dm C 4 x 4 suchthat for all x, x’ € D satisfying
X — Xo| + [X" — Xg| < nlXo — Xl
the error is bounded by
IV (X, X') = Vm(X, X'; X0, Xp)| = Cexp(=Cmm) [x —=x'|"> (552

with C() > 0 adecreasing function and C a constant both independent of m. §
denotesthe singularity order of the kernel for x = x’.
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Cebysev Kernel Expansion

V is interpolated by éebyéev polynomias. The éebyéev polynomial of the first
kindon| =[—1, 1] for u € Z reads

T, (X) = cos(u arccos(x)).

The éeby“sev interpolant of f defined on | isgiven by

m
fm() := Y £, Tu(x), where f, := Um> " £ ()T, (%)

nez i=0
[l<m

for the éeby“sev pointsx; = cos((i +1/2)7/m) € |, i.e themrootsof Tm. In higher
dimensions, atensor product Ansatz is used.

Definition[5.51lis verified for kernels of theform V (x, x’) = V(X' — x) admit-
ting an analytic extensioninto C9 \ {0} in [93,[94]. The Ceby3ev kernel expansion
reads

(X0 — X)* (X" = xgp)”

Vin(X, X' X0. Xp) = Y

(u,v)eNngg
[+Vv]eo<m

(5.53)
wherethe coefficientsc;, i € N9, are defined by the polynomial interpolation

Z f (X0, Xp) Ty <;>= Z Cu(X0, Xp)Z*,  (5.54)

Xo — X/
ezt nll olleo

[]oo<m

neNY, oo <m

f (&: Xo, Xp) == V(x (&; Xg — X0)).
X (&; Xg — X0) := 1 | xg — Xol| - & + x5 — Xo.

Remark 5.55 The evaluation of the coefficients f, in (554) requires ©(m%) eval-
uationsof V at the CebySev points of order m. However, the kernel V is not explic-
itly needed (in closed form) but can be given by a subroutine. It istrivial to adapt
the éebyéev kernel expansion to new kernels. Therefore, it suites our needs very
well.
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Kernels V which are only piecewise analytic in D x D with D = U]—J=1Bj
should be considered separately ineach D x Dj- (c.f. Definition5.7). There, the
requested analytic extension is possible.

Other Kernel Expansions

Other kernel expansions which are primarily used in boundary element methods
are presented in [[93,[94]: Taylor expansion [65, 64], Multipole expansion [[16] and
fast Helmholtz solvers [[34,35].

5.4.2 Cluster Expansion

The previous section showed how a kernel can be approximated. In generd, this
approximation is not valid for al (x, x’) € D x D. In order to define a global
approximation on D x D, a collection of local approximations is used, where
each of the local approximationsis associated with an appropriate block of agiven
partition of D x D. Those blocks are called clusters and the combination of local
approximationsa cluster expansion.

More precisely, denote by & (D) the set of all subsetsof D.

Definition 5.56 (Ceby3ev radiusand centre) For any set A  RY, the Cebygev
ball of A isthe smallest ball containing A, i.e. define

o the Cebygev radiusf s by

Fa:= inf sup|x — x|.
xeRd yre A

o the Cebysev centre & by

Fa=sup|x — €al.
x'eA

Definition 5.57 (Far and near field) Suppose ¢ c £ (D) x £ (D) to be a finite
partitionof D x D andletn € (0, 1). Anelement (o, T) € C iscalled n-cluster iff

o + 12 <1l — &I
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The set of all n-clustersin G,
F:=F(C,n) ={(o,1) € C: (0,71)isann-cluster}

iscalled thefar field of grain n and its complement & := N (C, ) = C\ F(C, n)
the associated near field.

Definition 5.58 (Cluster expansion) Let the kernel V (x, x’) satisfy the Defini-
tion[5.51l Then, for an analytic kernel V,

Vm(X, X'; &, 6) if(x,x)eo xtand(o,1) € F,

Vm(X, X') 1=
m( ) V (X, x") otherwise

for all (x,x") € D x D,x # X' is a so-called cluster expansion of the kernel
V (x, xX"). For a piecewise analytic kernel V, define

Vil (%, X &, &) if (%, X) €0 x 1, (0, 1) € FIT,
Vin(X, X) := o c Djandt C Dy,
V (X, x") otherwise,

where £ 11" isthefar field of Dj x Djy.

Proposition 5.59 (Local error bound) By construction, the local error bound in
(5.52) remains valid for a cluster expansion:

IV (X, X') = Vin(X, X)| < Co(C1m)™|V (x, X)|
for all (x,x’) € D x D, x # x'.
Hence, the matrix vector multiplication ¢ +— V ¢ is approximated by
o> Vo :=V"p+ Vg, (5.60)
where V" isthe near field matrix

V7 5 :/JXT Va(x, X)@j (x")gi (x) dx"dx,
(o,7)eN
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@i arebasisfunctionsof $P-0(7p,, D), and V. isthe far field approximation by

J
o> Vig:=3" 3" E(E’Q’Z(Xf(p))- (5.61)
j’j/=1(o,r)€5’jj/

The matrices X, Y, and F . are defined by

(X5 ], :=f Xu(X: &)gj (X)dX
i] S | [
[E], = i @ &)
for (., v) € dnm.

Remark 5.62

e The cluster algorithm is only based on Definition This ensures the
exponential convergence with respect to the expansion order m. In addition,
it leadsto a low rank approximation of the far field part of V.

o Intheacceleration of the matrix vector multiplicationg — Vg itisessential
that the matrices X, Y, and F ., are never formed explicitly. Typically, the
entries [E, . 1u.» only depend on p + v with [ + v| < m. Therefore, only
O(mP) instead of ©(M2P) entries have to be evaluated and stored (p €
{2, 3} depends on the chosen kernel expansion).

o The Cebysev kernel expansion (5.53) preserves the symmetry of the kernel V:
Vim(X, X') = Vn(X/, X). If, in addition, the given partition € is symmetric,
i.e (0,71) € € = (1,0) € C, then, V in (5.:60) is also symmetric for
Galerkin discretisations.

5.4.3 Cluster Algorithm

The main goal is to efficiently (in terms of storage and computation time) realise
(5.6D) in the matrix vector multiplication (5.60). To this end, an appropriate parti-
tion C is needed.
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e If |Al <c,return ({A}, 9),
e else
— (Ag, Ap) = split(A).
- (Vi, &) :=tree(Aj,c) fori =0, 1.
— Return (Vo U V1 U{A}, EgU &1 U{(A, Ag), (A, ADD).

Algorithm 5.3 (V, &) = tree(A, ¢). Generates atree (V, &) out of a set A of cells of the domain D.
V isthe set of vertices and & the set of edges in the tree. Split bisects a set A into two
digoint sets Ag and A; such that the CebySev radius of both setsis reduced.

An efficient way is to use a hierarchical decomposition of the mesh 7. Algo-
rithm[5.3 generates such a decomposition, a so-called cluster tree:

Definition 5.63 (Cluster tree) Acluster tree 8(A) of afinite set A consists of sub-
setsof P (A) \ ¥ where

e root(B(A)) := Aec B(A),
e 0iNoj € {Q),Ui,aj}forai,oj e B(A)
holds. The subsetso C B(A) are called nodes of the tree B(A) or clusters of A.

The children of a node o are the subsets oj € B(A), i € 4, with |4,]| minimal,
satisfying

oj C o, o] # o, 0=U0i.

icds,
Anodeo of B(A) iscalled aledf if it hasno children,i.e. 4, = @.

For apiecewise analytic kernel V, acluster tree of each D j in Definition5.7has to
be computed |eading to a multi-rooted cluster tree.

The hierarchical decomposition of the meshis used in Algorithm [5.4]to generate
the partition € of the mesh into its far field & and its near field & by calling
partition(7”, 7). This partition is symmetric in the sense of Remark For a
piecewise analytic kernel V, the far fields {F jj/}j],j’zl have to be computed by J2
callsto partition.
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o If
(U2 Uy
acA beB
isan n-cluster, then return (7, {(A, B)}),
o else
— Let A := children(A) and B’ := children(B’). (5.64)
| partition(a, b) if A’ @ and B’ # ¢ and |A| = [BJ,
achA,
beB’
_ Retumn (J partion(a, B) if A’ @ and (Al > |B|or B’ =),
achA
[ partition(A. b) it B’ # @ and (|B| > | Al or A" =),
be B’
({(A, B)},9) otherwise.

Algorithm 5.4: (N, F) = partition(A, B). The tree generated with tree in Algorithm[5.3 serves as
mean to define the children of a set of cellsin B.64).

The matrix vector multiplication ¢ — V¢ =: v in (5&0) is evaluated in five
steps:

1. Compute the near field contribution " := V"g.

2. Computeu, :=Y, ¢ foral r.

3. Compute
Uy = > Elu..
(G,I)EU“/ Fil
4. Compute
(pf = Zgug.
o

5. Sum up the near field and far field contributionsv := " + ¢ .

153



5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

The steps 2-5 compute the far field contribution given in (5.61). The steps 2 and
4 can be accelerated by once more taking advantage of the hierarchical decompo-
sition. The idea is to not store the matrices X, and Y, but represent them using
the hierarchical decomposition and so-called shift operators. For details, we refer
to [93,194].

5.4.4 Overall Error and Complexity

The following result [[93,194] shows the overall error caused by the discretisation
and the approximation of V_by V. Theresult isfirst given for a source problem:
Given f € H=%(D), findu € H%?(D) such that

(V(u),v) =a(u,v) = (f,v) Vv e HY?D), (5.65)
where V(u) isgiven by (5.9). (5.65) is solved with Vy = $P-P(D,) for p= 0, 1.

Proposition 5.66 Assume that the bilinear formin (5.65) is coercive, s < 2p+ 1
andt > 0. Let the cluster approximation Vi, of the far field satisfy Definition
with a sufficiently small grain . Choose the expansion order m according to

m < C|logh|
with C > 0 sufficiently large.

e There e>5i stshg > 0 such that the Galerkin discretisation with the perturbed
matrix V in (5.60) is stable.

e The Galerkin solution of Vu = f convergeswith

lu—unllyszpy < Chmint.p+1=s/2) | £ l4-s/2+t (D) - (5.67)

According to Proposition the convergence (5.67) also holdsfor Eigenprob-
lems such as (5.47)—the Eigenval ues converge twice as fast as the Eigenvectors.
The complexity of the algorithm is essentially log-linear [93]:

Proposition 5.68 (Complexity of the cluster algorithm) Let J2 be the number
of analyticity domains in Definition Then, the complexity of the cluster al-
gorithmis @ (N log® N J2) and the storage requirementsare © (N log* N J2).
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blocksize=1000 f number of deterministic FE problems in a block
nofproblems=7776 # total number of deterministic FE problems
start=0
end=0
while [ $start -1t S$nofproblems ]; do f loop over all blocks
let "end = start + blocksize - 1"
if [ $end -ge $nofproblems ]; then

let "end = nofproblems - 1"
fi
f submit job to queueing system
gsub -v start=Sstart,end=Send -1 nodes=1 diffusion_job
let "start += Sblocksize"
done

Algorithm 5.5: Master script (Bash syntax)

5.5 Parallel Solution of Deterministic Problems

Asthe deterministic Finite Element problems (Proposition areall completely
independent, they can be solved in parallel on a Beowulf type cluster [[18]. This
parallelisation is achieved by asimple shell script (referenced as the master script)
which runs on the administration node of a Beowulf cluster. These deterministic
FE problems are so-called “embarrassingly parallel”.

The master script (Algorithm is given the total number of deterministic
problems to be solved and the size of the blocks in which the deterministic prob-
lems should be grouped. Using this data, the master script sets up a job for every
block of probl emdd in the queueing system of the Beowulf cluster [[7] using ajob
script. The queueing system calls the job script when enough CPUs on the cluster
areavailable. Aswe only request one CPU per job, this should happenfairly often.
It is up to the queueing system to parallelise the whole process. If enough CPUs
areavailable, all blocksare solvedin parallel. If the cluster isnearly full (only very
few CPUs available at the same time), it might even occur, that the whole problem
is solved serially—thisis the worst case scenario.

3A typical size of a block should give arun time of an hour or less, depending on the total number of
problems.
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mkdir -p SLOCAL_SCR
TEMPDIR='mktemp -d $LOCAL_SCR/diffusion XXXXXX' f temporary directory

rcp SWORK_SRV:$PBS_O_WORKDIR/diffusion.tar.gz $TEMPDIR f get archive
cd $TEMPDIR
tar xzf diffusion.tar.gz #f unpack input archive

diffusion -f diffusion.concepts -s S$Sstart -e Send  call FE solver

res.archive=results_s_${start} e _${end}.tar.gz

tar czvf Sres_archive alpha*vector diffusion.out f results archive
rcp Sres.archive SWORK-SRV:$PBS_.O_-WORKDIR # send results back
cd SHOME

rm -rf STEMPDIR

Algorithm 5.6: Job script (Bash syntax)

The job script (Algorithm is aware of the archive diffusion.tar.gz
containing the input data and the Finite Element solver and the indices of the prob-
lems viainput arguments. This archive is then unpacked and the FE solver isrun.
One block of problems is solved by executing the FE solver once. It reads in
the mesh and additional data and computes orthogonal polynomial basis ([5.45) at
start-up. Then, all the deterministic problems are solved serially one after another.
According to (5.41), the stiffness matrix and the load vector have to be computed
separately for every problem. Every deterministic FE solve generates one vector of
coefficients. The resulting data of all deterministic problemsin the block is again
archived and sent back to the administration node of the cluster.

When al jobs generated by the master script have been run, a result archive
from every block exists on the administration node. The collected data can then be
used to do some post-processing. Most of the post-processing can again be done
serialy: computing the approximation of the mean and correlation of the quantity
of interest u is not much more than a sum over al solutions of the deterministic
problems (Proposition [5.43). More complicated statistics like probabilistic level
sets

D} :={x e D:P(ux,.)| > 8 <&}
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might require additional Monte Carlo evaluation of stochastic integrals—which
again can be performedin parallel.

5.6 Numerical Results

5.6.1 Software

Both key computational tasks from Algorithm (computation of the Karhunen-
L oéve expansion and the solution of the deterministic problems) are done with the
same class library Concepts (c. . [[26, 54, [93] and Part[[TI). The main advantageis
that transfering the data for the Karhunen-Loéve expansion from ([5.44) to (5.46)
in Algorithm[5.2is particularly easy due to shared data structures. The two differ-
ent computational tasks are performed with two different main programs and on
different hardware. More precisely, the computations are done on the same mesh
78 and the Fast M ultipole solver which computes the Karhunen-L oéve expansion
assigns the values of the Eigenfunctions {¢m} to the cells of the mesh (which have
a unique number). Therefore, the Finite Element solver is able to read the data
and assign it to the correct cells using the same unique cell numbers. This makes
it even possible to use a further refined mesh (compared to the Karhunen-Loéve
expansion) for the Finite Element computations.

Karhunen-Loéve Expansion

The Karhunen-Loéve expansion (5.44) in Algorithm[5.2)is solved by a generalised
Fast Multipole Method (c. f. Section[5.4). In our present implementation, this step
is performed serially since the complexity of the Fast Multipole Method is log-
linear in N. We are able to treat reasonably large Finite Element meshes with
several hundred thousand degrees of freedom with this serial implementation. As
Ansatz functions, piecewise constants §%°(D, 7°) or piecewiselinears $-9(D, 7)
are used. The Eigenproblemis solved using JDBSYM by Roman Geus and Oscar
Chinellato [58,59].

4Note that this assumption was made only for convenience of implementation—if an adaptive FE
solver for the equation isavailable, then for each j, adifferent mesh adapted to the coefficient
au,j could be created. This, however, would require more sophisticated post-processing when
computing mean and variances of the stochastic Galerkin solution.
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Deterministic Finite Element Problems

For the deterministic Finite Element problems (5.46), we use a linear or quadratic
FEM (i.e. 23D, 7) and 8%1(D, 7) respectively). The resulting linear system
is solved using aadiagonally preconditioned conjugate gradient algorithm.

Orthogonal Polynomials

The computation of the orthogonal polynomialsin step (5.45) is also important but
not very complex. It amounts to solving matrix Eigenvalue problems of the type
Ax = ABx with symmetric and positive semi-definite matrices A and B of size
rj. Dueto the product form (5.38) of the shape functionsin the stochastic variable,
only the univariate form (5.37) needs to be discretised. Sincein the adaptive algo-
rithms for the selection of the stochastic polynomial degrees the optimal degrees
are a-priori unknown, the univariate generalised Eigenproblem needs to be solved
for all possible polynomial degreesr j which could occur. This could be donein
MATLAB for degrees between 1 and 20 once and the Eigenpairs stored on disk for
the main calculation. However, as these Eigenproblems are very moderate in size,
we actually compute them during the start-up phase of a block of deterministic
problemsusing LAPACK [[75] (c.f. Section[5.5).

Post-processing

The post-processing is again done serially (mostly on the administrative node of
the Beowulf cluster). We compute the expected value and variance of U y and their
respective L 2- and H 1-norms according to Proposition

Asin Section[5.3.3, we assume that the random variables {Xm}M. , in (5.19) are
independently identically distributed with a uniform distribution on [— 1/2, 1/2].

5.6.2 Hardware

The computations were performed on the following machines.

e TheKarhunen-Loéveexpansion (i. e. the solution of the large Eigenproblem
with generalised Fast Multipole Methods) was done on a Sun Fire 880 with
32 GBytes of physical main memory and 8 processors at 800 MHz—only
using one processor, though. GCC 3 [[57] was used to compile the software.
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M | P M| | P
110 1 "3 | 6GLD 24
1] @ 2 4 (51112 48
1] © 3 6 |(61L1L,1L11 224
3|@LY |16 6| (722111 576
3|@1) |20 882211111 | 2592

Table 5.1: Adapted polynomial degrees in the stochastic variables for different truncation parameters
M of the Karhunen-Loéve expansion. These values are found with AlgorithmB.] (6 = 0.7).

e The deterministic Finite Element problems were solved on the Linux Be-
owulf cluster Asgard [7]. The compute nodes have two Pentium 111 (Kat-
mai) at 500MHz and 1 GByte of main memory. The compute nodes are
interconnected with fast Ethernet. Again, we used GCC 3 [57] to compile
the software.

5.6.3 Computations
The model problem used is (5.2) on D = (0, 1)2 with

Ea(X) = 2+ X, Va(x, X') = exp(—|x — x|?), f(x) =1

Thereis no exact solution available.

The Eigenvalue problem (5.48) was solved using 2 - 4* = 512 cells with piece-
wise constants. Vy = 55”8(%, D) without using a Fast Multipole Method (but
with the full matrix). The results of (5.48) of the chosen kernel Va(x, X’) are de-
picted in Figure 5.4

The deterministic FE problems were solved using 2 - 4'®® cells with piecewise
linear or quadratic basis functions: Vy = 55’,’31(’/71, D), where p = 1 or 2, witha
diagonally preconditioned conjugate gradient solver.

Stochastic Galerkin Method

The plots in Figure show the convergence history of the relative error of the
H1-norm squared of the expected value and the variance of the solution of the
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Figure 5.8: Relative error of the H1-norms squared of the expected value (left) and the variance (right)
plotted versus the number of problems P. The dotted lines show the Monte Carlo method
and the dashed lines the stochastic Galerkin method. The dash-dotted lines show O (1/PY/2)
and the solid lines give the sub-algebraic theoretical convergence[6.34).

Two different Monte Carlo computations are shown: both with M = 15, + with linear
FEM on refinement level 5 (961 degrees of freedom in the spatial discretisation) and x with
quadratic FEM on level 8 (261121 degrees of freedom). The seeds of the pseudo-random
number generator were the same for both computations.

Four different stochastic Galerkin computations with the adaptive degrees from Tabld5.1l
are shown: * with linear FEM on level 5 (961 dof), o with linear FEM on level 6 (3969 dof),
A with quadratic FEM on level 5 (3969 dof), v with quadratic FEM on level 8 (261121
dof).

model problem. The plotted quantity in the case of the expected valueis

| Euw 0] = | Euco |
| Euo | ?

where || Eyx) |2 was obtained by Rhomberg extrapolation of the last seven values
of the adaptive stochastic degree computationswith M = 3, ..., 8 and quadratic
FEM on level 8. The same procedure was applied for the variance.

The convergence histories of the computations with different spatial resolutions
in Figure show that it is important to equilibrate the errors from different
sources. In this case (ignoring the modelling error), error contributions come from
the discretisation in the stochastic and spatial variables and the discretisation of the
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Karhunen-L oéve expansion (5.48). There are different parameters to control these
discretisations: M and r for the stochastic variables and the polynomial degree p
and the refinement level for the spatial variables. The Karhunen-L oéve expansion
(5.49) is controlled by the level only. The discretisation error of the Karhunen-
Loeve expansion ((5.48) does not play arole in the range of parameters discussed
here: We compared the convergence histories of two computations where only the
level of the Karhunen-L oéve expansion in (5.48) differed and they were identical.
The same decrease of the convergence rate as seen for the coarser discretisations
(%, o and A in Figure 5.8) would also happen with the finest discretisation (v in
Figure[5.8with quadratic FEM on level 8) if the number of problems P was higher:
On these curves, only the stochastic resolution is increased, and the errors are not
equilibrated.

Monte Carlo Method

Most of the code for the computationswith the stochastic Galerkin method and the
Monte Carlo method are identical. Only the diffusion coefficient, the right hand
side and the post-processing differ slightly. The same methods for distributing the
work load on a Beowulf type cluster as described in Section can be applied to
the Monte Carlo method.,

The Monte Carlo computations are done using (5.19) with a new realisation of
{Xm}n"ﬁ':1 for each am (X, ). The Xy, are modelled as independently identically
distributed random variables with a uniform distribution on [— 1/2, 1/2] (c.f. Re-
mark [5.28). Each realisation y, of X, is computed using

_ rand()
" RAND_MAX

where rand() calls the pseudo-random number generator of the GNU C library
returning a pseudo-random integer between 0 and RAND MAX. The right hand
side can be kept unchanged for al FE problemsto be solved.

In the post-processing step, the expected value and the variance are computed
using

1/2,

m

1

P P

1
Euy () = 5 D Gi(0, varu, () = 5= Y (6i(X) = Euy 0)°,
i=1 i=1

51t has to be taken care of properly seeding the pseudo-random number generator.
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where P is the number of realisations of ay (X, w) and G (x) the resulting solu-
tion. The results taken at intermediate steps yield the convergence history shown
in Figure5.8 Apparently, the error of the H 1-norms squared of the expected value
and the variance convergewith © (1/P1/2).

Conclusions

The convergence histories of the stochastic Galerkin method (dashed lines) in Fig-
ure indicate superior convergence properties compared to the Monte Carlo
method (dotted lines):
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The convergencerate of the Monte Carlo method @ (P /2) is algebraic.

Although the stochastic Galerkin method converges only with a sub-
algebraic rate in two dimensions (5.34), it is able to beat the Monte Carlo
method in our experiments.

The stochastic Galerkin method performs better than the Monte Carlo
method already in the pre-asymptotic range.

Refining the spatial discretisation dramatically improves the approximation
using the stochastic Galerkin method. On the other hand, the Monte Carlo
method benefitsfrom better spatial discretisation only by decreasing the con-
vergencerate later (c.f. range P = 103 to 10* in Figure[5.8).

The convergence of the stochastic Galerkin method is more predictable than
the convergence of the Monte Carlo method.

The discretisation in the stochastic variables can be controlled much better
in the case of the stochastic Galerkin method using a non-uniform r. The
stochastic discretisation of the Monte Carlo method is only controlled by the
truncation level M in (5.19).
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hp-Finite Element
Methods in Concepts

In the introduction of this thesis, we have defined our mission: Bijectiviey map
well-defined mathematical formulations of physical modelsto simulation software.
We concentrate on variational formulations of operator equationsgivenintheform
Find u € U such that

a(u,v) =1l VYveV. (6.1)

This problem and specific instances of it are mapped onto a hierarchy of classes
implemented in C++ in the software Concepts|[26,54,(73,[74]. A short presentation
of Conceptshas aready been givenintheintroductionto thisthesis, itisintroduced
further in thefirst section of this chapter. In addition, the choice of C++ asan object
oriented programming language shall be justified.

In the rest of the chapter, the main ingredients and their implementation of our
hp-discretisation of Hll (D) are explained: meshes and subdivisions, shape func-
tions and global basis functions and fast integration techniques for the element
matrices.

6.1 Introduction

6.1.1 Object Oriented Programming

C++ is aflexible, object oriented language supporting the high level paradigms
polymorphism (inheritance) and parametrised types (templates). On the other
hand, it is still possible to write hand-optimised low level code to get maximal
performancein critical parts of the code. Additionally, compilers with good opti-
misation capabilities are widely available [57]. C++ iswidely used in both scien-
tific and commercial applications.
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The main advantage of object oriented programming (as opposed to structured
programming as in the C and Fortran world) is the high level of abstraction which
is possible. If a sufficiently high level of abstraction (comparable to the abstract
mathematical formulation (6.1)) is reached a unified and timeless design of smula-
tion softwareis possible. To reach such ahigh level of abstraction with astructured
programming language would be a much more complex task.

Cleverly adding some low level codein critical partsto the otherwise high level
software makes it possible to write C++ code which even outperforms Fortran
[101].

UML Diagrams

The design of object oriented software can be described using UML diagrams (the
Unified Modelling Language UML [89] is a graphical language). We use UML
diagrams to describe the statics and the dynamics of Concepts.

A box in aUML diagram denotes a class (if the name is underlined, it denotes
an object, i.e. an instance of a class). Italic identifiers are abstract (i. e. have no
implementation behind), whereas underlined members are static (i. e. class and not
object attributes). Arrows with empty heads (A) denoterelationsin a class hierar-
chy. Dashed arrows in a class hierarchy are used for specialisations of interfaces
whereas solid arrows mean normal specialisation. An empty or filled diamond (¢
and ¢) at an arrow tail means aggregation: the class on the arrow head is tightly
linked to the class on the arrow tail.

In thetext, abstract classes are typeset initalic sans-serif like AbstractClass and
concrete classes in sans-serif like NormalClass.

6.1.2 Basic Classes in Concepts
An application in Concepts typically performsthe following steps:

1. Build a meshed domain of interest D. A mesh 7 is built from cells which
contain the element maps.

2. Build a space Vy on the mesh. The space creates the elements. Typical for
FEM and BEM: the elements are associated to cells in the mesh i
IAsintroduced in Chapter[2] the cells are geometric entities (including coordinates and neighbourhood

information). The elements add Finite Element information to the cells: polynomial degree, shape
functions etc. (at least in the cases considered here).
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.....

- T
Scan ElementMap | Cell
[toperator () (x:Realldim]): Realldim] | [+child(): Cell |

Figure 6.1: Classes in Concepts representing mesh, space and elements.

3. Buildthe system matrix A and the system vector | from the element contribu-
tions computed by the bilinear and linear formsac., .) and | (.) respectively.

4. Solvetheresulting linear system with the solver.

Refer to the introduction (including Figure [0.1] on page[6) of this thesis for an
example.

In Concepts, there are classes for the space, the mesh and the elements. see
Figure[6.1l The main member of the classes Mesh and Space is scan(). In both
classes, it returns a Scan<P> with the template parameter P set accordingly. The
instance of Scan is a scanner over the space or the mesh and makes it possible to
loop over the elements of the space or the cells of the mesh. Typically, the construc-
tor of a space loops over all cells of the mesh and creates an associated element to
every cell A The most important member of the class Element is T(): It returns
the T matrix (c.f. Section 3.3) of an element. The T matrix is used to assemble
the local shape functions defined on the element into global basis functions of the
space defined on the whole domain D. Theelement map Fx : K — K isrealized
by ElementMap.

Figure[6.2 shows the classes of Concepts for the bilinear and linear form, the
stiffness matrix and load vector and the linear solver. The constructor of the stiff-
ness matrix SparseMatrix takes as arguments a space and a bilinear form. It as-
sembl es the stiffness matrix by looping over the elements of the space and calling
the application operator operator() of the bilinear form on the elements. The same
is done in the constructor of the load vector Vector. By using these abstract class
declarations, it is possible to explicitly implement the assembly operator (c. f. Defi-
nition[3.22): Algorithm[6.3] shows the constructor of Vector, i. e. the assembling of

2However, there are methods where elements do not have a cell of the mesh associated to it. For this
reason, Element in Figure[6.1]does not have arelation with Cell.
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«interface» «interface»
BilinearForm LinearForm
[#operator () (elmX:Element, elmY: Element, em: ElementMatrix) | [toperator() (elm:Element, em:ElementMatrix) |

«gterfacw ElementMatrix Function
perator - *ealll

foperator () (£ncY:Function, fncX: Function) AEMatrix (m:int,nrint)
+spaceX () : Space
+spaceY () : Space i :int,3:int): Real

nc:Function) : Function
ction): Function

[ o
I |
SparseMatrix [ CG |
“spcX: Space [= operator | [ Vector |
-spcY: Space [#Sclver(a:operator) | [+data: reall] 1
_A: HashedSparselatrix “Vector (spc:Space, L :LinearForm)

“SparseMatrix (spc:Space, bt :BilinearForm)

Figure 6.2: Classes in Concepts for bilinear and linear forms, stiffness matrix and load vector and the
solver.

the global load vector—the assembly operator of a stiffness matrix looks similar.
The solver is, like SparseMatrix, derived from the general class Operator. Opera-
tor isthe realization of the general concept of an operator between vector spaces.
A solver (in this case conjugate gradients CG) fits into this concept, too.

Remark 6.2 The solver and matrix classes are either our own implementation
(CG, GMRes, SparseMatrix and DenseMatrix) or interfaces to other packages
(SuperLU [45,146], PETSc [[11,[12,[13], Pardiso [91] and Umfpack [38, 39, 40]).

6.2 Mesh Classes in Concepts

This section is devoted to the classes in Concepts which handle the mesh 7. The
first part explainsthe data structuresin some detail. The second part shows how the
different subdivision strategies for quadrilaterals and hexahedra are implemented.

6.2.1 Classes to Handle a Mesh

The most important part of amesh is a scanner over al cellsin the mesh (c.f. Sec-
tion and Figure[6.J). For one, two and three dimensions, there are separate
specialisations of Mesh, namely Mesh1, Mesh2 and Mesh3 respectively. A real-
ization of a specific mesh (like aline in one dimension) is then a specialisation of
the respective interface class as shown in Figure[6.3

The scanner of amesh is used to loop over the cells of a mesh. A Cell consists
of atopological entity of the respective dimension (for instance Edge, Triangle or
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Vector: :Vector (const Space& spc, LinearForm& 1f) : v_(new F[n_]) {

memset (v_, 0, n_ * sizeof(v_[0])); // set the load vector to 0
ElementMatrix A(3, 1), B(3, 1); // initialize 2 element matrices
Space::Scan* sc = space().scan(); // get a scanner to loop over the space
while (*sc) { // loop over all elements of the space
Element& elm = (*sc)++; // get the current element
const TMatrixBase& T = elm.T(); // get the T matrix of the element
1f (elm, A); // evaluate the linear form
A.transpose(); T(A, B); // ** apply the T matrix **

B.transpose() ;

for(int 1 = T.n(); i--;) { // add the element’s contribution
v_[T.index(i)] += B(1,0); // into the global load vector
}
}

delete sc;

Algorithm 6.1: Constructor of the class Vector which implements the assembly operator for aload vec-
tor (3.:24). This does not depend on any particular implementation of the Finite Element
space or the linear form but only on the abstract classes. The key point isthe application
of the T matrix: (I T)" =T\ lk,c.f. @29

<interfaces
Mesh
+ncell(): int
+scan(): Scan<Cell>*
....................... e
v
<interface» <Interfaces <interface»
Mesh1 Mesh2 Mesh3
+scan () : Scan<Celll>* +scan () : Scan<Cell2>* +scan () : Scan<Cell3>*
A A A
Line Import2dMesh Import3dMesh
—vix: Vertex(] —vix: Vertex(] ~vix: Vertex(]
-edg: Edgel] -edg: Edgel[] -edg: Edgel]
-cell: Celll(] -cell: Cell2[] -tri: Trianglel[]
“Line () +Tmport2dMesh (coord:string, elm:string, boundary:string) -quad: Quad(]
-cell: Cell3[]
+Import3dMesh (coord:string, elm:string, boundary:string)

Figure 6.3: Classes for meshes I. An implementation of a concrete mesh is a sibling of Line, Im-
port2dMesh or Import3dMesh depending on the spatial dimension. Import2dMesh and Im-
port3dMesh can be used to import mesh descriptions from files (with the same structure as

in[e]).
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e Initialise an (empty) list of auxiliary data for edges.
e Loop over al cellsin the mesh

— For each edge of the cell

x If the edgeisnot yet in the list, add it.
* Register the current cell to the edge.

Algorithm 6.2: Finding neighbours over edges in a two dimensional mesh. This algorithm creates a
temporary list where all edges are stored including links to their adjacent cells.

Hexahedron) and an element map. For each of these topological entities, thereisa
specialisation of Cell (thisisnot shown). Thecell linkstopol ogical and geometrical
information.

The hierarchy of the topological classes is shown in Figure [6.4l An important
part of the topological information is knowledge about a cell’s neighbours. How-
ever, thisinformation is only stored implicitly in the data structure. A Quad stores
linksto its four edges and an Edge stores links to its two vertices. If two quadri-
laterals share an edge, the edge only exists once in memory. To find out which two
quadrilateral s share an edge, one has to loop over all quadrilaterals and check their
edges. Algorithm[6.2 does thisfor atwo dimensional mesh: it builds a (temporary)
data structure containing referencesto all edges and the linksto the cells belonging
to the respective edges. In the implementation of this algorithm and othersin this
chapter, data structures of the Standard Template Library STL [[86,[102] allowing
efficient access to the data, are used.

Figure[6.5 shows the Object Diagram of a three dimensional mesh.

6.2.2 Subdivision Strategies

In Chapter [2 it was shown that anisotropic refinements are necessary for expo-
nential convergence of hp-FEM. Restricting ourselvesto refining an edge into two
equally sized partdd, the refinementsin Figure[3.14 on page[79 need to be possible
for a quadrilateral.

3The subdivisions ratio or geometric grading factor iso =1/2.
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Connector

“key: int
-attrib: Attribute

+Connector (key:int,attrib:Attribute)
+child(i:int): Connector*
+related(): int
+operator==(cntr:Connector) : bool

Connector2

Connector0

—counter: int

—counter: int

+Connector2 (attrib:Attribute)

+Connector0 (attrib:Attribute)
-Connector (key:int,attrib:Attribute)

-Connector2 (key:int,attrib:Attribute)

Connector3

Connectorl
—counter: int

[ Vertex

+Vertex (attrib:Attribute)
+child(int): Vertex*

—counter: int
+Connectorl (attrib:Attribute)
-Connectorl (key:int,attrib:Attribute)

+Connector3 (attrib:Attribute)
-Connector3 (key:int,attrib:Attribute)

Edge

-vtx: Vertex[]
-child: Edge(]

“Edge (VEX0:Vertex, vExl:Vertex, attrib:Attribute)
+child(i:int): Edge*
+vertex (i:int):

Vertex*

(a) Basic topological classes including zero and one dimensional specialisations Ver-
tex and Edge respectively.

Connector2

-—counter: int
“Connector2 (attrib:Attribute)
-Connector2 (key:int,attrib:Attribute)

[ 1
Quad

Triangle
-edg: Edge () -edg: Edge (]
-rho: 721 -rho: z21(]
-child: Trianglel[] -child: Quad(]
., edg2:Edge, attrib:Attribute) “Quad (edg0:Edge, . . ., edg3 :Edge, attrib:Attribute)
ad*

+Triangle (edg0:Edge, . .

+child(izint):

+child(i:int): Trianglex

+edge (i:int) : Edge* +edge (i:int) : Edge*

+vertex(i:int): Vertex* +vertex(i:int): Vertex*
+rho(i:int): Z2

+rho(i:int): 22

(b) Two dimensional specialisation of the topological classes: Triangle and

Quad.

Connector3

—counter: int
+Connector3 (attrib:Attribute)
-Connector3 (key:int,attrib:Attribute)

[P

Hexahedron

Tetrahedron

“tri: Triangle(]
-rho: z2[]
-tau: z3[]

-quad: Quad[]
-rho: 22[]
-tau: 2z4[]

-child: Hexahedron

quadé:Quad, attrib:Attribute)

-child: Tetrahedron

+child(i:int): Tetrahedron
+face (i:int): Trianglex
+edge (i:int) : Edge*

“Tetrahedron (tri0:Triangle, ..., tri3:Triangle,attrib:Attribute)

“Hexahedron (quad0:Quad,
+child(i:int) :

+£ace (i:in
+edge (i:1in
+vertex

int): Vertex*

+vertex (i : Vertex*
+rho (i:int): 22 +rho (i:int): 22
stau(i:int): 23 +tau(i:int): 274

Hexahedron*

(c) Three dimensional specialisations of the topological classes: Tetrahedron and Hexahe-
dron. The additional specialisations Prism and Pyramid are not shown here.

Figure 6.4: Classes for meshes |1. A mesh consists of severa cells: in one dimension of Edgeld and in
three dimension of Tetrahedron3d and Hexahedron3d. Each of these cells has a reference
to atopological entity and a reference to an element map. The class diagrams above show
the hierarchy of the topological classes. The member counter in Connector0—Connector3
is a static variable responsible for the generation of unique identifiers (the key) per spatia
dimension. Z2, Z3 and 4 are additive groups with two, three and four elements respectively

used to describe orientation flags.
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vEx edg tri or quad cell
VExX I edg I tri or q’uadl
| Edge | Face Cella
51 51 hla

tri or guad
Cell3 I

E

A__tri or quad

A__vex

Figure 6.5: Objects in amesh. The objects of a three dimensional mesh have the shown relations. If at
least one of the cells isrefined, the grayed part is added.

ubdivstrategy
1

[ Quad <Interface»
|+setstrategy (strategy:QuadSubdivision*)
o

+getStrategy () : QuadSubdivision

=
|

ige*
Vertex*

ige (q: 01 :
+newVertex (g:Quad, nt) :

................. e S
i ;
[ QuadSubdiv4 | QuadSubdiv2H | QuadSubdiv2V |
|

[zinst: dSubdiva* [zinst: dSubdiv2H [zinst: dSubdivav* 1
[tinstance O : QuadSubdiva* [tinstance O: QuadSubdiveH | [iinstance(): QuadSubdivav* |

Figure 6.6: Subdivision strategies for a quadrilateral. The class Quad was aready introduced in Fig-
ure[6.4] but not all members were shown there. Here, only the ‘new’ members are depicted.

Thisis achieved by applying the Strategy Pattern [[56] to the subdivision algo-
rithm in Quad (c.f. Figure[6.6). To remain backwards compatible (there was only
the possibility to subdivide into four new quadrilaterals before), QuadSubdiv4 is
the defaullt.

Calling setStrategy with the appropriate argument changesthe strategy in Quad.
This has to be done before asking for the children of Quad (such a call for a child
subdividesacell if it has not yet been subdivided). However, if there already exist
children of Quad, trying to change the subdivision strategy throws an exception.
Thisexceptionis caught and handled correctly, the program does not abort but goes
onfl However, the subdivision strategy and the children remain unchanged.

“Here, exceptions are not used to |et the program fail but to indicate a special (i. e. exceptional) situa-
tion. However, precautions are taken to handle this situation (and cath the exceptions).
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Figure 6.7: Refinement in directions &, &2 and &3.

= ] = ]

Figure 6.8: Examples of refinements resulting from combinations of refinements in Figurde.7l

The different refinements for a hexahedron are handled similarly (compared to
three different strategies for the quadrilateral, there are seven for the hexahedron,
examples are depicted in Figures[6.71and[6.8). Thereis the additional technicality
that the faces of the hexahedron need to be refined in the correct way in order
to create the children correctly. Thisis solved by asking for the right subdivision
strategy on the faces (which are quadrilaterals). If one of the faces cannot be refined
in the necessary way (because of a different refinement strategy which was used
previously for this face), an exception is thrown—with the same effects as in the
case of the quadrilateral above.

Remark 6.3 (Geometric deadlock problem) The handling of some combina-
tions of refinements in neighbouring elements is not implemented (c. f. Figure [6.9).
Nevertheless, they can be asked for—the result is an exception. The implementa-
tion of meansto handle the combination shown in Figure [6.9 would not be straight
forward. Furthermore, it is possible to refine one of the two elements to get a
combination which is easier to handle (c. f. Figure [6.10).

In the case shown in Figure 6.9, the main problem arises on the face which is
shared by the two hexahedra. There, the identification of a ‘first’” and a ‘ second’
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Figure 6.9: Illegal subdivision combination in  Figure 6.10: Legal subdivision combination in
neighbouring elements. neighbouring elements.

child is ambiguous. The handling depends on these denotations, though. This
problemis explained in more detailsin Section [Z.2

6.3 hp-Discretisation of H!_(D)

For hp-FEM, 51951(D, 7) with D ¢ RY bounded (d = 2 or 3) has to be imple-
mented. Here,

SN0, 7) = {ue HE (D) s ulk o Fk € VP YK eT)and  (64)

HE (D) :={ue HY(D)?: ulr, =0}.

To be able to represent all meshes described in Sections [2.2 and anisotropic
refinements (h-refinements) and an anisotropic polynomia degree vector p =
{ Pk }k e7 needto be possible. Thenotation 7 and 'V p, in (6.4) is explained below.

In this section, the implementation of 8}’;31( D, 7) in Conceptsis described. The
mathematical techniques and requirementswere givenin Chapter [3 The aim of the
implementation of the FE space is a list of elements. Every element contains all
necessary information (like geometry, assembling [T matrix] and shape functions).
The object representing the space provides methods to loop over al elementsin
thislist and to refine selected elements anisotropically in h and p.

This section is subdivided as follows: Firstly, the notion of the mesh 7 and the
polynomial degree are detailed. The next part explains the shape functions used
in one, two and three dimensions. Then, the support of a global basis function
and how it is found are described. The central part describing the building of the
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P .

4 (behind)
‘ 3

0 (bottom)

Figure 6.11: Numbering of the edges (left) and faces (right) in a hexahedron.

elements and the T matrices etc. followslast. A run-time cost analysis of the most
expensive partsis given in Sections[3.3.6 and[3.4

6.3.1 Specification of Mesh 7 and Polynomial degree p
Mesh T

The classes to handle a mesh are described in Section

Let 7 be a conforming, hexahedralld mesh of D (sometimes referred to as the
coarsest mesh, the superscript ! refers to the number of layersin the mesh). Then,
7 hasto be ahierarchical refinement of 7. A refinement of a hexahedral element
can beindirection &1, & or £3 or acombination of these. Using such mesh refine-
ments, 7 no longer needs to be conforming. The hanging nodes are handled with
S matrices during the assembling procedure (c. f. Section [3.3.3).

Polynomial degree p

The notation V py in (6.4) is described. py isthe polynomial degree on element
K e 7. It hasthefollowing structure:

bk = {p% € N®, pfl e N%fori =0,...,5,py eNforj=0,...,11},
6.5)

5Concepts is also able to handle other element types (such as tetrahedra, prisms and pyramids). They
are not covered in thiswork.
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wherec, f and e stand for cell, face and edge respectively. The numbering of the
faces and edges of an element is givenin Figure 6. 111 Further on, K in pg, p}'z or
Py isomitted if it is clear from the context.

Thefollowing assertions hold for pg:

e p > 1foral components p of pKB

o If K and K’ share aface or an edge, the polynomial degree on this face or
edge isthe samein both elements.[%

e The polynomial degree on achild of a cell, face or edge is smaller or equal
than the polynomial degree on the cell, face or edge itself, i. e. parents have
larger or equal polynomial degree than children.

Now, V pk from (€.4) can be defined:

— P* P* p*
rVpK .—Jp(c)®e/pi®e]pg+
———

interior
1-¢&3 - &
P QP ® +P*, ® QP+ +
;o plfo 2 p(;l 2 plfl
face fo faces fi,i=1,..., 5
1-6 1-§& 1+& 1-&

ﬂ)* 5)*
pe0® > ® > + > ® pe1® > +---+
edge ey edgese,i=1,..., 11

1-& 1-& 1-4&
> & > ® > +...
vertices
where 23 := £ . 2 and P, = span(&’ 1 0 < i < p). It is assumed that the

reference element is K = (—1, 1)3. The terms 1%5 and 1%5 originate from the

linear shape functions, c.f. (€.8).

61t is possible to have piece-wise constant elements (p = 0) in Concepts, for instance for Boundary
Element Methods, but this is not considered in this work.

"Infact, the polynomial degree on thisface or edge isonly stored once for both elements. For the faces,
this involves handling the different possible orientations of the face which lead to a permutation of

p(;i and plfi . This has to be taken care of in the implementation but will not be considered further
here.
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Remark 6.6 p® € N2 can be chosen arbitrary. pfi € N2 and p® € N can be
raised if necessary (enriching the Finite Element space on the faces or edges) but
not chosen arbitrary—the reason is explained in Section

Remark 6.7 (Trunk spaces) It has been shown (e. g. [48, 49, [106]) that it helps
save degrees of freedom to restrict the total polynomial degreein the interior and
on the faces of a hexahedron. These so-called trunk spaces are also implemented
in Concepts. Thereis nearly no sacrifice in accuracy in typical applicationswith
respect to the full tensor product space, though. However, the amount of saved
degrees of freedom is considerable: for p = 8 the full tensor product space in
one hexahedron has 729 degrees of freedom and the trunk space has only 346.
Figure[6.12 shows a comparison of the sparsity patterns. The plots were donewith
the following constraint polynomial spaces:

iyt ] k= marlof. ) 41
on the faces and
span{x'y 2 1 i + j +k < max{pS, pS, pS} + 1}

in the interior. In general, one could think of the following constraint polynomial
spaces: {xy : ff(j,k pf) = 1} and {xX'y!ZX : £, j,k p° = 1} with
indicator functions f T and f € for the faces and the interior respectively. In fact, it
would not be hard to add such an interface for user supplied functions f * and f°.

6.3.2 Shape Functions

The reference element in which the shape functions are defined is (—1, 1) 3. The
shape functions currently implemented are those proposed in [[72]. They can easily
be exchanged as long as the basis functions remain hierarchic and contain the first
two linear shape functions.

In one dimension, the shape functions of order p (c.f. Figure are

[y
e

i =0,
=1, (6.8)
BEphlie 2<i<p

i
+ N
e

Ni(§) =

| N
e

1

N‘
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0
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(8 Trunk space. Size: 346 x (b) Tensor product space.
346, number of non-zeros: Size: 729 x 729, number
9528 (8.0%). of non-zeros: 18533

(3.5%).

Figure 6.12: Sparsity pattern of stiffness matricesin three dimensionsfor p = 8. Thefull tensor product
stiffness matrix is sparser but twice as large (in size and number of non-zeros) compared
to the matrix of the trunk space. The sparsity patterns themselves depend on the choice of
the shape functions (see below). These plots here should illustrate the effect of the trunk

spaces.
1 T T 1 T T 1 T T
08 - 08 - B 08 - B
06 - B 06 - B 06 - B
04 q 04 q 04 q
02 — 02 — 02 —
o o o
02 |- B 02 |- B 02 |- B
0.4 . . 0.4 . . 0.4 . .
1 05 0 05 1 1 05 0 05 1 1 05 0 05 1
1 T T 1 T T 1 T T
08 - B 08 - B 08 - B
06 - B 06 - B 06 - B
04 q 04 q 04 q
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Figure 6.13: Shape functions 6.8) in onedimensionfor p=1,...,6.
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The Jacobi polynomials Pil’l(s) are integrated Legendre Polynomias: Li(¢§) =
P*(&) and

§ o _1 o
f_ (-0t x)? PP (x) dx = S (1= (Lt g)fHipet LAt g

3 -1
N /1 R0 dx = (1 )AL+ HRNIE).

i. e. the shape functions givenin (6.8) are essentially the integrated L egendre poly-
nomials.

In higher dimensions, the shape functions are tensorised one dimensional shape
functions. In two dimensions, this is done for the quadrilateral elements and in
three dimension for the hexahedral elements.

The reason for choosing the shape functions ([6.8) is the good sparsity pattern of
the mass and stiffness matrices and the good behaviour of the condition number.
Figure[6.14] shows the sparsity patterns of the mass and stiffness matrices of one
element corresponding to the bilinear forms

i(u, v):/ uv dx (mass matrix),
K

a(u, v) =/ Vu - Vudx (stiffness matrix)
K

in one, two and three dimensions with internal and external degrees of freedom.
Figure[6.15 shows the condition numbers of the mass and stiffness matrices corre-
sponding to the above bilinear forms of one element in one, two and three dimen-
sions with homogeneous Dirichlet boundary conditions on the whole of D (i.e.
only the internal degrees of freedom are considered). Again, the trunk spaces give
better results (i. e. lower condition number).

6.3.3 Support of a Basis Function

Since every Finite Element functionu € VN = 5#;)1(D, 7)isasoin HY(D),ithas
to be made sure that u is continuous over element boundaries. Thisisautomatically
fulfilled by enforcing continuity for all basisfunctionsof V. A key component of
thistask is to find the correct support for each basis function. The basis functionis
then combined from the individual shape functionsin the cells of the support.
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Lt 1 1
20 L. 80 111 11
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(a) Mass matrix in 1D.

0 5 10 15 20

(d) Stiffness matrix in 1D. (e) Stiffnessmatrix in 2D. (f) Stiffness matrix in 3D.

Figure 6.14: Sparsity pattern of the mass and stiffness matrices. The approximation orders are p = 20
in one dimension, p = 10 in two dimensions and p = 8 in three dimensions. In two and
three dimensions, the total polynomial degree on the faces and in the interior was limited
(i. e. trunk spaces).

Inacomplicated, locally refined mesh, it is not a-priori clear what the support of
acertain basis function is (for instance corresponding to a vertex or an edge). This
section shows how the support can be found and how the polynomial degree hasto
be adjusted in that support.

Finding the Support

To ensure global continuity of the basis function @i, the unisolvent sets on the
interfaces in the support of ®; have to match.
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Figure 6.15: Condition numbers of the stiffness (dashed line) and mass matrices (solid line) in one, two
and three dimensions (first, second and third column) plotted versus the polynomial degree
p (top row) or the number of degrees of freedom N (short ‘ndof’, bottom row) using log-
log scale. The lines marked with + are computed using trunk spaces whereas x uses the
full tensor product spaces.

| quadrilateral(two dimensional) | hexahedron(three dimensional)

on every edge p—1 p-1
on every face (p—1)2
in theinterior (p—172 (p-13

Table 6.1: Points in the unisolvent sets for @p in addition to the vertices of the quadrilateral and hexa-
hedron respectively.

e Theunisolvent setsfor @1 (polynomialsof maximal order onefl) in aquadri-
lateral (two dimensional) or ahexahedron (threedimensional) arethe corners
of the quadrilateral and the hexahedron respectively.

e The unisolvent sets for @ are additional points on edges, faces and the
interior (summarised in Table[6.J).

8In two dimensions: Qp = span{xi yj di,j < phi.e @1 =span{l, x,y, xy}.
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o Start with alist of all the smallest cells (from the ‘active’ level in the mesh 77) which contain
the vertex v.

e Repeat until no changes have to be made:

— Generate alist of al the edges which coincide in the vertex v and belong to one of the
cellsinthelist.

— Look for related edges in the prepared list. If two edges e and € are related (i. e. have an
ancestor—descendant relationship) but are not equal:
Replace the cell belonging to the smaller edge (without loss of generality denoted with
€') with its ancestor €" in such away that the corresponding edges of e and & are equal,
i. e. take the father, grandfather or great grandfather of & as e*.

Algorithm 6.3: Finding the support of a vertex mode corresponding to vertex v.

To find the support of a vertex mode, it suffices to match the edges which coincide
in this vertex. To find the support of an edge mode (in three dimensions), the
coinciding faces have to be matched.

Therefore, the idea of an algorithm to find a support of a vertex mode should be
as shown in Algorithm 6.3 Finding the support of an edge mode in three dimen-
sions follows the same lines as Algorithm[6.3—with faces replacing edges.

Example 6.9 (Finding the support of a vertex mode) Figure shows how
Algorithm finds the support of the bilinear basis function corresponding to
middle vertex in four steps.

The jump from the third to the fourth figure in Figure is closely related to
the handling of hanging nodes and the S matrices in Chapter It is assumed
that the top left quadrilateral in Figure [6.16 was refined at once into four smaller
guadrilaterals. Therefore, the parent of a small quadrilateral is the parent to all
four quadrilaterals in the algorithm to find the support of the basis function and
also in the algorithm to handle hanging nodes.

Adjusting the Polynomial Degree

Typically, the degress of the faces and edges (p " and p® respectively) are deter-
mined by “projecting” the degree of the cell p® onto the faces and edges respec-
tively. Even in very simple cases in two dimensions, this can lead to problems.

182



6.3 hp-DISCRETISATION OF H%D (D)

Figure 6.16: Example for Algorithm[6.3 It is shown how the support of the bilinear basis function
corresponding to the vertex marked by e isfound in four steps. The current list of the cells
in the support of the basis function is grayed. The edges on the right of e are checked first.
In this example, the algorithm goes on clockwise. The algorithm does not need or create a
specific order, though.

T

Figure 6.17: A dashed linemeans p = 2, adotted  Figure 6.18: The edges marked with solid lines

line means p = 1: the left element need to have p = 2 in order to be
has p = 2 in the interior (indicated able to represent the shape function
by the cross) and on the edges and on the large middle edge.

left four elements have p = 1linthe
interior and on the edges.

Example 6.10 Figure[6.17 shows a setup in (0, 1)? with five elements and a poly-
nomial degree of 2 in the large element and 1 in the small elements.

The edge {1/2} x (0, 1) has one basisfunction ® associated to it (namely the one
of the edge of the large element with p = 2). The basis functions of the edges of
the small elements are not taken into account since they are constrained by ®. The
basis function

2x-y(1-y) X <12

<
POy = {2(1 "X yd-y) x>
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+

Figure 6.19: Geometrically refined mesh. Darker elements have a higher polynomial degree.

can be represented in the left element. Although the support of @ is (0, 1)?, it
cannot be represented in any of the small elements: The polynomial degree of the
edges on {1/2+} x (0, 1), {3/4—} x (0, 1) and {3/4+} x (0, 1) istoo small (only
one instead of two). The problem can be resolved by dropping ® from the Finite
Element space by setting the polynomial degree of the edge {1/2} x (0, 1) to Linall
adjacent elements.

The problem in Example[6.10 does not seem grave at first sight: one basis func-
tion is lost since it is not representable on all elements of the FE space. But in
geometrically refined meshes (c.f. Figure [6.19) with linearly increasing polyno-
mial degree, many basis functions would be lost, if this approach was followed.
However, to ensure exponential convergence, these basis functions are essential.
Since the supports of the basis functions on the edges with hanging nodes do also
include the smallest elements with p = 1 (which do not include any shape func-
tions on edges) all basis functions on edges with adjacent cells whose neighbours
are not equally sized would have to be dropped.

A remedy for this problem would beto

o shrink the support of the concerned basis functions and raise the polynomial
degree on the adjacent edges or

e increase the polynomial degree of all edges which are in the support of the
concerned basis functions up to a sufficient level.
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The second option is simpler to implement for the same reason as explained in Ex-
ample[6.9 Namely, asubdivisioninto four children cannot easily be torn apart and
regrouped: it cannot be reformulated as a subdivision into two children (followed
by a second subdivision into two children). Therefore, shrinking the support of a
basi s functionswould be very complicated.

Example 6.11 (Example[6.10 continued) The degrees of the edge modes which
were named in Example[6.10 have to be raised to 2 (c.f. Figure[6.18). Then, the
basis function on the edge {1/2} x (0, 1) can be represented in its whole support
(0, 1)2 and is therefore a valid basis function of the FE space.

6.3.4 Algorithm to Assemble the Finite Element Space

In Concepts, it is not possible to build a Finite Element spacezirpl;’l(D, T) directly
on an arbitrary mesh 7/ with an arbitrary polynomial degree distribution p’. In-
stead, the adjustmentsfor the mesh and the polynomial degree with respect to aFE
space 51951(D, 7) have to be given element-wise. An adjustment for an element
(K, pk) isavector §1 = (lx, dly, 8l,) and avector § p = (8px, 8Py, 8pz) describ-
ing the refinementsin each direction (81) and theincreasein the polynomial degree
(6 p). Here, x, y and z denote local coordinatesrelative to the element. This makes
it possibleto create a sequence of FE spaces. The starting point of such a sequence
isthe FE space 5%’§(D, 71) with polynomial degree 1 on the initial (conforming)
mesh 71

Building 5}°D’l(D, 77) from /Srpl’Dl(D, 7') takes these steps:

1. Determine 7/ and p’ from 7 and p and the adjustments 8| and § p. Enforce

Dirichlet boundary conditions by marking the respective modes as ‘ passive’
(explained below).

2. Find the support of al basis functions on vertices, edges and faces (c.f. the
first part of Section[6.3.3).

3. Enforce the minimum rule: the polynomial degree on aface or edge has to
be the minimum of the adjacent elements. This economises afew degrees of
freedom without harming the convergence.

4. Enrich the polynomial degree on some faces and edges (c. f. the second part
of Section[6.3.3).
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5. Build the elements of the FE space (including the computation of the T ma-
trices and the application of the S matrices).

Each of these steps recursively traverses the mesh (which has a tree structure) in
a depth first search fashion. The entry point for such atraversal is the first cell in
7 1. These steps are presented in the following subsections.

Determining Mesh and Polynomial Degree

Algorithm[6.4] shows how the adjustments describing the transition from 7 to 7’
and from p to p’ aretaken into account. meshAndPoly is called inside aloop over
al cells c in the initial mesh 71, The initial p* (parameter of meshAndPoly) is
setto (—1, —1, —1). The purpose of meshAndPoly isto determine which cells are
‘member of the space’ and the polynomial degree of the cells. The polynomial
degree on the edges and faces is fixed | ater.

The attribute * member of the space’ of a degree of freedom on aface or an edge
which is set in (6.12) means that the degree of freedom belongs to the currently
constructed FE space. This attribute is shared between elements which share this
face or edge. Additionally, each degree of freedom can have an attribute ‘ passive’
(opposed to ‘active’) which essentially excludes the degree of freedom from the
FE space. Thisis used for homogeneous Dirichlet boundary conditions.

Finding the Support of Vertex, Edge and Face Modes

Thekey part of thistask hasalready been described in thefirst part of Section
What remains to be explained is how it all fits together.

At the beginning, lists of vertices, edges and faces are created. Each of these
listsis created by looping over the cellsin the current mesh. Thelistsaremadeina
temporary data structure so that more datais at hand which is not stored explicitly
in the mesh data structure, namely:

e parent pointersfor the cells,
o pointersto the cells and edges for the vertices,
e pointersto the cells and faces for the edges and

o pointersto the cells for the faces.
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o Ifce7T:

— Adjust p© on ¢ and refine (or coarsen) c if necessary (depending on the adjustments, i. e.
generate the children of c).

— Ensure p® > 1and set p* = pC.
o Ifceg 7
— Call meshAndPoly(c/, p’ := p*) for all children ¢ of c. After each cal: p* =
max { p*, p'}.
_ pC — pi.
— V children ¢’ of ¢ (f; and e(J are the faces and edges of ¢ respectively):

pfi = max{p'’, pfi}fori =0,...,5,if f and f; arerelated
pSi :max{pelj, p%}forj =0,....11,if € and ej arerelated.

e edse(i.eceT):
— Set p¢ = p* and project p° onto the faces and edges of c.

— Mark the degrees of freedom of the cell (including the faces and edges) as ‘member of
the space’. (6.12)

Algorithm 6.4: meshAndPoly(c, p*), where c isthe cell and p* is the desired polynomia degreein c
respectively. 7 is the mesh used for the old space and 57 is the mesh used for the new
space. Initidly, p* = (-1, -1, —-1).

This additional datais used in the algorithmsto find the support for the modes on
the vertices, edges and faces.

After theinitial set-up phase, relations are checked in the list of faces following
Algorithm[63 Algorithm[6.5implementsthe sameideaasfound in Algorithm
but for the somewhat simpler case of faces. This ensures the global continuity of
face modes.

The same procedure preformed for the faces is now done with the edges, i.e.
Algorithm is applied to the list of edges. However, this is not sufficient to
ensure globally continuous edge modes.
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e While anything changes
— Look for pairs of faces f and f’ with an ancestor—descendant relationship. If such apair
isfound (without loss of generality f’ isadescendant of f):

* Add the ancestor of the cell of f' which hasthe same size asthe cell of f tolist of
cellsof f.

* Remove f’ from thelist of faces.

Algorithm 6.5: Checks for related faces in the list of faces. Eventually, every interior face has two cells
registered which have equa size (i. e. have the whole face as one of their sides).

,,,,,,,,,,,,,,

Figure 6.20: Illustrating the problem of the edge modes in Exampl€6.13

Example 6.13 (Not globally continuous edge mode) Consider the mesh in Fig-
ure[6.200 After the initial set-up phase, the large cell on the left is the only cell
being in the support of the basis functions corresponding the large, vertical edge
e

After the applying Algorithm[6.5, edge e has the large cell on the left and the
parent of the two cells in the foreground on the right in its support. This, however,
does not define the support of a globally continuous edge mode on edge e as the
unisolvent sets on the face f do not match.

The correct support for the edge e would be the whole depicted domain.

The problem described in Example is fixed by applying an analogon to
Algorithm[6.3/to every edgein the list of edges.

The last step in this phase is to find the correct support for the vertex modes.
Thisis done by applying Algorithm [6.3 to every vertex in thelist of vertices.
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o Ifce7T:

pfi :max{qfi, pfi} fori =0,...,5,

p¥i = max{qu', pei} forj=0,..., 11,
i. e take the maximum of p and g on the boundary of the cell.

e else(i.e c ¢ T): Loop over al children d of c:

— If there exist degrees of freedom on the boundary of c:

x qfi = max{qfi, pfi } ,i =0,...,5,if the basis functions on f, of ¢ are neces-
sary to represent the basis functions on f; of c (in ¢’). This heavily depends on the
subdivision strategy and the position of f; with respect to ¢ and the faces of c.

x Analogously forg®,j =0,..., 11

— Call enrichEIm(c/, q).

Algorithm 6.6: enrichElm(c, q), where c is the cell and g is the minimal polynomial degree ¢ has to
fulfil on its boundary (q has the structure [B.5)).

Enforcing the Minimum Rule

Algorithm[6.4] projects the internal polynomial degree p° onto the faces and edges
of cinan arbitrary order (given by the structure of the mesh 7). However, using the
minimal polynomial degree of the adjacent cells as the polynomial degree on the
edges and faces saves some degrees of freedom. Thisis done in a separate phase
by looping over al faces and all edges in the list of faces and the list of edges
respectively. On each face or edge, aloop over al adjacent cellsis performed and
the minimal polynomial degreeis computed and registered with the face or edge.

Enriching the Polynomial Degree of Faces and Edges

Algorithm shows how the polynomial degree of certain faces and edges is
raised in order to represent the necessary basis functions. The reason for this
was given in the second part of Section Initialy, enrichElm is called with
q=(-1,...,—1)onall celsof 71
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6 hp-FINITE ELEMENT METHODS IN CONCEPTS

e Vverticesv of c:

— If v is‘active’ and ‘member of the space’ and c is in the support of the vertex mode
corresponding to v: Get aglobal index for the degree of freedom, build a T column and
addittoT. (6.14)

— If vis‘passive’ or ‘member of the space’ and c isnot ‘member of the space’: Deactivate
v,i.e mark v as‘passive'.

e Analogously for the edges and faces. When computing the entries of the T column, the orien-
tation and the polynomial degrees on the edges and faces are taken into account. Deactivating
an edge or face means that al existing children of the edge or face are also deactivated (i. e.
marked as ‘passive’).

e If c € 7: Get the global indices for the inner degrees of freedom, build T columns for them
and add the T columnsto T. Eventually, build an element from c with T and add it to the list of
elements of the space.

e If c ¢ 7: V¥ children of c:
— Apply the Smatrix Sow: Vt € T: t/ = S.ytandadd t' to T, (6.15)
— Call buildElements(c/, T').

Algorithm 6.7: buildElements(c, T), where cisthecell and T isalist of the T columnswhich are going
to be integrated into the T matrix of c.

Building the Elements

Eventually, Algorithm [6.7] shows how the elements are built. The test if the cell ¢
was in the support of the vertex mode at v in (6.14) uses the list of vertices which
was built in the previous phases. Analogously, when building the T columns for
the edges and faces, the lists of edges and faces are used.

(6.15) implements Proposition column-wise. The T matrix T, of the basis
functionsin Binsert is empty as Algorithm|[6.7] only computes the basis functionsin

6.3.5 Numerical Experiments

The algorithms presented in this section are not only suited for the meshes gener-
ated by Algorithm[3.3 but also for meshes guided by a-posteriori error estimation.
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6.3 hp-DISCRETISATION OF H%D (D)

o Initialise the refinement indicators for the subdivision | = (0, 0, 0) and the increase of the
polynomial degree p = (0, 0, 0).

e Separately for each entry of 5| and § p: set the entry to 1 if r > RAND.MAX/2, wherer isan
integer computed by the pseudo-random number generator between 0 and RAND. MAX.

o Refine the element by §1 and § p.

Algorithm 6.8: Randomised refinement of one element.

A-posteriori error estimation might not generate the same evenly structured meshes
asthe a-priori defined refinements of Algorithm Thisis simulated by the ran-
domised refinement: Each element is refined with Algorithm [6.8 to generate a new
hp-FE space.

We demonstrate that our hp-FE space generation algorithms work as expected
also for random meshes by solving the reaction-diffusion problem

—Au+u= finD, u=00naD,
with the two exact solutions

u(x) = (X1 — Dxa(x2 — Dxa(x3 — 1)x3, (6.16)
u(x) = sin(mrx1) Sin(wr X2) siN(r X3). (6.17)

Both problems are analytic—(6.16) is even polynomial. The exact energies are
computed by Mathematica.

The convergence history of the relative energy error is shown in Figure [6.21]to-
gether with time measurements for the space generation, the stiffness matrix com-
putation and the solution of the linear system. Compared to the run-time cost anal-
ysisin Section[3.4] the space generation takes much more time in this case. How-
ever, the maximal polynomial degree used in the randomised examples shown here
is4 and apolynomial degree of 4 isstill in the pre-asymptotic range of the run-time
cost analysisin Section[3.4l There, one can also observe that the space generation
takes more time than the stiffness matrix computation for low polynomial degrees
(c.f. FigureBI7). On the other hand, it is very likely that the generation of FE
space with randomised refinement is more expensive than the generation of the FE
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Figure 6.21: Randomised refinement with analytical exact solutionsin (0, 17. The left plot shows the
relative energy error plot versus the number of degrees of freedom: problem (solid
line) and problem (dashed line). The right plot shows various time measurements
versus the number of degrees of freedom: FE space generation (solid line), stiffness matrix
computation (dashed line) and solution of the linear system (dotted line).

spaces used in Section[3.4 as more irregul arities are present (more applications of
S matrices) and also the search algorithms introduced above take more time.

6.4 Fast Integration of Element Matrices: Sum
Factorisation

Besides solving the final linear systemE the computation of the element matrices
is the most time consuming part of a FE solve. Therefore, it is beneficial to put
some extra effort into speeding it up.

This section reviews the most general idea: sum factorisation. It only depends
on the product structure of the shape functions. Further speed-ups can be gained
from nodal shape functions[|84] or hierarchical shape functions (c.f. Section
below), but these methods are both not considered in Concepts.

9This means that the time for the solution of the linear system is not taken into account here. It does
not mean that it is the most time consuming part, though.
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6.4 FAST INTEGRATION OF ELEMENT MATRICES: SUM FACTORISATION

6.4.1 Theoretical Derivation

The integration in a hexahedral element K amounts to evaluating the sum

Na(1,2,3)
[Al; = Y NiGaM],(1g)NZ () MF, (76,) NS () M5, () - - -
Ji1,2,3=1
- wg wewgsb(E, ) (6.18)

for each matrix entry i, j wherei = (i1,i2,i3) and j = (j1, j2, j3) arethe matrix
indices in tensor product notation. In (B:I8), N¥(.) and M'(.) are the reference
element shape functionsin direction k and | (one of 1, 2 or 3) respectively. £ and
ng are the abscissas and wq, the weights of the quadrature rule for the numerical
integration. b(&, ) summarises the coefficients of the PDE and the determinant of
the Jacobian of the element map Fg : K — K.

For an isotropic polynomial degree p and @ (p) quadrature pointsin each direc-
tion, the evaluation of (6.18) takes @ (p2) multiplications. In an element matrix,
thereare O (p®) entries. All in al, an ©(p?) agorithm.

Asshown in [84], areordering of (6.18) to

nql nq2
[Ali; = D NE M, (g D N2 () M7 (1) -+
q1=1 =1
nq3
o Z Ni33 (S%)Mjsg(”%)waquwqab(& n)
gz=1

and the computation of the two temporary matrices
nq3
[Rlgy qoinio = 2 N (Ea) M3, (ngg)way wapwasb(E, 1) (6.19)
gs=1
and

N,

2 2
[§]Q1»i2»12,i3,j3 - Z N, (6a2) M, (1) - [B]ql,qz,i3,j3 (6.20)
=1
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6 hp-FINITE ELEMENT METHODS IN CONCEPTS

resultsin areductionto @(p’) for the whole eval uation of

Ngq

[A]ij = Z Ni]i (gql)Mjll(nql) : [§]q1,i2,j2,i3,j3' (6-21)
q1=1

[84] shows moretricksto reducethe constantin @ (p ) and how to reduce the order
further with different shape functions.
6.4.2 Hierarchical Shape Functions

This is from private communication with Joachim Schoberl at Johannes Kepler
Universitét in Linz, Austria[[95)].

The complexity of a standard element mass matrix computation is @(p%) =
O (p®) in three dimensions. This is reduced to ©(p”) by the sum factorisation
algorithm shown above. A further reduction to ©(p®) = ©(p?) is possible by
exploiting the hierarchical structure of the shape functions.

Assume the hierarchical shape functions are defined by the recurrence relation

Pi(§) =aéP-1(5) + biP_2(8). (6.22)
The three summations ([6.19)—6.21) above can be generalised and simplified to

[M];; =D p(6a) P (E) Pj 5q)-
q

Using therecursion formula(622) ini:
[M]i+1,j = prl—i-lpj = Z(ai+1EqP| +biy1Pi—1) P
=@aj+1 Zqu PiPj +bitaMi_1
andin j:
[M]i,j+1 =aj+1 Z,Oéqpl Pj +bj+1Mj j-1.
Combining both leads to the relation

1 bit1
i1 [M]i+1,j T an [M]i—l,j =

1

bj11
—_— M
aj+1 [ ]

as M- 62

[M]i,j+1 -
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e Precompute the Jacobian and the other coefficients which are needed in all quadrature points.
e Setdl entriesin Ato zero.

e Prepare the auxiliary objects u and v including the shape functions for all three directions and
the respective quadrature rules.

o Initialise the accessor object of the array of coefficients.

e Add the contributions of u and v with the given coefficients into_A by calling the sum factori-
sation routine.

e Return A

Algorithm 6.9: Mass matrix computation by using the sum factorisation routine.

By this identity, it is possible to fill in the values [Mj. Only two rows must be
evaluated explicitly.

Remark 6.24 Here, the identity was derived based on the summation from the
numerical integration. However, it is also possible to do so based on the integrals:
The same relation (6.23) holds.

This simple example can be extended to the case (6.19)—(6.21) and could be
applied there given hierarchical shape functions. It is also possible to derive a
similar identity for other recurrence relations than (6.22).

However, this is not considered in our implementation as the goal was to be
independent of the concrete form of the shape functions.

6.4.3 Implementational Aspects

What was shown so far is valid for mass matrices (one evaluation of (6.18)) and
stiffness matrices (nine evauations of (6.I8)). The same algorithm can aso be
used for the evaluation of the element matrices of other operators like the curl-
curl operator in electromagnetics. All the differences of these evaluations go into
b(&, ). Thisis aso truein the implementation.

To make the routine computing the sum factorisation as reusable as possible, it
is templated on the type of coefficients. The routineis called with alarge number
of precomputed arrays (up to 15 different arrays for the quadrature rule, the shape
functions, the coefficients and the resulting element matrix). Two types of coeffi-

195



6 hp-FINITE ELEMENT METHODS IN CONCEPTS

Precompute the Jacobian and the other coefficients which are needed in al quadrature points.

Set all entriesin A to zero.

e Prepare the auxiliary objects u and v including the shape functions for all three directions and
the respective quadrature rules.

e Fori=1t03

— Exchange the jth component of u with the derivatives of the shape functions.
— Forj=1to3
x Exchange the jth component of v with the derivatives of the shape functions.
x Initialise the accessor object of the array of coefficient matrices with the indices
i, J.
* Achd the contributions of u and v with the given coefficients into_A by calling the
sum factorisation routine.

* Restore v.
— Restore u.

e Return A

Algorithm 6.10: Stiffness matrix computation by using the sum factorisation routine.

cients are possible: scalars (in the case of a mass matrix) and 3 x 3 matrices (in
cases like stiffness matrices, curl-curl matrices etc.). The scalar case is simple:
every entry in the array of coefficients has to be used. In the case of a coefficient
matrix, of all matricesin the array, only theentry i, j hasto be used. Thisis man-
aged by an accessor object. There should be aloop over al values of i, j outside
the call to the sum factorisation routine (c.f. Algorithms and 6.10). In Sec-
tion the bilinear form of the curl-curl operator is derived. The formulation
there shows that an algorithm similar to Algorithm hasto be called ninetimes
to compute an element matrix for the curl-curl operator. The sum factorisation
routine, however, is the same.

6.4.4 Experiments

We try to experimentally confirm the run-time performance of the implementation
of the sum factorisation routine by measurements of the stiffness matrix compu-
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6.4 FAST INTEGRATION OF ELEMENT MATRICES: SUM FACTORISATION

ndof ndof

Figure 6.22: Timings for building a stiffness matrix for a mesh with one hexahedron with an isotropic
polynomial degree up to 25. The left plot shows the full tensor product space and the
right plot the trunk space (Remark[6.7). In both plots, the dash-dotted lines show p6 and
p’. The other curves show the measured CPU times for the following tasks (from top to
bottom): total time (OJ), the computation of the element stiffness matrix (+), the assembly
of the element matrix into the global matrix (x) and the application of the T matrix ().

tation time in one element with isotropic polynomial degree. Information on the
CPU and compiler used and how the time measurements are conducted are given
in Section

Figure[6.22| does nat experimentally confirm the work estimate in the previous
section: the sum factorisationis an @ (p”) algorithm and what is shown is @ (p®).
A morefine-grained timing of the partsin the sum factorisation routineis shownin
Figure[6.23 However, thereis nothing of order 7 visible. Apparently, the p® term
dominatesthe p’ term because of alarger constant.

Investigating the operation counts for the full tensor product space for polyno-
mial degrees p =1, ..., 9 reveals that the operation counts for (6.21)) behave like

25p + 373p® + 1724p° + 3911p* 4 5111 p3 + 4048p? + 1861p + 394,

i.e the©@(p’) isvisible here. 373/25 ~ 15 shows that the p® term dominatesthe p”
termupto p = 14.
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Figure 6.23: Timings on the element level for building a mass matrix in a hexahedron with an isotropic
polynomial degree up to 25. The left plot shows the full tensor product space and the
right plot the trunk space (Remark[g.7). In both plots, the dash-dotted lines show p6 and
p’. The other curves show the measured CPU times for the following tasks (from top
to bottom): total time for the sum factorisation routine (x), evaluation of B.21) (x) and
evaluation of ().



Additional Matters

The last chapter of this part shows how the scalar spaces can be combined using a
Cartesian product to discretise vector val ued problems such as Maxwell’s equations
(c.f. Chapter ), linear elasticity or Stokes' eguations. In addition, a geometric
deadlock problem and the implemented solution are presented.

7.1 Vector Valued Problems

This section explains the ideas and classes to build vector valued FE spaces from
scalar FE spaces as needed for instance for Stokes' or Maxwell’s equationsand lin-
ear elasticity. The classical way to discretise Maxwell’s equations using Nédélec's
elements is not covered by this, though: only Cartesian products of scalar FE
spaces are covered.

Remark 7.1 Nonetheless, Nédél ec type elements can be implemented in Concepts.
However, one cannot rely on previously developed scalar Finite Element spaces.
Instead, the vector valued elements have to be implemented directly. Then, a vector
valued Finite Element space using themis constructed.

Thisdirect approachis also feasiblefor the vector valued Finite Elements which
could be created using the Cartesian product Ansatz described below. However,
there remains a considerable amount of work although this can be saved by using
theideas below.

7.1.1 Mathematics and Basic Ideas

Chapter [l describes how Maxwell’s equations can be discretised using nodal Fi-
nite Elements. Eventually, a FE space Jlfbl(D, 7)3 has to be discretised. Lin-
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7 ADDITIONAL MATTERS

ear elasticity in two dimensions needs a FE space like 51951(D, 7)2. In both
cases, it might occur that the boundary conditions are different in the different
components of the Cartesian product, i.e. one needs to have a FE space like

51961([)’ T) x 519512 (D, 7). All thisis covered by the following Cartesian product
of FE spaces.
The framework vectorial has the following properties:

1. The mesh 7 isthe same for all scalar spacesin the product.
2. The user is able to reuse scalar spaces, bilinear and linear forms.

3. The classes for assembling, matrices, vectors, solvers, meshes and graphics
are reused.

4. Thereis no limit on the number of factors in the Cartesian product (except
the available memory).

Basis of the Vector Valued Finite Element Space

Mathematically, a FE space consist of afinite set of basis functionswith abounded
support. The basis functionsin a product space with two factors can be constructed
in the following way:

V:span{CDV,...,CDX},
W =span{o}, ... o] (7.2)

vruom () (§).(3) - ()

The ordering of the basis functions in V x W in ([Z2) is such that the resulting
system matrices and vectors have block structure:

AVV AVW |V
A= <va KWW) A= (| W) . (7.3)
The sizes of the matrices are as follows: AYY e R™N AVW ¢ Rxm AWV o

R™MXN and AWW e RMxm
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7.1 VECTOR VALUED PROBLEMS

Remark 7.4 If the ordering in ([Z.2) is chosen differently, the blocking in (Z.3) is
also different. In terms of bandwidth of the resulting matrix, the ordering givenin
(72 is far from optimal. However, the bandwidth of the matrix can be reduced
very easily by available packages and algorithms after the assembling step. The
given ordering makes the assembling rather simple, though and any other ordering
would make this step much more complex.

Elements of the Vector Valued Finite Element Space

At the beginning of this section, it was stated that all the factors of the vector valued
FE space need to havethe samemesh 7 = {K}. Thishelpsto definethe elementd]
(K, T k) of the vector valued space: they have the same support K as the scalar
factors. What might be different from (scalar) space to space is the approximation
degree, the boundary conditions and the number of local shape functions in that
particular element. Thisisall condensedinthe T matrix I\}é of the (scalar) element
(K, T}) of the FE space V.

Therefore, the elementsin the vector valued FE space V x W have the same sup-
port K and adifferent T matrix T ¢ than the elementsin the scalar space. Looking
at the assembly procedure of the blocks of the matricesin ([7.3) revealsthe relation
of TV, TV and T.

Assembling of the Vector Valued Finite Element Space

By Definition[3.22, the blocksin (Z.3) are assembled in the following way:

VvV __ VAT AVV TV VW _ VNT AVWTW

AV = T @OTANTY A= Y @OTARTY,
K,KeT K,KeT

WV _ WNT AWV TV WW _ WN\T AWWTW

AV = Y @HTANTY, AW = Y @) TAYYTY.
K,Ke’f K,Ke’f

i VV  AVW AWV WW ;
The element matrices AKK' AKK' AKK and AKK result from the evaluation of

the bilinear form with the element combination (K, 'LK)—(K . Tg) (elementsfrom
V x W), justin the ‘scalar’ decomposition. Hence, the assembling in the vector

1in this section, we adopt the notation (cell, T matrix) for an element instead of (cell, polynomial
degree) used elsewhere.
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valued space:
.
A= > TiAIx:
K,Ke’f

where

V. AVW v

_ [TKRK  =kK _ (T
Akg = (va AWW) and T '_( “ TW)' (7:9)
DKK SRR —K

Given AXVK € R and A‘liv,\év € R™ M thesize of Ay is (Nk + mMk) x
(ng + mg). The T matrices have the sizes TY e RN TW ¢ RMkxM gng
Tk € ROMk+MK)x(n+m)

With the element and T matricesin (Z.5) and the basis of the FE space in (Z.2),

the requested properties 2 and 3 above are fulfilled (property 4 is also fulfilled but
thisis only shown in the next section).

7.1.2 Classes and Implementation

All the classes needed to implement the functionality described above are given
in Figure[Z1l The classes have the same names as those for the scalar FE spaces
introduced in Section However, these two sets of classes reside in differ-
ent namespaces. The basic classes are in the namespace concepts (upper part of
Figure[7.1) and the classes for the vector valued Finite Elements in the namespace
vectorial (lower part of Figure[7.1).

Almost al classes in the namespace vectorial depend on the class Vectoriafd.
Thisbasic classis an abstract container for componentsin the vector valued Finite
Elements setting. Vectorial is a parametrised type that can be specialised using a
template argument. Thistemplate argument gives the type of the scalar component
which should be vectorised. Vectorial takes care of the handling of the different
components (addition, removal and storage of components).

Each of the classes TMatrix, LinearForm, BilinearForm, Element and Space in
the namespace vectorial is a specialisation of Vectorial with the template parameter
of Vectorial set accordingly (the label on the inheritance arrowsin Figure[Z.dlisthe
template argument comp).

2Upper / lower caseis significant herel
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hp3D::Space scalarX(msh, 0, pX, bcX),
scalarY (msh, 0, pY, bcYy),
scalarZ(msh, 0, pZ, bcZ);

vectorial: :Space<Real> spc(3);
spc.put (scalarX) ;
spc.put (scalarY) ;
spc.put (scalarz) ;

Algorithm 7.1: Creating a vector valued FE space.

u «crsale»

scalar*
hp3D::Space

«create»

spe
vectorial:Space

'
'
'
ut(scalarx) ! i
' «create» «creajen
'
| | B

t toff
| vectorial-Element vectorial::TMatrix vectorial: TMatrixOffset
— T

put(scalarY) I

T |
ut !

!
| u
|
! ; ccreates
ut(scalarX; | : toff
H utf [ vectorial:: TMatrixOffset
I ut | e
: | «create»
| ! j toff
: | I vectorial: TMatrixOffset
I e ———
I

Figure 7.2: Sequence diagram for creation of a vector valued FE space. The left most life line symbol-
ises the main program of the user.

Building a Vector Valued Finite Element Space

Building a vector valued FE space from the previously constructed scalar spaces
is as simple as adding them with the put call to the vector valued space, c.f. Algo-
rithm[Z.J] and Figure[Z.2l The first call to put generatesthe list of elementsin the
vector valued space. Every subsequent call to put adds the new elements as new
componentsto the already generated elementsin the vector valued FE space (using
the put call of Element in the namespace vectorial).

An Element in vectorial receiving a put call from its space adds the element
to its components and adds the T matrix of the newly arrived scalar element to
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its T matrix (using a put call to TMatrix in the namespace vectorial). A TMatrix
receiving a put call from an element stores the arriving T matrix as a component
using a TMatrixOffset. TMatrix implements the idea of having different T matrices
as blocks building alarger T matrix whereas TMatrixOffset implements the idea of
having a T matrix with shifted indices (hence the name * offset’).

Bilinear and Linear Forms for Vector Valued Problems

In a similiar way to how a vector valued FE space was constructed, the vector
valued bilinear and linear forms are built from scalar ones. The main differenceto
the construction of the space described beforeis that the user hasto giveanindex to
the put call. Thisindex identifiesthe order in the block structure of the bilinear and
linear forms. If aplace in this block structure is not occupied by a scalar bilinear
or linear form it is simply assumed to beidentically zero. This makesit simple for
the user to create ‘ sparse’ block structuresin the bilinear or linear form (by leaving
out ablock).

Thisimplementation fulfilsitem 4 of thelist of properties given at the beginning
of Section[Z.1.1t The user hasto give the number of factorsin the Cartesian product
of the FE spaces. This number does not have an upper bound.

7.1.3 Example of a Bilinear Form

Writing the blocks of a bilinear form is straightforward after having seen the ideas
once. They are presented using the example of the curl—curl operator from the
discretisation of Maxwell’s equations.

The curl—curl operator resultsin the bilinear form

a(u, v) =f curlu) " - curl vdx =/ (Vx x U)" - (Vy x v) dx.
K K

The integration is performed in the reference element K with the mapping Fk :
K - K JEr xandVy =dF 1. Ve. dF —L istheinverse of the Jacobian matrix
with the columns a;:

o\ 3
dF_l=<§—3j)“ 1:(&1 az 613).
ij=
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Thuswith N(§) :=uo Fx and M(§) := v o Fg,
T
a(u,v):/A (@FT-Veyx N) - (@FT- V) x M) [dF|dg
K

a;—VN3—a;—VN2 T a;—VM3—a;—VM2
=/A aj VN1 —a; VN3 a; VM1 — a; VM3 | [dF|d§
K\a] VN2 —a) VN; a; VM2 — a) VM

3 3

=33 [, VN My VM IdF ] dé, (7.6)

i—1j=1“K
whereMij isa3 x 3 matrix according to the following tabIe(Mij = Mﬂ :
i\ | 1 2 3
1 axa) + asay —apa; —aga]
2 —a1a) aja] + azag —aga)
oAl P T T
3 ajay aza, aia; + aa,.

As shown in (Z.3), the bilinear form has a block structure. In our case, a(., .)
hasa3 x 3 block structure:

ap(Up, v1) ag(U2, v2) aza(uz, v3)
az1(us, v1) agz(us, v2) ass(us, v3)

ag1(ug, v1)  a2(uz, v2)  @13(U1, v3)
a(u,v) = . (7.7)
Therefore, the sumin (Z.6) degeneratesto

aj(ui,Uj)=/KVNFM”VM,-|dF|dg

in one of the blocksin (7). The coefficient’s matrix M; j issuitable for the sum
factorisation framework presented in Section [6.4

7.2 Geometric Deadlock Problem

This problem has already been mentioned in Section
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7.2 GEOMETRIC DEADLOCK PROBLEM

(a) Refinement in the left and right hexahedra are (b) Compatible refinement.
given.

Figure 7.3: Deadlock problem.

The mesh in Figure[Z.3(a) shows a deadlock situation. The middle hexahedron
cannot be refined in any of the ways the left or right hexahedron were refined. The
problem arises at the shared faces: A shared face would have to be refined in two
incompatible ways.

Remark 7.8 This situation does normally not occur when refining a mesh by hand
or using an a-priori algorithm like Algorithm However, in an automatic hp-
adaptive algorithm, this could happen.

The mesh in Figure [Z.3(b) shows a possible solution to the above mentioned
deadlock problem: The middle hexahedronis refined into four children. Thisway,
the shared faces can be refined in a compatible way. Namely, each of the two
children of the first refinement of the faces (given in Figure [Z.3(a)) are refined
themselvesinto two children. These small quadrilaterals can then be used to define
the four new hexahedra as children of the middle hexahedron.

The subdivision algorithm automatically upgrades an incompatible refinement
to a compatible one. This is done by a ‘trial and error’ method: As long as the
requested refinement is incompatible (reported by an exception c. f. Section [6.2.2),
it is upgraded in an appropriate way and retried. If even a subdivision into eight
childrenfails, it is discarded completely (with a message to the user).

Theagorithmsin Section[6.3 need some adaptionsto the new situation since one
main implicit precondition has changed: The faces of acell areno longer refinedin
the same way asthecell itself: |f ageometric deadlock situation hasto be solved, a
face is refined into four children in two steps and the cell itself is refined into four
children in one step. To reflect this, some technical special cases have to be dealt
with in the algorithms. However, the basic ideas stay the same.
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timeval* utime = &ru_ .ru utime;

timeval* stime = &ru_.ru stime;

float stamp = (utime->tv_sec * 1.0e6 + utime->tv_usec +
stime->tv_sec * 1.0e6 + stime->tv_usec) / 1.0e6;

getrusage (RUSAGE_SELF, &ru ) ;

float ut = (utime->tv_sec * 1.0e6 + utime->tv_usec) / 1.0e6;
float st = (stime->tv_sec * 1.0e6 + stime->tv_usec) / 1.0e6;

float res = ut+st-stamp;

Algorithm 7.2: Run-time measurements. ru is a persistent variable of this routine. stamp = t$_1 and
res = At;j.

7.3 CPU and Timing Information

7.3.1 Hardware and Compiler

The computations were done on a Sun Fire 880 with 32 GBytes of physical main
memory and 8 processors at 800 MHz—only using one processor, though: Con-
ceptsis neither using parallelism with threads (shared memory) nor message pass-
ing (MPI, distributed memory). GCC 3 [57] was used to compile the software.

7.3.2 Code for Run-Time Measurements

The getrusage method of the C library returns a struct containing (amongst other
things) timing informationin the ru _utime (user time used ut) and ru stime (system
time used st) fields. We compute the used time At; by the difference between two
timestampsts = utj + stj: At = t511 —ts (c.f. Algorithm[Z.2). Note that the
minimal resolution of thetimer is0.01s.
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7.4 HISTORY AND AUTHORS OF CONCEPTS

7.4 History and Authors of Concepts

The software was mainly written by Dr. Christian Lage. The first versions and
many of the ideas behind the software appear in his Ph.D. thesis [[73] in the early
90ies of the last century. The predecessor of the current version was devel oped
during his post doctora studies at the Seminar for Applied Mathematics of the
Swiss Federa Ingtitute of Technology (ETH), Zurich. The design ideas leading to
this version are summarised in [[74].

Dr. Ana-Maria Matache worked on the hp-FEM part of Concepts. She im-
plemented the quadrilateral elements for two dimensional problems together with
Christian during her Ph.D. studies [82]. It was her who gave the author his first
introductions to Concepts.

Dr. Gregor Schmidlin worked on the BEM part of Concepts during his Ph.D.
studies [93].

Many students have also worked on and with Concepts:

e In summer 1999, David Hoch and Andreas Rilegg implemented mixed and
variable boundary conditions for hp-FEM as aterm project.

o During the winter term 1999/2000, the author wrote his diplomathesis based
on Concepts. At this time, he implemented hp-DGFEM for a second order
PDE with constant coefficients and mixed and variable boundary conditions.

o During the winter term 2000/2001, Andreas Rilegg wrote his diplomathesis
about generalised FEM. He continues to work with generalised FEM at our
institute as a Ph.D. student.

e In the summer term 2002, Manuel Walser designed and implemented time
stepping schemes (in particular the Newmark scheme) for discretised prob-
lems as a term project. Norbert Fernandes designed and implemented an
interface to the Eigenvalue solver JDBSYM [[58, 59].

e In the winter term 2002/2003, Christoph Winkelmann and Adrian Burri
used Concepts to solve non-linear convection-diffusion problemsusing a Fi-
nite Volume Discontinuous Galerkin Scheme. During their work, the time-
stepping classes were improved considerably.
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7 ADDITIONAL MATTERS

e During the winter term 2003/2004, Christoph Winkelmann wrote his
diploma thesis using Concepts on DGFEM in two dimensions for time de-
pendent saddle point problems.

After completing his diplomathesis, the author started to work on three dimen-
sional hp-FEM in Concepts as part of his Ph.D. studies in spring 2000.

In spring 2002, Kersten Schmidt began to work on vector valued problems and
implemented the namespace vectorial and the necessary bilinear forms required to
solve Maxwell’s equations using weighted regularisation. Heis now implementing
hp edge elements for quadrilaterals and hexahedrafor his Ph.D. research.

Open Source

The author has been successful in convincing al contributors and his advisor Prof.
Christoph Schwab that an open source [[90] version of Concepts should be released
[26]. We chose the GNU General Public License (GPL) [53] as the license for the
public part of Concepts. Some parts (where active research is still going on) remain
closed to the public but might be released under the same license at alater date.
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