
Diss. ETH No. 15750

hp-Finite Element Methods on Anisotropically, Locally
Refined Meshes in Three Dimensions with Stochastic

Data

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH

for the degree of
Doktor der Mathematik

presented by
PHILIPP FRAUENFELDER
Dipl. Math. ETH
born September 19, 1974
citizen of Henggart ZH and Niederglatt ZH, Switzerland

accepted on the recommendation of
Prof. Dr. Christoph Schwab, examiner
Prof. Dr. Ralf Hiptmair, co-examiner

2004

Dank

Die vorliegende Doktorarbeit ist während meiner vier-einhalb-jährigen Assistenz-
zeit am Seminar für Angewandte Mathematik unter der Leitung von Prof. Dr. Chri-
stoph Schwab entstanden. Ich bedanke mich bei ihm für die Unterstützung, die
Ratschläge und die grosse Freiheit, die ich während meiner Arbeit geniessen durf-
te.

Bei meinem Korreferenten Prof. Dr. Ralf Hiptmair bedanke ich mich für die
konstruktive Kritik an dieser Arbeit und für die Unterstützung während ihrer Ent-
stehung.

Weiter bedanke ich mich bei meinen Bürokollegen Dr. Thomas Wihler, Andre-
as Rüegg und Patrick Huguenot. Wir haben viel über Mathematik und das Leben
diskutiert. Sie haben dazu beigetragen, dass ich mich am Seminar für Angewandte
Mathematik gut eingelebt habe und mich in der Gruppe wohl gefühlt habe.

Ein grosser Dank gebührt auch Dr. Christian Lage, Gregor Schmidlin und Kers-
ten Schmidt für die gute Zusammenarbeit und die inspirierenden Diskussionen bei
der Weiterentwicklung von Concepts. Prof. Dr. Lezsek F. Demkowicz, Dr. Paul
Ledger, Kersten Schmidt, Dr. Andrea Toselli und Radu Todor danke ich für das
Korrekturlesen meiner Dissertation.

Ein besonderes Dankeschön gilt meiner Frau Claudia, die mich immer liebevoll
unterstützt hat.

Schliesslich gilt mein Dank auch Prof. Dr. Rolf Jeltsch und Prof. Dr. Ralf Hipt-
mair und allen weiteren Mitarbeiterinnen und Mitarbeitern des SAM für die inter-
essante Zeit, die ich am SAM erlebt habe.

Zürich, im September 2004 Philipp Frauenfelder

III

Abstract

The present thesis is concerned with hp-Finite Element Methods in three dimen-
sions. To resolve singularities or characteristic length scales in many physical and
engineering applications, it is necessary to have geometric meshes with local re-
finements to obtain exponential convergence. With exponential convergence, it is
feasible to reduce the discretisation error and the numerical errors several orders of
magnitude below the modeling error.

In three dimensions, geometric meshes require simultaneous, anisotropic refine-
ments in the mesh size h and the polynomial degree p. We study the algorithmic
and implementational details and give a number of numerical examples for the re-
action diffusion equation as well as Maxwell’s equations. Maxwell’s equations are
discretised using H 1-conforming elements and weighted regularisation.

Uncertainty in the input data is another source of errors besides numerical and
modelling errors. We develop a method to solve elliptic partial differential equa-
tions with stochastic coefficients efficiently using a Karhunen-Loève expansion of
the stochastic coefficients. The numerical scheme is embarassingly parallel.

The software used to solve the numerical examples in this thesis is avaible for
download as Open Source Software.

V

Kurzfassung

Die vorliegende Doktorarbeit behandelt hp-Finite Element Methoden in drei Di-
mensionen. Um Singularitäten oder charakteristische Längen in physikalischen
oder technischen Anwendungen aufzulösen und exponentielle Konvergenz zu er-
halten, braucht es geometrische Gitter mit lokalen Verfeinerungen. Durch die ex-
ponentielle Konvergenz wird es möglich, die Diskretisierungs-Fehler und numeri-
schen Fehler um Grössenordnungen unter den Modellierungs-Fehler zu senken.

Um dreidimensionale, geometrische Gitter herstellen zu können, werden gleich-
zeitige, anisotrope Verfeinerungen der Gitterweite h und des Polynomgrads p
benötigt. Wir untersuchen die algorithmischen und programmiertechnischen Ein-
zelheiten und geben eine Reihe von Beispielen der Reaktions-Diffusions-Glei-
chung und der Maxwell-Gleichungen. Die Maxwell-Gleichungen werden mit H 1-
konformen Elementen und gewichteter Regularisierung diskretisiert.

Unsicherheit bei den Eingabe-Daten ist eine weitere Quelle von Fehlern neben
numerischen und Diskretisierungs-Fehlern. Wir untersuchen eine Methode, um el-
liptische, partielle Differential-Gleichungen mit stochastischen Koeffizienten effi-
zient zu lösen. Dazu wir eine Karhunen-Loève-Zerlegung der stochastischen Ko-
effizienten verwendet. Die numerische Methode ist beschämend parallel.

Die Software, die für die numerischen Beispiele dieser Arbeit benutzt worden
ist, ist als Open Source Software zum Download erhältlich.

VII

Contents

Dank iii

Abstract v

Kurzfassung vii

Introduction 1

I Fundamentals 11

1 Projection Methods 13

1.1 Operator Equations . 13
1.1.1 Variational Formulation 13
1.1.2 Galerkin Projection . 14
1.1.3 Convergence . 15

1.2 Sobolev Spaces . 16
1.2.1 Definition . 16
1.2.2 Traces . 17

1.3 Examples . 18
1.3.1 Reaction Diffusion Equation 18
1.3.2 Linear Elasticity . 19
1.3.3 Time Harmonic Maxwell’s Equations 20
1.3.4 Eigenvalue Problem . 23

IX

CONTENTS

2 Finite Element Methods 27
2.1 Finite Element Meshes . 27

2.1.1 Definition . 27
2.1.2 Finite Element Subspaces 30
2.1.3 Approximation Properties 32

2.2 Geometric Meshes in Two Dimensions 33
2.2.1 Domains . 33
2.2.2 Assumptions on Cells 34
2.2.3 Geometric Meshes . 35
2.2.4 hp-Approximation Properties 37

2.3 Geometric Meshes in Three Dimensions 39
2.3.1 Domains . 39
2.3.2 Assumptions on Cells 41
2.3.3 Geometric Meshes . 46
2.3.4 hp-Approximation Properties 47

2.4 Further Examples (Formulations and Operators) 49
2.4.1 Discontinuous Galerkin Finite Element Methods 49
2.4.2 Non-local Operators: Boundary Element Methods 51

3 Algorithmic Realization of hp-Finite Element Spaces in R
3 53

3.1 Creating Geometric Meshes in Three Dimensions 54
3.1.1 Exponential Convergence Needs Geometric Meshes . . . 55
3.1.2 Description of Geometric Meshes 56
3.1.3 Algorithmic Realization 57

3.2 Creating hp-Finite Element Spaces 61
3.3 Generic Assembly Procedure . 68

3.3.1 T Matrices . 68
3.3.2 Assembly Procedure . 70
3.3.3 Generation of T Matrices 71
3.3.4 S Matrices . 74
3.3.5 Generation of S Matrices 77
3.3.6 Complexity Estimates 82

3.4 Numerical Experiments . 83
3.4.1 Run-Time Cost Analysis 83
3.4.2 Reaction Diffusion Equation 86

X

CONTENTS

II Applications 93

4 Maxwell’s Equations 95
4.1 Time Harmonic Maxwell’s Equations 96
4.2 Weighted Regularisation . 96

4.2.1 Selection of Weights in the Weighted Regularisation . . . 98
4.2.2 Computation of Weights 100

4.3 Numerical Results . 101
4.3.1 Sources of Errors in Eigenvalue Computations 102
4.3.2 Two Dimensions . 104
4.3.3 Three Dimensions . 114
4.3.4 Double Fichera Corner 121
4.3.5 Conclusion . 124

5 Elliptic Partial Differential Equations with Stochastic Coefficients 125
5.1 Introduction and Problem Formulation 126
5.2 Karhunen-Loève Expansion . 128

5.2.1 Decay Properties of the Karhunen-Loève Eigenvalues . . . 130
5.2.2 Karhunen-Loève Eigenfunction Estimates 132

5.3 Stochastic Galerkin Method . 133
5.3.1 Truncation of the Karhunen-Loève Expansion of a 134
5.3.2 Associated Deterministic Problem 135
5.3.3 Stochastic Regularity . 136
5.3.4 Stochastic Spectral Discretisation 137
5.3.5 Adaptive Selection of Stochastic Degree 139
5.3.6 Complete Algorithm . 140

5.4 Fast Computation of Karhunen-Loève Expansion 144
5.4.1 Kernel Expansions in Fast Multipole Methods 147
5.4.2 Cluster Expansion . 149
5.4.3 Cluster Algorithm . 151
5.4.4 Overall Error and Complexity 154

5.5 Parallel Solution of Deterministic Problems 155
5.6 Numerical Results . 157

5.6.1 Software . 157
5.6.2 Hardware . 158
5.6.3 Computations . 159

XI

CONTENTS

III Software: Concepts 163

6 hp-Finite Element Methods in Concepts 165
6.1 Introduction . 165

6.1.1 Object Oriented Programming 165
6.1.2 Basic Classes in Concepts 166

6.2 Mesh Classes in Concepts . 168
6.2.1 Classes to Handle a Mesh 168
6.2.2 Subdivision Strategies 170

6.3 hp-Discretisation of H 1
�D

(D) . 174
6.3.1 Specification of Mesh T and Polynomial degree p 175
6.3.2 Shape Functions . 177
6.3.3 Support of a Basis Function 179
6.3.4 Algorithm to Assemble the Finite Element Space 185
6.3.5 Numerical Experiments 190

6.4 Fast Integration of Element Matrices: Sum Factorisation 192
6.4.1 Theoretical Derivation 193
6.4.2 Hierarchical Shape Functions 194
6.4.3 Implementational Aspects 195
6.4.4 Experiments . 196

7 Additional Matters 199
7.1 Vector Valued Problems . 199

7.1.1 Mathematics and Basic Ideas 199
7.1.2 Classes and Implementation 202
7.1.3 Example of a Bilinear Form 205

7.2 Geometric Deadlock Problem . 206
7.3 CPU and Timing Information . 208

7.3.1 Hardware and Compiler 208
7.3.2 Code for Run-Time Measurements 208

7.4 History and Authors of Concepts 209

Bibliography 211

Curriculum Vitae 219

XII

Introduction

Why do we compute?

This thesis is in part concerned with software design for simulation of physical
phenomena in the sciences and engineering towards the end of validation of math-
ematical models for these phenomena.

Mathematical Models of Physical Reality

A model is a quantitative and abstract description of physical reality. A language
(with a consistent grammar in the sense of Noam Chomsky [23]) to formulate
models is mathematics.

We call a mathematical description of physical reality a mathematical model M
which ideally accounts for all known information as well as for the uncertainty
in our knowledge about the phenomenon to be simulated. Mathematical models
continually change and increase in sophistication through experimental validation.
Validation of a mathematical model of physical reality involves, as a key step,
obtaining quantitative and experimentally verifiable predictions from it. This is
done today almost exclusively by numerical simulation. If the mathematical model
is too complex for numerical simulation (as is often the case), simplified working
models M ′ which are derived from M and which are mathematically consistent
with it are used as basis for numerical simulation.

The two processes, model simplification for simulation and increasing model
sophistication due to validation, have led, in many areas of science, to model hi-
erarchies, which should be intrinsically consistent and experimentally validated in
suitable parameter ranges.

1

INTRODUCTION

Error Control

In numerical simulation for the purpose of validation of mathematical models of
physical reality, a necessary prerequisite is the quantitative control of numerical
and disretisation errors, i. e. the discretisation has to be verified. Essentially, con-
tributions to simulation errors come from numerical errors (roundoff errors etc.),
discretisation errors and modelling errors. We assume here that roundoff errors are
controled by using extended precision computations and ignore them.

To separate modelling and discretisation errors, a numerical method must then
be designed so as to

• reduce discretisation errors several orders of magnitude below any uncer-
tainty inherent in the model’s input data (such as loads, domains, coeffi-
cients),

• perform robustly over a range of input parameters in the working models that
is strictly larger than the range for which the mathematical (working) model
is to be validated.

These two issues are addressed in the present dissertation by the systematic use of
high-order discretisation methods for partial differential equations with particular
emphasis on

• Electromagnetics, where Maxwell’s equations describe physics to a very
high degree of precision and where material parameters such as permittivity
and dielectric constants are known to a high degree of accuracy,

• Diffusion problems with stochastic coefficients, where (elliptic) stochastic
partial differential equations are the tool for uncertainty description and
quantification in physical systems.

As was shown in the 90ies, high-order hp and spectral methods allow, by judi-
cious combination of local mesh refinement and order adaptation, to exploit ana-
lytic regularity of solutions to achieve robust exponential convergence of computer
models towards mathematical models, thereby practically eliminating discretisa-
tion errors. Accordingly, we develop here two such methods: an hp-class of sub-
spaces for elliptic partial differential equations in general polyhedra in R

3 and a
spectral approach to the deterministic simulation of elliptic PDEs with stochastic
coefficients.

2

INTRODUCTION

Design Principles for Simulation Software

A key component in numerical simulation is the design of simulation software.
Early programming languages like Fortran were effective in translating mathemat-
ical formulas of particular discretisations of certain mathematical models into ma-
chine executable alpha-numerical operations. They were strongly limited in map-
ping abstract mathematical objects like subspaces or operators or even symbolic
operations bijectively into machine code.

With the massive increase in available CPU and memory per cost, and the advent
of object oriented programming languages, the perspective of mapping mathemat-
ical models bijectively to simulation software became realistic. We believe such
bijective mapping of mathematical grammar to simulation software structures to
be desirable to guide reusable software development: Mathematical grammar has
produced consistent and quantitative abstractions of physical systems valid hun-
dreds of years. Software design, ad-hoc or systematic, has to date led in the best
case to codes and grammars that are considerably shorter-lived and which are, as a
rule, inconsistent and incompatible with each other.

With the simulation software Concepts [26, 54, 73, 74] presented in this dis-
sertation, computer analogs of mathematical concepts are built by object oriented
design using the functionalities of specialisations of abstract classes1 in the ob-
ject oriented language C++ [104, 105].2 In this way, we transfer universality and
consistency of mathematical grammar to simulation software design. 3

Consider the class of mathematical models (using a so-called variational formu-
lation)

M := {Find u ∈ U such that a(u, v) = l(v) ∀v ∈ V } .
1An instance (or object) of a class is a collection of state (data in the variables of the object) and

behaviour (interface of the class). The behaviour is common to all objects of the same class whereas
each instance has its own set of variables and therefore a (possibly) different state. An abstract
class is a class without instances. It has no variables and the interface is only declared but not
implemented. An abstract class is used as a parent for derived classes (to prescribe the interface of
the children) [21].

2It goes without saying that any other object oriented programming language would be equally suitable
to achieve this mission. However, C++ is one of the few languages enabling us to achieve Fortran
like alpha-numerical performance [101].

3Only time can tell if this approach is successful but the grammar of mathematics is, to date, in our
opinion the best tool available for this task.

3

INTRODUCTION

Symbol Mathematical Physical
U, V Linear spaces (function spaces of

Sobolev type), finite or infinite
dimensional

Finite energy solutions

a(. , .) Bilinear (non-linear) operator Conservation law and
constitutive law

l(.) Linear (non-linear) functional External forces, sources,
sinks

Table 0.1: Fundamental concepts used in the definition of M from a mathematical and physical point
of view.

The concepts used in M are summarised in Table 0.1. The simulation software
should be designed such that all models in M can be solved.

One way of solving a problem P ∈ M is to discretise the infinite dimensional
function spaces U, V in M with finite dimensional subspaces U N ⊂ U and VM ⊂
V , thereby obtining a class D of discretisations of M:

D := {Find uN ∈ UN such that aN M (uN , vM) = lN M (vM) ∀vM ∈ VM } ⊂M.

aN M (. , .) is the restriction of a(. , .) to UN × VM with additional simplifications
like numerical integration (which might introduce errors). U N is the function
space for the approximation of the solution and the proper design of V M asserts
stability of the approximation. It is conceivable that the mathematical model is
a-priori finite dimensional without a discretisation (e. g. particle models, atomistic
simulations)—these models also belong to D . On the other hand, mathematical
models belonging to M \ D , i. e. infinite dimensional models, could be directly
realized on the computer using symbolic simulation.

In this work, we restrict ourselves to models M which (after discretisation) be-
long to D . The hierarchic structure of the mathematical models in M and their
instances in D can be mapped to the software as well. In addition, we enforce
the usage of the correct mathematical grammer by the type checking of the C++
compiler.4 We chose the inheritance paradigm in object oriented programming
languages to satisfy this. Quoting Timothy A. Budd [21]:

Inheritance means that the behaviour and data associated with child
classes are always an extension of the properties associated with parent

4One has to get accustomed to these strict guidelines first when using Concepts. However, it ensures
the conservation of the intended structures over a long time and many different users.

4

INTRODUCTION

classes. On the other hand, since a child class is a more specialised (or
restricted) form of the parent class, it is also, in a certain sense, a
contraction of the parent class.

This is exactly the same situation we observe for a concrete problem P ∈ M and
its discretisation P ′ ∈ D ⊂M or the relation of the spaces UN ⊂ U .

Therefore, we choose the following approach: represent each concept in Ta-
ble 0.1 by an abstract class and combine them according to the mathematical
grammar. This defines concept oriented design [74]. Another great advantage
of concept oriented design, besides leading to a good design of the classes, is:
Mathematicians and other researchers will find the concepts familiar.

Simulation Software Concepts

The design ideas and principles above are used in the software Concepts [26, 54,
73, 74]. Concepts is a class library written in C++ [104, 105]. We are currently
working with Concepts at our institute with Boundary Element Methods (BEM)
[93], Finite Element Methods (FEM) and generalised FEM [82]. Below, we outline
the main classes of the software by means of a general problem. In addition, an
application of the classes to FEM is shown.

Main Classes in Concepts

The discretised problem may be written as a linear system of equations by choosing
a suitable basis for each of the subspaces. To keep the discussion focused, assume
the same basis {�1, ...,�N } for both spaces UN = VM , and obtain

A�u = l

with [A]i j := a(�i ,� j) the entries of the stiffness matrix5 A, li := l(�i) the
entries of the load vector l and u the coefficient vector of the discrete solution:
uN = ��u.

The mathematical concepts used above are easily listed: operator, function,
bilinear form, linear form, (sub)space, basis function, matrix, vector (c. f. Fig-
ure 0.1—the Unified Modelling Language UML [89] is a graphical language for

5We shall always call A stiffness matrix and l load vector even though this originates from the appli-
cation in linear elasticity.

5

INTRODUCTION

«interface»
Element

+T(): TMatrix

Triangle
+Triangle(T:TColumn*=0)
+evaluate(x:Real[])
+evaluateD(x:Real[])

«interface»
Space

+dim(): int
+nelm(): int
+scan(): Scan<Element>

Linear2d
-dim: int
-nelm: int
+Linear2d(mesh:Mesh)

«interface»
Mesh

+ncell(): int
+scan(): Scan<Cell>

«interface»
Cell

+child(): Cell

«interface»
Scan

+eos(): bool
+operator++(): P

P

«interface»
ElementMap

+operator()(x:Real[dim]): Real[dim]

«interface»
Operator

+operator()(fncY:Function,fncX:Function)
+spaceX(): Space
+spaceY(): Space

«interface»
Function

+operator+(fnc:Function): Function
+operator-(fnc:Function): Function
+space(): Space

ElementMatrix
-data: Real[]
+ElementMatrix(m:int,n:int)
+transpose():
+operator()(i:int,j:int): Real

«interface»
BilinearForm

+operator()(elmX:Element,elmY:Element,em:ElementMatrix)

Laplacian

«interface»
LinearForm

+operator()(elm:Element,em:ElementMatrix)

Riesz

Triangle2d
+child(idx:int): Triangle2d
+chi(xi:Real[dim]): Real[dim]
+jacobian(xi:Real[dim]): Real[dim,dim]

CompDomain

Matrix Vector

Figure 0.1: UML diagram of the main classes in Concepts together with some specialisations to illus-
trate the use.

describing object oriented software). Mapping these concepts into classes, how-
ever, rises the problem to represent functions, in particular, basis functions. A
computationally sensible way to approach this problem is to decompose (mesh)
the domain D of the function into primitive sets K i (cells or elements). These
sets themselves can be characterised by applying mappings FKi (so-called element
maps) to predefined reference sets, e. g. FKi : K̂ → Ki such that Ki = FKi (K̂). In
addition, functions N j mounted on a reference set define so-called shape functions

ϕ
Ki
j on each of the elements Ki via ϕ

Ki
j ◦ FKi = Nj . The basis functions can then

be represented by linear combinations of the ϕ
Ki
j (extended with 0 to the computa-

tional domain D). This generates basis functions {�i } with local support and—as
a consequence—a sparse stiffness matrix A.

Application to FEM: Concrete Classes in Concepts

Consider the scalar model problem given by the conservation law

f +∇ · F = 0 in D,

6

INTRODUCTION

Domain mesh;
Linear2d space(mesh); // elements are generated

Laplace a;
SparseMatrix A(space, a); // computing and assembling the stiffness matrix

Riesz f;
Vector l(space, f); // load vector
Vector u(space); // empty solution vector

CG solver(A);
solver(l, u); // solve linear system

Algorithm 0.1: An application in pseudo code to solve a diffusion equation in two dimensions.

where f models the sources and forces and F the flux. The constitutive law of the
diffusion problem reads

F = A∇u.

A is the diffusion tensor and u the concentration. Assuming A = I leads to the
Laplace equation

−�u = f.

Let V = U be the function space of physically admissible concentrations of ‘finite
energy’:
Find u ∈ V such that

a(u, v) = l(v) ∀v ∈ V,

where

a(u, v) =
∫

D
∇u · ∇v dx, l(v) =

∫
D

f v dx +
∫

�N

gv ds.

g = n · F = n · A∇u on �N ⊂ ∂ D is the boundary condition for the flux F.
With this background, the necessary classes can be found easily (c. f. Figure 0.1).

An application in pseudo code looks like in Algorithm 0.1.

7

INTRODUCTION

Overview of the Thesis

The thesis is subdivided into three parts: fundamentals, applications and software.

Fundamentals

The first chapter recapitulates the essential tools of the language used to describe
the mathematical models: function spaces of Sobolev type, structures (linear and
bilinear forms) and abstract projections methods (abstract idea of discretisation).

In the second chapter, the meshes for hp-FEM in two and three dimensions are
reviewed following [8, 29] together with the respective convergence results for the
FE spaces [8, 97]:

min
vN∈VN

‖u − vN‖H1(D) ≤ C exp(−bNs),

where N = dim VN and s is 1/3 and 1/5 for two and three dimensional problems
respectively. Here, u is the solution of a Laplace equation in a Lipschitz polygon
or polyhedron.

The first part is closed by the third chapter developing the algorithmic ideas
dealing with hanging nodes. Hanging nodes arise in locally refined meshes as they
are typical for hp-FEM in areas where the mesh is irregular. A mesh is called
regular if the intersection of two different elements is either empty, a vertex or
an entire side (edge or face). Irregular meshes do not have this property. The
hanging nodes have so-called constrained degrees of freedom 6 associated with.
These degrees of freedom are constrained by other degrees of freedom to ensure
the global continuity of the basis functions of the FE space. There exist different
solutions for this constrained approximation in the literature and software [14, 15,
41, 42, 43, 47, 50, 68]. We propose a different, very flexible approach [54].

Applications

Maxwell’s equations in time harmonic form are treated in the fourth chapter. A
variational form for nodal Finite Elements using weighted regularisation is re-
viewed [29]. The regularisation is used to incorporate the divergence condition

div εE = 0
6A degree of freedom corresponds to a global basis function of the FE space.

8

INTRODUCTION

on the electric field into the variational form:
Find E ∈ Xn[Y] such that

∫
D

µ−1 curl E · curl v dx −
∫

D
ω2

(
ε + σ

iω

)
Ev dx + 〈div E, div v〉Y =

− i
∫

D
ω Jv dx ∀v ∈ Xn[Y].

where Xn[Y] := {u ∈ H0(curl; D) : div u ∈ Y } and L2(D) ⊂ Y ⊂ H−1(D).
The numerical experiments to compute the Eigenvalues of Maxwell’s equations
are conducted on various domains in two and three dimensions [36] yielding expo-
nential convergence with hp-FEM.

The second application in Chapter 5 is concerned with elliptic partial differen-
tial equations with stochastic coefficients [100, 107] and their discretisation with
a spectral method in the stochastic variables. This is an attempt to incorporate the
uncertainty in the input data into the numerical simulation. A Karhunen-Lo ève
[80, 81] expansion of the stochastic diffusion coefficient a(x, ω) in

− div(a(x, ω)∇xu(x, ω)) = f (x)

is used to decouple the stochastic and spatial variables ω and x of the diffusion
coefficient a:

a(x, ω) = Ea(x)+
∑
m≥1

√
λmϕm(x)Xm(ω).

{(λm, ϕm(x))}m≥1 are the Eigenpairs of the covariance operator

(Vau)(x) :=
∫

D
Va(x, x′)u(x′) dx′

associated with the covariance Va of the diffusion coefficient a. A Fast Multipole
Method for general kernels [93, 94] is used to compute the Eigenpairs of the co-
variance operator in a serial computation. Parallel processing on a Beowulf type
cluster [7, 18] is then used to solve the numerous deterministic FE problems—each
with different diffusion and right hand side. Finally, the performance of the Kar-
hunen-Loève expansion Ansatz is compared with a simple Monte Carlo method.

9

INTRODUCTION

Software: Concepts

The third part of this thesis addresses the software Concepts [26, 54, 73, 74] used
to compute all numerical examples in the thesis. A substantial part of the research
work leading to this thesis was spent in bringing Concepts to its current state.

The first chapter gives detailed information on the realisation of the hp-FE space
discretising the Sobolev space H 1

�D
(D) in Concepts. As mentioned earlier, we

concentrate on quadrilateral and hexahedral meshes. The chapter explains meshes
and their local, anisotropic refinement, the anisotropic handling of the element-
wise approximation order p (polynomial degree), the implemented shape functions
[72] and the fast integrations techniques used for the element matrices.

The closing Chapter 7 concentrates on the implementation of vector valued
problems (like Maxwell’s equations) and the solution of a so-called geometric
deadlock problem which is crucial for hp-adaptive mesh refinements in three di-
mensions.

The framework for vector valued problems implements the notion of a Cartesian
product of different FE spaces provided they are all based on the same mesh (there
is no restriction on the number of components of the Cartesian product). The given
implementation supports block-wise formulation of bilinear and linear forms and
reuses as much code as possible from the components of the Cartesian product.

A geometric deadlock originates from refined neighbours of an element with (at
first sight) incompatible refinements. The element with the deadlock can therefore
not be refined at all. The geometric deadlock problem does not appear in the ap-
plications shown in this thesis as only a-priori refinements of the meshes are used.
However, with automatic, adaptive refinement, this problem is an issue—but it is
solved in Concepts.

10

Part I

Fundamentals

1 Projection Methods

This chapter reviews the abstract framework and mathematical tools necessary to
treat problems of the form
Find u ∈ U such that

a(u, v) = l(v) ∀v ∈ V .

The first section concentrates on general operator equations and their approximate
solution by Galerkin projection. Sobolev spaces are introduced in the second sec-
tion followed by some typical examples of boundary value and Eigenvalue prob-
lems in the third section. There is a vast choice of literature on this subject of which
only [19, 25, 97] are mentioned.

1.1 Operator Equations

1.1.1 Variational Formulation

We consider a linear operator equation with a given f ∈ V ′ (the dual space of V):
Find u ∈ U such that

Au = f. (1.1)

Here, A : U → V ′ can be any continuous, linear operator, for instance a differ-
ential or integral operator or a combination of these. More specific examples are
shown in Section 1.3.

A solution of (1.1) can be found using a variational formulation. Define the
so-called bilinear form a : U × V → R and the linear form l : V → R, i. e.
l ∈ V ′:

a(u, v) := 〈Au, v〉 , l(v) := 〈 f, v〉 ,

13

1 PROJECTION METHODS

where 〈. , .〉 is the duality pairing on V ′ × V . Then, the variational formulation
reads:
Find u ∈ U such that

a(u, v) = l(v) ∀v ∈ V . (1.2)

U and V are called trial and test space respectively.

1.1.2 Galerkin Projection

In continuum models, U and V are infinite dimensional. To solve (1.2) numeri-
cally, a reduction to finite dimension is necessary. One way of doing this consists
in restricting (1.2) to finite dimensional subspaces UN ⊂ U and VM ⊂ V . This is
called a discretisation. Here, N = dim UN and M = dim VM . The finite dimen-
sional problem reads:
Find uN ∈ UN such that

aN M (uN , vM) = lN M (vM) ∀vM ∈ VM . (1.3)

aN M and lN M are discretisations of a and l respectively (e. g. involving numerical
integration). Note that (1.3) has the same structure as (1.2).

Choosing bases {�i } of UN and {
 j } of VM allows to transform (1.3) into a
linear system:

uN =
∑

ui�i = u��, vM =
∑

v j
 j = v��.

⇒ A�u = l, (1.4)

where

[A]i j = a(�i ,
 j), l j = l(
 j).

A is called the stiffness matrix and l the load vector.1

From linear algebra, it is well known that (1.4) only has a unique solution, if
N = M and A is regular.

1We shall always call A stiffness matrix and l load vector even though this originates from the appli-
cation in linear elasticity.

14

1.1 OPERATOR EQUATIONS

Proposition 1.5 (Regular stiffness matrix) Let N = M. A is regular ⇐⇒
∀uN ∈ UN∃vN ∈ VN such that aN N (uN , vN) �= 0 ⇐⇒ ∀vN ∈ VN∃uN ∈ UN

such that aN N (uN , vN) �= 0.
In this case, the bilinear form aN N (. , .) is called regular on UN × VN .

1.1.3 Convergence

The aim of solving (1.3) is to find an approximation u N of u with a certain accuracy
goal or acceptance criterion. This criterion can be given with respect to a relative
error in some norm or a point value, moment or stress of the solution. As long as
the accuracy goal is not met, the discretisation is refined or extended by increasing
the dimensions N and M of UN and VM respectively. Chapters 2 and 3 give more
details on refinements of Finite Element spaces.

Assume a(. , .) = aN M (. , .). Subtracting (1.2) and (1.3) yields

a(u − uN , vM) = 0 ∀vM ∈ VM (1.6)

the so-called Galerkin orthogonality: (1.6) states that the discretisation error u−u N

is orthogonal to VM with respect to the bilinear form a(. , .). If a(. , .) is an inner
product of some Hilbert space H ⊃ U, V , (1.6) is the Galerkin projection of u
onto UN . We write uN = PN u. If a(. , .) is regular, the Galerkin projection u N of
u is unique.

Definition 1.7 A sequence of discretisations {UNi , VMi }i is

• stable, if for all i

sup
u∈U

∥∥PNi u
∥∥

U

‖u‖U
≤ Ks <∞,

• consistent, if for all u ∈ U

lim
i→∞ inf

uNi ∈UNi

∥∥u − uNi

∥∥
U = 0,

• convergent, if for all u ∈ U

lim
i→∞

∥∥u − PNi u
∥∥

U = 0.

15

1 PROJECTION METHODS

Proposition 1.8 (Lax-Milgram Lemma) Let a : U × V → R be continuous, i. e.

|a(u, v)| ≤ α ‖u‖U ‖v‖V ∀u ∈ U, v ∈ V .

Let UN ⊂ U and VN ⊂ V be subspaces of equal dimension N such that the
so-called discrete inf-sup condition

inf
uN∈UN

sup
vN∈VN

a(uN , vN)

‖uN‖U ‖vN‖V
≥ CN > 0 (1.9)

holds. Then,

• a(. , .) is regular on UN × VN ,

• the stability constant is Ks ≤ α/CN ,

• the Galerkin projection PN u is quasioptimal

‖u − PN u‖U ≤ (1+ α/CN) inf
uN∈UN

‖u − uN‖U .

In the symmetric case, where a(u, v) = a(v, u) and U = V , (1.9) is implied by
coercivity:

a(u, u) ≥ C ‖u‖2
U ∀u ∈ U.

1.2 Sobolev Spaces

We briefly review some basics on Sobolev spaces, more information can be found
in, e. g., [19, 51, 97].

1.2.1 Definition

Definition 1.10 (Weak partial derivative) Let u, v ∈ L 1
loc(D), D ⊂ R

d and α ∈
N

d a multi-index. v is the α th weak partial derivative of u:

Dαu := ∂α1

∂xα1
1

· · · ∂αn

∂xαn
n

u = v

16

1.2 SOBOLEV SPACES

if ∫
D

uDαϕ dx = (−1)|α|
∫

D
vϕ dx ∀ϕ ∈ C∞0 (D),

where C∞0 (D) are all compactly supported functions in C∞(D).

Definition 1.11 (Sobolev space)

Wk,p(D) := {u ∈ L1
loc(D) : Dαu ∈ L p(D) ∀|α| ≤ k}

For p = 2, we write H k(D) = Wk,2(D). The norm of u ∈ W k,p(D) is defined as

‖u‖W k,p(D) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∑
|α|≤k

∫
D
|Dαu|p dx

)1/p

1 ≤ p <∞
∑
|α|≤k

ess sup
D

|Dαu| p = ∞.

Wk,p
0 (D) denotes the closure of C∞0 (D) in W k,p(D).

Lemma 1.12 H k(D) is a Hilbert space with inner product given by

(u, v)k :=
∑
|α|≤k

∫
D

Dαu · Dαv dx.

1.2.2 Traces

To give more flexible boundary conditions than only 0 on the entire boundary of D
in the space W k,p

0 (D), traces γ0u of functions u ∈ W 1,p(D) are necessary. There
holds [19, 97]:

Proposition 1.13 (Trace theorem) Let D ⊂ R
d a bounded domain with Lipschitz

boundary � = ∂ D. The trace operator γ0 : u �→ u|� is continuous from W 1,p(D)

to L p(�) and there holds

‖γ0u‖L p(�) ≤ C‖u‖W 1,p(D), 1 ≤ p ≤ ∞.

C depends only on p and D.

17

1 PROJECTION METHODS

Proposition 1.13 also holds for parts of the boundary � D ⊂ � and one can safely
define

H 1
�D

(D) := {u ∈ H 1(D) : u|�D
= 0}.

Remark 1.14 γ0 : H 1(D) �→ L2(�) is not surjective. γ0(H 1(D)) maps onto
H 1/2(�) with the norm

‖u‖H1/2(�)
:= inf

v∈H1(D),
γ0v=u

‖v‖H1(D).

1.3 Examples

This section gives typical examples which fit into the framework of Section 1.1.
The first example is the classical reaction diffusion equation (or Laplace or Poisson
problem) while the second example treats linear elasticity. Maxwell’s equations are
shown in the third example. It is detailed in Chapter 4. Further examples are given
in Section 2.4.

1.3.1 Reaction Diffusion Equation

Let D ⊂ R
d , d = 2 or 3, be a bounded domain. The reaction diffusion problem

reads:

− div(A(x)∇u)+ c(x)u = f, (1.15)

where A is the diffusion matrix, c(x) the reaction coefficient and f is a source term.
The diffusion coefficient A(x) is assumed to be strongly elliptic:

c1|ξ |2 ≤ ξ�A(x)ξ ≤ c2|ξ |2 ∀ξ ∈ R
d ,

uniformly in D and the reaction coefficient c(x) > 0. These coefficients are as-
sumed to be sufficiently smooth. This models the concentration u of a chemical
species in a domain D with sources, reaction and diffusion in steady state (i. e. no
time dependency). The boundary conditions are

• u = 0 on �D ⊂ ∂ D (Dirichlet boundary condition),

• n ·A(x)∇u = g ∈ H−1/2(�N) on �N ⊂ ∂ D (Neumann boundary condition),
H−1/2(�) is the dual space of H 1/2(�).

18

1.3 EXAMPLES

Remark 1.16 To require u on the Dirichlet boundary to be 0 is not a severe re-
striction since it is always possible to subtract a lifting of a non-homogeneous
Dirichlet boundary condition g D ∈ H 1/2(�D) from u and modify the right hand
side accordingly. If this is not suitable, the Dirichlet boundary conditions should
be handled as constraints [2].

(1.15) fits into the abstract framework of Section 1.1 with U = V = H 1
�D

(D)

and the Hilbert space H = L2(D):
Find u ∈ U = V such that

∫
D

(
A(x)∇u · ∇v + c(x)uv

)
dx

︸ ︷︷ ︸
a(u,v)

=
∫

D
f v dx +

∫
�N

gv ds

︸ ︷︷ ︸
l(v)

∀v ∈ V . (1.17)

1.3.2 Linear Elasticity

Let D ⊂ R
d , d = 2 or 3, be a bounded domain. The linear elasticity problem reads

[97]:

− div σ [u] = f in D, (1.18)

with the boundary conditions

u = 0 on �D, σ [u] · n = g on �N .

Here, u ∈ R
d is the displacement and σ [u] the stress tensor:

σ [u] := E

1+ ν
ε [u]+ ν

1− 2ν
div u · I, (1.19)

where ε [u] is the symmetric gradient of u:

[
ε [u]

]
i j = 1/2(∂i u j + ∂ j ui),

E > 0 is Young’s modulus of elasticity and 0 ≤ ν ≤ 1/2 the so-called Poisson ratio.

19

1 PROJECTION METHODS

As ε [u] and σ [u] are symmetric tensors, they are usually written in the form
(d = 3)

ε = (
ε11 ε22 ε33 ε12 ε13 ε23

)�
,

σ = (
σ11 σ22 σ33 σ12 σ13 σ23

)�
.

ε = Du =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂1 0 0
0 ∂2 0
0 0 ∂3

1/2∂2 1/2∂1 0
1/2∂3 0 1/2∂1

0 1/2∂3 1/2∂2

⎞
⎟⎟⎟⎟⎟⎟⎠

u.

In addition, (1.19) may be written as σ = Aε where A ∈ R
6×6 is symmetric.

The variational formulation of (1.18) reads:
Find u ∈ V = H 1

�D
(D)d such that

∫
D

Du · ADu dx
︸ ︷︷ ︸

a(u,v)

=
∫

D
f · v dx +

∫
�N

g · v ds

︸ ︷︷ ︸
l(v)

∀v ∈ H 1
�D

(D). (1.20)

By the first (|�D | > 0) or second (|�D| = 0) Korn inequality, a(. , .) is coercive.
Therefore, (1.20) fits into the setting of Section 1.1 admitting a unique solution
with H = L2(D)d .

1.3.3 Time Harmonic Maxwell’s Equations

As before, let D ⊂ R
d , d = 2 or 3, be a bounded domain. The Maxwell’s equa-

tions read [70]:

−∂t D + curl H = σ E + j g, div B = 0,

∂t B + curl E = 0, div D = ρ,

where H and E are the magnetic and electric fields and B and D are the magnetic
and electric inductions respectively. σ is the conductivity and j g the impressed
(given) current density. The Maxwell’s equations model electro-magnetic phe-
nomena. In practice, also problems in unbounded domains are of interest (wave

20

1.3 EXAMPLES

scattering, antenna modelling etc.) but this is not considered here. For the mag-
netic and electric inductions, the following constitutive laws hold:

D = εE, B = µH.

Hence,

−∂tεE + curl H = σ E + jg,

∂tµH + curl E = 0
(1.21)

and with the time harmonic Ansatz

E(x, t) = Re(E(x) · eiωt), H(x, t) = Re(H(x) · eiωt),

j g(x, t) = Re(J(x) · eiωt)

and assuming ε and µ independent of t :

−εiωE + curl H = σ E + J (1.22)

µiωH + curl E = 0. (1.23)

Extracting H from (1.23) and inserting it into (1.22) while assuming ε and µ to
be scalars (i. e. isotropic) formally yields:

curl(µ−1 curl E)− ω2
(
ε + σ

iω

)
︸ ︷︷ ︸

=:ε̃

E = −iω J, (1.24)

the so-called electric source problem. Likewise,

curl(ε̃−1 curl H)− ω2µH = curl(ε̃−1 J), (1.25)

the so-called magnetic source problem.
Assuming no charge density (in the case σ = 0), i. e. ρ ≡ 0, implies

div µH = 0 and div εE = 0. (1.26)

These have to be fulfilled for all solutions of (1.21).
The appropriate space for (1.21) is

H (curl; D) := {u ∈ L2(D)d : curl u ∈ L2(D)d }. (1.27)

21

1 PROJECTION METHODS

For a finite electro-magnetic energy, it is required that both fields E and H be-
long to H (curl; D). The curl-curl forms in (1.24) and (1.25) are not defined for
functions in H (curl; D) and will be dealt with later in the variational formulation.

The boundary conditions for (1.21) of Dirichlet type are

E × n = 0, H · n = 0 (1.28)

and those of Neumann type are

n × (µ−1 curl E) = g, n × (ε̃−1 curl H) = h.

The homogeneous Dirichlet boundary conditions (1.28) are the so-called perfect
conductor boundary conditions on the boundary of the domain D.

Remark 1.29 In two dimensions, the curl operator can be defined for a vector
field and for a scalar field: curl E = ∂1E2 − ∂2 E1 (result is a scalar field) and
curl ϕ = (∂2ϕ,−∂1ϕ)� (result is a vector field). The variational space (1.27) is
defined as

H (curl; D) := {u ∈ D ′(D)2 : u ∈ L2(D)2, curl u ∈ L2(D)}.

Variational Formulation

Starting from (1.24) and (1.26) (and assuming ε constant),

curl(µ−1 curl E)− ω2ε̃E = −iω J, (1.30)

div εE = 0, (1.31)

the ‘minimal’ choice for the variational space would be

{u ∈ H (curl; D) : u × n = 0 on ∂ D and div εu = 0}.
A conforming discretisation would then impose the use of divergence-free ele-
ments.

A ‘maximal’ and more widely used choice for the electric variational space is

H0(curl; D) := {u ∈ H (curl; D) : u × n = 0 on ∂ D}. (1.32)

22

1.3 EXAMPLES

The corresponding electric variational formulation for (1.30) and (1.31) is then:
Find E ∈ H0(curl; D) such that

∫
D

(
µ−1 curl E ·curl v−ω2ε̃E ·v) dx =

∫
D

f ·v dx ∀v ∈ H0(curl; D), (1.33)

by using

∫
D

curl u · v dx =
∫

D
u · curl v dx +

∫
∂ D

n × u · v ds

where f = −iω J . The associated bilinear operator is not elliptic and the diver-
gence condition (1.31) is an independent constraint for ω = 0.

Maxwell’s equations are discussed in more detail in Chapter 4.

1.3.4 Eigenvalue Problem

Eigenvalue problems need a different setting and give different results (most no-
tably: more than one solution). Anyway, projection methods can also be applied.
In this section, the basic facts on Eigenvalue problems are reviewed. These facts,
their generalisations and more results can be found in, e. g., [9].

Variational Formulation

Find Eigenpairs λ ∈ R and 0 �= u ∈ V (V ⊂ H a Hilbert space) such that

a(u, v) = λb(u, v) ∀v ∈ V, (1.34)

where a(. , .) is a symmetric, coercive bilinear form and b(. , .) is a symmetric
positive definite bilinear form. An Eigenvector of (1.34) is not unique and therefore
‖u‖H = 1 is required. If a(. , .) is not symmetric, complex Eigenvalues occur.

Assume V ⊂ H is a compact embedding. There exists a unique bounded opera-
tor T satisfying a(T u, v) = b(u, v). T is self-adjoint and compact. The Eigenpairs
(λ, u) from (1.34) fulfil λT u = u and vice-versa. Therefore, (λ−1, u) is an Eigen-
pair of T .

The spectrum of a self-adjoint compact operator is bounded and only clusters at
0. Therefore, the Eigenvalues of (1.34) only cluster at ∞ and are bounded from

23

1 PROJECTION METHODS

below: 0 < λ1 ≤ λ2 ≤ · · ·∞. In addition, the λ j can be characterised by the
Rayleigh quotient

R(u) := a(u, u)

b(u, u)
(1.35)

and the Minimum principle:

λ1 = min
u∈V

R(u) = R(u1)

λk = min
u∈V,a(u,ui)=0
for i=1,...,k−1

R(u) = R(uk) k = 2, 3,

Choosing a finite dimensional subspace VN ⊂ V in (1.34) yields a finite number
of Eigenvalues 0 < λ1,N ≤ λ2,N ≤ · · · ≤ λN,N and corresponding Eigenvectors
u1,N , u2,N , . . . , uN,N satisfying

a(ui,N , vN) = λi,N b(ui,N , vN) ∀vN ∈ VN . (1.36)

Approximation Estimates

It follows directly from the Minimum principle that λ k ≤ λk,N .
Let

M(λ) := {u : u an Eigenvector corresponding to λ, ‖u‖ H = 1},
εN (λ) := sup

u∈M(λ)

inf
vN∈VN

‖u − vN ‖H .

Proposition 1.37 Using (1.36) with a finite dimensional subspace VN ⊂ V yields

‖ui − ui,N ‖H ≤ CεN , |λi − λi,N | ≤ Cε2
N ,

i. e. the Eigenvalues converge twice as fast as the Eigenvectors. For single Eigen-
values λi : C1ε

2
N ≤ |λi − λi,N | ≤ C2ε

2
N .

Remark 1.38 Generalisations of Proposition 1.37 to the case of multiple Eigen-
values can be found in [9].

24

1.3 EXAMPLES

Heat Equation

As before, let D ⊂ R
d , d = 2 or 3, be a bounded domain. The heat equation reads

∂t u(x, t)− div(A(x, t)∇u(x, t)) = f (x, t), (1.39)

with a sufficiently smooth coefficient matrix A and homogeneous Dirichlet and
Neumann boundary conditions. A is the heat conduction coefficient matrix and f
models an external heating.

(1.39) should be reformulated as an Eigenvalue problem to look for Eigenmodes
of the heat equation. The Ansatz u(x, t) = v(x) · w(t) (so-called separation of
variables) while dropping f and assuming A and c constant in time leads to

v(x)∂tw(t) −w(t) div(A∇v(x)) = 0.

Assuming v and w �= 0 allows

−∂tw

w
(t)︸ ︷︷ ︸

constant in x

= −div(A∇v)

v
(x)︸ ︷︷ ︸

constant in t

= λ.

The right hand equation reads

λv = − div(A∇v).

The bilinear forms

a(u, v) =
∫

D
A(x)∇u · ∇v dx

b(u, v) =
∫

D
uv dx

show that (1.39) fits into the framework of the Eigenvalue problem (1.34) with
V = H 1

�D
(D) and the Hilbert space H = L2(D).

25

2 Finite Element Methods

The Galerkin projection reviewed in the previous chapter is based on finite dimen-
sional subspaces of the test and trial spaces U, V . One way to build such subspaces
is the so-called Finite Element Method (FEM).

The first section of this chapter reviews FE meshes and classical approximation
results. The second and third sections review more advanced geometric meshes
used in hp-FEM in two and three dimensions respectively. The chapter closes with
a brief outlook on other Finite Element Methods.

2.1 Finite Element Meshes

The basis functions of the finite dimensional subspaces U N ⊂ U and VM ⊂ V
mentioned in the previous chapter are constructed combining shape functions de-
fined on small subdomains K of the domain of interest D. 1 This is explained in
some more detail in Section 2.1.2.

2.1.1 Definition

Following [63], this section gives the definitions for FE meshes.

Definition 2.1 (Cells and mesh) A cell K is an open subdomain of D with piece-
wise smooth, Lipschitz boundary.

A mesh T is a partition of a bounded domain of interest D ⊂ R
d into a finite

number of (disjoint) cells K . The collection of cells {K } = T = T (D), D =⋃
K∈T K .

1Most of the time, N = M , as a square stiffness matrix is required.

27

2 FINITE ELEMENT METHODS

Figure 2.1: Regular meshes on the left and irregular meshes on the right hand side.

In a regular mesh, the intersection of any two cells K i and K j , i �= j , is either
empty, a vertex or an entire side2.

In two dimensions, the cells are typically triangles or quadrilaterals. In three di-
mensions, tetrahedra, hexahedra, prisms and pyramids are usually used. Examples
are shown in Figure 2.1.

Remark 2.2 Normally, FE meshes are required to be regular. However, it is pos-
sible to weaken this requirement while still retaining the global continuity of the
basis functions of the FE space (c. f. Chapter 3). In this chapter, we assume that
the meshes are regular.

Definition 2.3 (Element) Each cell K of the mesh T is assigned a polynomial
degree3 pK ∈ N0. The cell-wise polynomial degrees pK constitute the degree
vector p.

Let P be a finite dimensional space of functions (the shape functions) on the
cell K and N a basis of P ′ (the set of nodal variables). Then, (K ,P ,N) is an
element [19, 24].

As a short form of (K ,P ,N), we write (K , pK) where P = VpK (the space of
polynomials with degree pK , c. f. Remark 2.11 below) and N the standard nodal
variables for P [19].

2A side in two dimensions is an edge and in three dimensions, it is a face (i. e. a triangle or a quad).
3Usually interpreted as degree of the local space of polynomials.

28

2.1 FINITE ELEMENT MESHES

Figure 2.2: An irregular mesh T (left) and a possible (irregular) refinement (right).

Definition 2.4 (Extension / refinement) A subdivision of a cell K is any partition
of K into a finite number of cells Ki , i ∈ IK . Ki is called a child of K . A mesh-
degree combination (T , p) is extended or refined by:

• A subdivision of some or all cells K in T . h-extension4

• An increase of some or all polynomial degrees p K . p-extension5

• A combination of both. hp-extension5

A uniform extension refines all elements (K , pK) in the same way (in h and / or
p).

Remark 2.5 When subdividing a cell K , the associated degree p K is typically
inherited by the children Ki of K .

An extension (or a refinement) without further information may be regarded as
either h-extension, p-extension or hp-extension.

Example 2.6 Figure 2.2 shows a mesh T and a possible refinement. Note that
both meshes are irregular.

4The diameter of a cell K is usually denoted by h. The h-version is decreasing the maximal h in the
mesh T .

5In p- and hp-extensions, the maximal diameter of a cell in general does not tend to zero during
successive refinements.

29

2 FINITE ELEMENT METHODS

2.1.2 Finite Element Subspaces

Using a mesh T = {K } and a degree vector p, the Finite Element space V N is
usually constructed as follows.

Each cell K in the mesh has a master (reference) cell K̂ . In two dimensions,
triangles K typically are assigned the triangle K̂ = {ξ ∈ R

2 : ξi > 0, ξ1 + ξ2 < 1}
as reference cell and quadrilaterals K are typically assigned one of the reference
cells K̂ = (0, 1)2 or K̂ = (−1, 1)2. For tetrahedra, the typical reference cell is
again the unit simplex and for hexahedra either K̂ = (0, 1)3 or K̂ = (−1, 1)3 is
used. The choice of the reference cell also fixes the element map FK : K̂ → K .

Remark 2.7 Contrary to the examples of cells in Figures 2.2 and 2.3, also curved
boundaries are allowed. In such a case e. g. isoparametric or exact geometry (us-
ing blending maps) representation is used. However, this is not covered in this
work.

For cells with straight edges, an affine (triangle and tetrahedron), bilinear
(quadrilateral) or trilinear (hexahedron) element map is sufficient.

In addition to the reference cell and the element map, reference shape functions
Ni of degree pK are chosen on the reference cell. These reference shape functions
Ni are mapped onto the physical cell using the element map: ϕ K

i ◦ FK = Ni . The
ϕi are called the (physical) shape functions.

Example 2.8 Figure 2.3 shows an element map FK for a quadrilateral cell K
together with an example for a reference shape function Ni and the respective
shape function ϕi on the physical cell.

The global basis functions �i of the FE space VN are constructed by combining
the shape functions on adjacent elements, the so-called assembly of global basis
functions. How this is achieved depends on the continuity requirements of the FE
space. Typically, one requires global C 0 continuity of the basis functions. A rather
general method to assemble the global basis functions will be shown in Chapter 3.

Definition 2.9 (FE space) On a mesh T = {K }, define

S p,l(D,T) := {u ∈ H l(D) : u|K ◦ FK ∈ VpK (K̂), K ∈ T }, (2.10)

i. e. piecewise polynomials of degree pK on the reference element K̂ .

30

2.1 FINITE ELEMENT MESHES

K̂

KFK

xξ

Ni

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2
-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6

-0.25
-0.2

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

ϕi

Figure 2.3: The top figure shows the element map FK : K̂ → K . Below, there is a reference shape
function Ni on the left and the corresponding shape function ϕi on the physical cell on the
right.

Remark 2.11 The polynomial space V p in Definition 2.9 denotes:

• The space of polynomials with maximal degree p in quadrilaterals and hex-
ahedra: Vp = Qp := span {xα : αi ≤ p}.

• The space of polynomials with total degree p in simplices (triangles and
tetrahedra): Vp = Pp := span {xα : |α| ≤ p}.

In classical FEM, l = 1. There are other possible choices, though. Refining
S p,l(D,T) by p-extension is called p-FEM6. Refining S p,l(D,T) by h-extension
is called h-FEM7. A combination of h- and p-FEM (hp-FEM) is introduced in
Sections 2.2 and 2.3.

6In p-FEM, the mesh T is usually regular.
7In h-FEM, the degree p is usually uniform and low, i. e. p = 1 or 2.

31

2 FINITE ELEMENT METHODS

2.1.3 Approximation Properties

This section gives approximation properties for h- and p-extensions on simple
meshes. A thorough discussion and more results can be found in [25, 97]. More
complicated meshes are discussed in Sections 2.2 (two dimensions) and 2.3 (three
dimensions).

Definition 2.12 (Mesh properties) Let {T } be a family of meshes with cells K . In
a cell K denote with

ρK radius of the maximal inscribed circle of K ,

hK the radius of the circumference of K .

• {T } is called κ-shape-regular, if

0 < κ ≤ min{hK/ρK : K ∈ T } ≤ max{hK/ρK : K ∈ T } ≤ κ
−1 <∞.

• h(T) := max {hK : K ∈ T } is the mesh width of T .

• {T } is called κ̃-quasi-uniform if

0 < κ̃ ≤ maxK∈T hK

minK∈T hK
≤ κ̃

−1 <∞.

Proposition 2.13 (Approximation property of h- and p-FEM)
Let T be a shape-regular and quasi-uniform mesh with mesh width h in D ⊂ R

d

a polygon (d = 2) or a polyhedron (d = 3).
Then (see e. g. [10] and the references there), for a uniform polynomial degree

p,

min
v∈S p,1(D,T)

‖u − v‖H1(D) ≤ C(k) (h/p)min{p+1,k}−1 ‖u‖Hk (D) ∀u ∈ H k(D).

Combining Proposition 2.13 with Proposition 1.8 or 1.37 gives the usual con-
vergence results for sufficiently smooth solutions.

32

2.2 GEOMETRIC MESHES IN TWO DIMENSIONS

2.2 Geometric Meshes in Two Dimensions

Proposition 2.13 shows the approximation properties for h- and p-extensions.
However, piecewise analytic solutions with a singular behaviour near corners yield
only algebraic convergence with h- and p-extensions. The solution is to combine
h- and p-extensions in a suitable way to regain the exponential convergence [8, 97].

Remark 2.14 (Geometric meshes necessary for exponential convergence)
Given smooth data, the solution of a reaction diffusion equation 8 is analytic in
D \C (C the set of corners of the domain D) [8, 97]. The singularities spoiling the
convergence of the p-FEM only occur at corners in C. In any cell K ⊂ D \C, the
solution can be approximated by polynomials of degree p at an exponential rate in
p as long as the ratio

infx∈K dist(x,C)

diam K
can be bounded from above and below. In geometric meshes as described below
(and constructed in Chapter 3), this is fulfilled.

The description of these geometric hp-meshes follows [8, 29]. How the meshes
are realized algorithmically is shown in Chapter 3. The three dimensional case is
treated in Section 2.3.

2.2.1 Domains

Let D ⊂ R
2 be a bounded Lipschitz polygon defined as follows. The definition

also includes domains in S
2 as this is needed later for the definition of Lipschitz

polyhedra in three dimensions.

Definition 2.15 (Lipschitz polygon in two dimensions) Let the domain D ⊂ R
2

or S
2 be bounded. At each point a ∈ ∂ D, there exists r a > 0 and a diffeomorphism

χa such that the neighbourhood Va := D ∩ Bra(a) of a is transformed into a
neighbourhood of the corner 0 of a plane sector � a of opening angle ωa ∈ (0, 2π)

with a being sent into 0. Assume that the diffeomorphism χ a is an isometric trans-
formation at a. Therefore, the opening angle ω a is an intrinsic parameter of D.

8This does not only hold for reaction diffusion equations but also for other elliptic PDEs (like linear
elasticity). However, each problem has to be treated separately.

33

2 FINITE ELEMENT METHODS

The set C of corners of D consists of points a ∈ ∂ D where

• the corresponding sector �a is non-trivial (i. e. ωa �= π),

• the type of boundary conditions change.

Definition 2.15 splits D into the neighbourhoods Va for all corners in a ∈ C and
the regular part V0 such that no vertex a belongs to V 0 (all unions are disjoint):

D = V0 ∪
(⋃

a∈C

Va

)
.

2.2.2 Assumptions on Cells

Consider quadrilateral cells K in a mesh T = {K } covering the whole domain
D. FK denotes the bijective map from the reference cell K̂ = (−1, 1)2 onto K :
FK : ξ �→ x = FK (ξ). Let h(K) > 0 be a measure for the size of the element and
assume:

1. For any |α| = m > 0 and any ξ ∈ K̂ , there holds

|Dα(FK)i (ξ)| ≤ C0dm
0 (m!)h(K), (2.16)

for m > 1 and i = 1, 2.

2. The Jacobian determinant is positive and satisfies

C1h2(K) ≤ det
d FK

dξ
≤ C2h2(K). (2.17)

Here, the constants C0, C1, C2 and d0 are the same for all cells K .

Remark 2.18 The above conditions guarantee the usual assumptions as the angle
condition and a bounded aspect ratio of the cells K etc.

The cells K in the regular part V 0 and the corner neighbourhoods V a are con-
sidered separately.

34

2.2 GEOMETRIC MESHES IN TWO DIMENSIONS

Cells in a Corner Neighbourhood Va

Let K ⊂ Va and a �∈ K . Denote with ra(x) = |a− x| the distance from the corner
and

κ(K) = min
x∈K

ra(x), κ(K) = max
x∈K

ra(x). (2.19)

Assume constants A ∈ (1,∞), C and C exist such that

κ(K)

κ(K)
≤ A (2.20)

and
C κ(K) ≤ h(K) ≤ C κ(K). (2.21)

There exists

1 < A� ≤ κ(K)

κ(K)
. (2.22)

Denoting by ‖K‖ the area measure of K , there holds

C κ
2(K) ≤ ‖K‖ ≤ C κ

2(K). (2.23)

For the cells Ka containing the corner a: a ∈ K a , assume (2.21).

Cells in the Regular Part V0

Let
C ≤ h(K) ≤ C (2.24)

for all cells K ⊂ V0.
The constants A, A�, C and C are the same for all cells K in Va and V0.

2.2.3 Geometric Meshes

Consider the mesh in Va . Because of (2.19) and (2.20), the notion of layers of cells
is well defined. The terminal layer L0 consists of all cells whose closure contains
the vertex a:

K ∈ L0(a) ⇐⇒ a ∈ K . (2.25)

35

2 FINITE ELEMENT METHODS

Figure 2.4: Layers in a square. The darkest region is the regular part V0, the rest of the domain is the
neighbourhood Va of the bottom left corner. The different shades distinguish the different
layers. The white cell is the only cell in the terminal layer L0.

Definition 2.26 (Layer of cells Lk) The k-th layer Lk is defined as the set of all
elements K ⊂ Va such that they do not belong to the layers L j , 0 ≤ j ≤ k − 1,
but touch the layer Lk−1

K ∩
(⋃

K ′∈Lk−1

K ′
)
�= ∅.

Further, analogous to (2.20) and (2.22) hold for all k ≥ 1:

κ
(⋃

K∈Lk+1
K
)

κ
(⋃

K∈Lk
K
) ≤ A, 1 < A� ≤ κ

(⋃
K∈Lk+1

K
)

κ
(⋃

K∈Lk
K
) .

Example 2.27 (Layers) Figure 2.4 gives an example of four different layers with
respect to the bottom left corner a and a regular part in a square.

Proposition 2.28 (Number of cells in a layer) The number of cells in a layer is
bounded by a constant L 0 for all layers Lk in T . L0 depends only on the constants
in (2.16)–(2.21) and not on the mesh T = {K }.
Proof: It follows from (2.16)–(2.21) that there exists a constant L0 bounding the
number of cells in any layer Lk [63]. �

36

2.2 GEOMETRIC MESHES IN TWO DIMENSIONS

The mesh in a neighbourhood Va is described by the size of the smallest element
Ka in this part of the mesh. Assume the geometric grading parameter σ ≤ 1 and
the number of layers n > 0. Let K a ⊂ Va , a ∈ K a and

Cσ n ≤ κ(Ka) ≤ Cσ n . (2.29)

Increasing n results in a growing number of layers (as long as σ < 1). Using σ = 1
results in a mesh with the number of layers independent of n. 9 The mesh in the
different neighbourhoods Va can depend on different parameters (σ, n).

The number and size of the cells in the regular part V 0 does not need to fulfil
any constraints: the mesh remains the same in this region for different parameters
(σ, n).

Definition 2.30 (Geometric mesh) A mesh T as described by (2.16)–(2.29) (Sec-
tions 2.2.2 and 2.2.3) is called a geometric mesh in a two dimensional Lipschitz
polygon D with n layers and geometric grading parameter σ .

2.2.4 hp-Approximation Properties

So far, only the cells K of the geometric mesh T have been discussed. hp-FEM
couples mesh refinements with changes in the polynomial degree vector p.

Definition 2.31 (hp-FE space in two dimensions) Let T = {K } be a geometric
mesh, geometrically refined towards the corners a ∈ C of D, and m > 0 a degree
distribution parameter. Define a linearly distributed degree vector p = {p K }K∈T

as follows: For an element (K , pK) on layer Lk in a corner neighbourhood Va ,
define the degree pK := max{1, �mk�}. Additionally, define p K = maxK∈T {pK }
in the regular part V0. Then, S p,1(D,T) from (2.10) is called an hp-FE space.

In contrast to Section 2.1.3 (h- and p-FEM), Definition 2.31 prescribes a differ-
ent polynomial degree pK for every element K ∈ T . The hp-extension is typi-
cally realised by refining the elements in the terminal layers (h-extension) and by
increasing the degree in all elements but those in the terminal layer (p-extension).
This results in a degree distribution parameter m = 1. If the h-extension in the
terminal layer is done via bisection, then the geometric grading factor σ = 1/2. A
more precise algorithm is given in Section 3.2.

9This can be used in the neighbourhood of vertices where the solution is known not to behave singu-
larly.

37

2 FINITE ELEMENT METHODS

Lemma 2.32 The dimension N of a sequence of hp-FE spaces S p,l(D,T) in two
dimensions behaves like O(p3) where p = maxK p.

Proof: According to Proposition 2.28, there are at most L0 elements per layer Lk .
Typically, an element with degree p has (p+ 1)2 degrees of freedom associated

to it.10 Therefore, there are L 0 · (mk + 1)2 degrees of freedom on one layer.
Summing over all layers and using

n+1∑
i=1

i2 = (n + 1)(n + 2)(2n + 3)

6
⇒

n∑
k=0

L0 · (mk + 1)2 = O(p3),

where �mn� = p. �
The following results holds for hp-FE spaces in two dimensions [8, 31, 97].

Proposition 2.33 (Convergence of hp-FEM in two dimensions) Let D be a Lip-
schitz polygon. Let {(T n

σ , pn
m)}n be a sequence of hp-mesh-degree combinations,

where the meshes T n
σ are refined towards the corners a ∈ C of D with grading

parameter 0 < σ < 1 and the degree vectors pn
m are linearly distributed with

slope m > 0 (c. f. Definition 2.31). Let u be the solution of the diffusion problem

−∇ · A∇u = f in D, u = 0 on �D, n · A∇u = g on �N

with analytic data f , g and A(x) on � N and D respectively.
Then, for N = dim S pn

m ,1(D,T n
σ),

min
v∈S pn

m ,1(D,T n
σ)

‖u − v‖H1(D) ≤ C exp(−bN 1/3),

where b depends on m and σ .

Remark 2.34 (Piecewise analytic data) If f , g and A are only piecewise ana-
lytic, the previous result still holds, however, the sequence {T n

σ }n of geometric
meshes must then be refined also to the corners a of the domains of analyticity of
the data. No geometric refinement is necessary, if the domain of analyticity is itself
bounded by an analytic curve.

10Using trunk spaces, this can be lessened somewhat. However, the O(p2) behaviour remains, c. f.
Remark 6.7 on page 177.

38

2.3 GEOMETRIC MESHES IN THREE DIMENSIONS

2.3 Geometric Meshes in Three Dimensions

As in the previous section, the description of the meshes follows [8, 29]. Re-
mark 2.14 also hold in three dimensions. How these meshes are realized algorith-
mically is shown in Chapter 3.

2.3.1 Domains

The description of the domain D and its associated parts is more involved com-
pared to the situation in two dimensions. Regions close to corners but far from
edges and vice-versa have to be distinguished.

Let D ⊂ R
3 be a bounded Lipschitz polyhedron defined as follows (refer to

Example 2.38 and Figure 2.5 below to illustrate the following definitions).

Definition 2.35 (Lipschitz polyhedron in three dimensions) Let the domain D
in R

3 be bounded. At each point a ∈ ∂ D, there exists R a > 0 and a diffeomor-
phism χa such that the corner neighbourhood V a := D ∩ BRa(a) is transformed
into a neighbourhood of the corner 0 of a cone � a = {x ∈ R

3 : x/|x| ∈ Ga}
with Ga a Lipschitz corner domain of S

2 and a being sent into 0. Assume that the
diffeomorphism χa is an isometric transformation at a.

The set C of corners of D is the set of points a ∈ ∂ D where the corresponding
cone �a is a non-trivial cone (i. e. it is neither a half space nor a wedge).

An edge e in the set E of open edges of D consists of points x ∈ e such that
the local cone �x is a wedge �e(x) × R and D is diffeomorphic to this wedge in
the neighbourhood Ve(x) := D ∩ BRx (x). Here, �e(x) is a plane sector whose
opening is denoted by ωe(x). Like for two dimensional domains, this opening is
intrinsic.

Definition 2.36 (Edge distance functions re and ρe) For x ∈ D, define the dis-
tance re from the edge e as

re(x) := dist(e, x).

The distance function ρe is defined as follows

1. if e contains no corner, then it is a closed curve and ρe(x) := re(x).

39

2 FINITE ELEMENT METHODS

2. if e contains exactly one corner c ∈ C, then it is a closed curve with a corner.
Define ρe such that there holds

re(x) = ρe(x)rc(x).

3. if e contains exactly two corners c and c′ ∈ C, then define ρe such that there
holds

re(x) = ρe(x)rc(x)rc′(x).

In the neighbourhoodVe(x), the function re is equivalent to the radial coordinate
in �e(x). Clearly, ρe is equivalent to re/rc in Vc and to re outside of Vc∪Vc′ . The
idea of ρe is to be able to separate corners and edges with the blow-up of ρ e close
to corners.

Apart from the neighbourhoods V a and Ve(x) defined above, domains relating
corners and edges are necessary.

Definition 2.37 (Corner and edge neighbourhoods)

• Corner-edge neighbourhood Ve(a) including edge: Let a ∈ C be a corner
of D. The corners c = c(e) of the spherical domain G a ⊂ S

2 correspond
bijectively to the edges e ∈ E such that a ∈ e. The function ρe(x) is equiva-
lent to the radial coordinate at the corner c(e) in G a . The domain Ve(a) is
defined by the sectorial coordinates11 (ra, ρe, θe), where ra < ε, ρe ≤ 1 and
θe is the angular coordinate in Vc ⊂ Ga is a neighbourhood of the corner
c ∈ Ga .

• Corner neighbourhood V 0
a excluding corner-edge neighbourhoods: Let V 0

a

be an open set such that e ∩ V 0
a = ∅ for all edges e ∈ E and such that

Va = V0
a ∪

(⋃
e∈Ea

Ve(a)
)
.

• Edge neighbourhood V 0
e excluding corner neighbourhoods: Let V 0

e be an

open set such that no corner or any other edge but e is contained in V 0
e .

Additionally, e is contained in

V0
e ∪

(⋃
c∈e

Ve(c)
)

11Interpretation as cylindrical coordinates with ρe = re/rc ≤ 1 (this is allowed as rc′ is nearly constant
close to c).

40

2.3 GEOMETRIC MESHES IN THREE DIMENSIONS

Definition 2.37 splits D into the neighbourhoods Ve(a), V0
a , V0

e and the regular
part V0 (disjoint unions):

D = V0 ∪
(⋃

e∈E

V0
e

)
∪
⎛
⎝⋃

a∈C

V0
a ∪

(⋃
e∈Ea

Ve(a)
)⎞⎠ .

Example 2.38 (Polyhedral domain) Let D = (0, 1)3 seen from the first octant
with a = (1, 1, 1). Figure 2.5 shows the different neighbourhoods mentioned in
Definition 2.37.

2.3.2 Assumptions on Cells

Consider hexahedral cells K in a mesh T = {K } covering the whole domain
D. FK denotes the bijective map from the reference cell K̂ = (−1, 1)3 onto K :
FK : ξ �→ x = FK (ξ).

The cells K in the different regions introduced in Section 2.3.1 are considered
separately.

Cells in Edge Neighbourhood V0
e excluding Corner Neighbourhoods

Let K ⊂ V0
e and K ∩ e = ∅. Denote

κ(K) = min
x∈K

re(x), κ(K) = max
x∈K

re(x). (2.39)

The following assumptions on K and FK hold:

• There exists a constant A ∈ (1,∞) such that

κ(K)

κ(K)
≤ A. (2.40)

• Assume that the edge e is parallel to the local x3 axis of the cell K . For any
|α| = m, m > 0 an integer, h := κ(K) and any ξ ∈ K̂ :∣∣Dα(FK)i (ξ)

∣∣ ≤ C0dm
0 (m!)h, for i = 1, 2,∣∣Dα(FK)3(ξ)

∣∣ ≤ C0dm
0 (m!)H, for H < H0,

(2.41)

with C0, d0 and H independent of m and h (and H0 such that K ⊂ V0
e). H

is a measure for the size of K along e.

41

2 FINITE ELEMENT METHODS

a

e1
e2

e3

(a) Vertex a and edges ei , i =
1, 2, 3 of D = (0, 1)3.

Va

(b) Corner neighbourhood
Va := D ∩ Bra (a).

Ga

c1c2

c3

Vc1

Vc2

Vc3

(c) Spherical domain Ga ⊂
S

2 with its corners ci and
the corner neighbourhoods
Vci ⊂ Ga for i = 1, 2, 3.

a

Ve1 (a) e1

(d) Corner-edge neighbour-
hood Ve1 (a) including
edge.

a

V0
a

(e) Corner neighbourhood
V0

a excluding corner-edge
neighbourhoods.

a

V0
e1

e1

(f) Edge neighbourhood
V0

e1
excluding corner

neighbourhoods.

Figure 2.5: D = (0, 1)3 seen from the first octant with a = (1, 1, 1). (a) shows the edges meeting in a,
(b)–(f) depict the domains Va , Ga ⊂ S

2, Ve1 (a), V0
a and V0

e1
.

42

2.3 GEOMETRIC MESHES IN THREE DIMENSIONS

• The Jacobian determinant is positive and satisfies

C1 Hh2 ≤ det
d FK

dξ
≤ C2 Hh2, (2.42)

where C1 and C2 are independent of h and H .

There exists

1 < A� ≤ κ(K)

κ(K)
. (2.43)

The cells Ke touching the edge (i. e. K e ∩ e �= ∅) satisfy (2.41) and (2.42).

Remark 2.44 The cells in this neighbourhood are needle elements, i. e. they have
a very large aspect ratio. In a slice perpendicular to the edge e, the cells look
similar as in the vicinity of a corner in a two dimensional domain.

Cells in Corner-Edge Neighbourhood Ve(a) including Edge

Let K ⊂ Ve(a) and K ∩ e = ∅. Denote

κ1(K) = min
x∈K

ra(x), κ1(K) = max
x∈K

ra(x), (2.45)

κ2(K) = min
x∈K

sin ϕ(x), κ2(K) = max
x∈K

sin ϕ(x), (2.46)

where sin ϕ(x) := re(x)/ra(x). The following assumptions on K and FK hold:

• There exist constants A1, A2 ∈ (1,∞) such that

κ1(K)

κ1(K)
≤ A1, (2.47)

κ2(K)

κ2(K)
≤ A2. (2.48)

• Assume that the edge e is parallel to the local x3 axis of the cell K . For any
|α| = m, m > 0 an integer, h := κ1(K), s := κ2(K) and any ξ ∈ K̂ :

∣∣Dα(FK)i (ξ)
∣∣ ≤ C0dm

0 (m!)hs, for i = 1, 2,∣∣Dα(FK)3(ξ)
∣∣ ≤ C0dm

0 (m!)h,
(2.49)

with C0 and d0 independent of m, h and s.

43

2 FINITE ELEMENT METHODS

• The Jacobian determinant is positive and satisfies

C1h3s2 ≤ det
d FK

dξ
≤ C2h3s2, (2.50)

where C1 and C2 are independent of h1 and h2.

There exist

1 < A�
1 ≤

κ1(K)

κ1(K)
, 1 < A�

2 ≤
κ2(K)

κ2(K)
. (2.51)

The cells Ke touching the edge e but not containing the corner a do not satisfy
(2.48) but satisfy the rest of the properties given for Ve(a) above.

Cells in Corner Neighbourhood V0
a excluding Corner-Edge

Neighbourhoods

Let K ⊂ V0
a and K ∩ a = ∅. Denote

κ(K) = min
x∈K

ra(x), κ(K) = max
x∈K

ra(x). (2.52)

The following assumptions on K and FK hold:

• There exists A ∈ (1,∞) such that

κ(K)

κ(K)
≤ A. (2.53)

• For any |α| = m, m > 0 an integer, h := κ(K) and any ξ ∈ K̂ :
∣∣Dα(FK)i (ξ)

∣∣ ≤ C0dm
0 (m!)h, for i = 1, 2, 3, (2.54)

with C0 and d0 independent of m and h.

• The Jacobian determinant is positive and satisfies

C1h3 ≤ det
d FK

dξ
≤ C2h3, (2.55)

where C1 and C2 are independent of h.

44

2.3 GEOMETRIC MESHES IN THREE DIMENSIONS

There exists

1 < A� ≤ κ(K)

κ(K)
. (2.56)

Remark 2.57 The cells K in the neighbourhood V 0
a do not have a large aspect

ratio and their size depends on the distance r a from the corner a.

Cells in the Regular Part V0

Let K ⊂ V0. Denote

κ(K) = min
e∈E

re(x). (2.58)

The following assumptions on K and FK hold:

• For any |α| = m, m > 0 an integer, h := κ(K) and any ξ ∈ K̂ :

∣∣Dα(FK)i (ξ)
∣∣ ≤ C0dm

0 (m!)h, for i = 1, 2, 3, (2.59)

with C0 and d0 independent of m and h.

• The Jacobian determinant is positive and satisfies

C1h3 ≤ det
d FK

dξ
≤ C2h3, (2.60)

where C1 and C2 are independent of h.

Vertex Cells

Let a ∈ K a where a ∈ C is a corner of the domain D. Denote

κ(Ka) = diam Ka. (2.61)

The assumptions (2.48)–(2.50), (2.53) and (2.54) on K and FK hold.
The constants A, A1, A2, A�, A�

1, A�
2, C0, d0, C1 and C2 are the same for all

cells K in the mesh T .

45

2 FINITE ELEMENT METHODS

2.3.3 Geometric Meshes

Similarly to the two dimensional case, the assumptions in Section 2.3.2 allow the
definition of layers of cells in the mesh T . The terminal layer L0 in the neigh-
bourhoods Ve(a), V0

a and V0
e consists of all cells whose closure contain the ‘main

feature’ of the neighbourhood: the edge e and the corner a respectively.
The layers Lk , 0 ≤ k ≤ n are defined similarly to Definition 2.26. Assume a

geometric grading parameter σ ≤ 1.

Layers in Edge Neighbourhood V0
e excluding Corner Neighbourhoods

The mesh is geometric (in the two dimensional sense given in Definition 2.30)
perpendicular to the edge e. The cells K e in the terminal layer L0 touching the
edge e are constrained by

κ(Ke) ≤ Cσ n. (2.62)

In the direction along the edge e, several levels are allowed. Nonetheless, the
number of cells in a layer is bounded and the total number of cells in this neigh-
bourhood is of order O(n).

Layers in Corner-Edge Neighbourhood Ve(a) including Edge

The mesh in this neighbourhood is geometric perpendicular to the edge (arranged
in layers) and along the edge (arranged in levels). The cells K fulfil

κ2(Ke) ≤ Cσ n, Cσ n ≤ min
K⊂Ve(a)

κ1(K) ≤ Cσ n. (2.63)

The total number of cells in this neighbourhood is of order O(n 2).

Layers in Corner Neighbourhood V0
a excluding Corner-Edge

Neighbourhoods

The mesh is geometric in the distance ra to the corner a with

Cσ n ≤ min
K⊂V0

a

κ(K) ≤ Cσ n . (2.64)

The total number of cells in this neighbourhood is of order O(n).

46

2.3 GEOMETRIC MESHES IN THREE DIMENSIONS

Regular Part V0

In the regular part, there are no layers and the number of cells is independent of n.

Vertex Cells

The size of the cells Ka fulfils

Cσ n ≤ diam(Ka) ≤ Cσ n . (2.65)

Definition 2.66 (Geometric mesh) A mesh T as described by (2.39)–(2.65) (Sec-
tions 2.3.2 and 2.3.3) is called a geometric mesh in a three dimensional Lipschitz
polyhedron D with n layers and geometric grading parameter σ .

2.3.4 hp-Approximation Properties

So far, only the cells K of the mesh T have been discussed. Now, we address the
combination of mesh and polynomial degree.

Definition 2.67 (hp-FE space in three dimensions) On a geometric mesh T =
{K }, a linearly distributed degree vector p with slope m > 0 is defined as follows:

• The elemental degree pK ∈ N
3
0 is allowed to be anisotropic in all elements

(K , pK): pK = (p1,K , p2,K , p3,K).

• Vertex elements (Ka, pKa): define pK = (1, 1, 1).

• Regular part V0: define pK = maxK∈T { pK } =: (pmax, pmax, pmax).

• Corner neighbourhood V 0
a excluding corner-edge neighbourhoods: define

pK = (max{1, �mk�}, max{1, �mk�}, max{1, �mk�})
for an element (K , pK) on layer Lk .

• Edge neighbourhood V 0
e excluding corner neighbourhoods: without loss of

generality, let the local x3 axis be parallel to the edge e. An element on layer
Lk has pK = (max{1, �mk�}, max{1, �mk�}, pmax), pK ≥ 1.

47

2 FINITE ELEMENT METHODS

• Corner-edge neighbourhood Ve(a) including edge: again, let the local x 3
axis be parallel to the edge e. An element in layer Lk and level Ll has
pK = (max{1, �mk�}, max{1, �mk�}, max{1, �ml�}).

Then, S p,1(D,T) from (2.10) is called an hp-FE space.

Lemma 2.68 The dimension N of a sequence of hp-FE spaces S p,l(D,T) in three
dimensions behaves like O(ps) where p = max{pmax,i }3i=1 and pmax = maxK pK .
s = 4 if the geometric mesh is only refined towards vertex singularities and s = 5
if there are also edge singularities taken into account for the mesh.

Proof: Analogous to the proof of Lemma 2.32 by taking into account the layers
and levels along singular edges for s = 5. �

The hp-extension is typically realised by refining (anisotropically) the elements
in the terminal layers (h-extension) and by increasing (anisotropically) the degree
in all elements but those in the terminal layer (p-extension). A more precise algo-
rithm is given in Section 3.2.

The following result holds for hp-FE spaces in three dimensions [8, 32, 97].

Proposition 2.69 (Convergence of hp-FEM in three dimensions) Let D be a
Lipschitz polyhedron. Let {(T n

σ , pn
m)}n be a sequence of hp-mesh-degree com-

binations, where the meshes T n
σ are refined towards the corners a ∈ C and the

edges e ∈ E of D with grading parameter 0 < σ < 1 and the degree vectors
pn

m are linearly distributed with slope m > 0 (c. f. Definition 2.67). Let u be the
solution of the diffusion problem

−∇ · A∇u = f in D, u = 0 on �D, n · A∇u = g on �N

with analytic data f , g and A(x) on � N and D respectively.
Then, for N = dim S pn

m ,1(D,T n
σ),

min
v∈S pn

m ,1(D,T n
σ)

‖u − v‖H1(D) ≤ C exp(−bN 1/5),

where b depends on m and σ .

Remark 2.70

• It is not necessary to distribute the degrees pK anisotropically as described
in Definition 2.67—isotropic degrees pK or even a uniform degree p would
suffice (even for the exponential convergence of Proposition 2.69). How-
ever, given a desired accuracy, using a non-uniform, anisotropic p K saves a
considerable amount of degrees of freedom.

48

2.4 FURTHER EXAMPLES (FORMULATIONS AND OPERATORS)

• Note that only piecewise analyticity of the data f , g and A is required if T n
σ

is refined accordingly, c. f. Remark 2.34.

2.4 Further Examples (Formulations and Operators)

The following two subsections give some outlook to other Finite Element Methods
which (at least partially) fit into this setting. Importantly, the methods discussed fit
into to software design which is presented in Part III.

2.4.1 Discontinuous Galerkin Finite Element Methods

Reaction Diffusion

A typical variational form for discontinuous Galerkin FEM (DGFEM) of the prob-
lem described in Section 1.3.1 reads [112]:
Find uN ∈ VN such that

B±h (uN , vN) = l∓h (vN) ∀vN ∈ VN , (2.71)

where

B±h (u, v) :=
∑
K∈T

∫
K
(∇v · A∇u + cuv) dx

−
∑

e∈Eint,D

∫
e

(〈A∇u〉 · [v]∓ [u] · 〈A∇v〉) ds

+
∑

e∈Eint,D

∫
e
δ [u] [v] ds,

l∓h (v) :=
∑
K∈T

∫
K

f v dx

+
∫

�N

gNv ds ∓
∫

�D

(A∇v · nD)gD ds +
∫

�D

δgDv ds

(2.72)

and δ = δ(p, h) the so-called discontinuity stabilisation function. Here, the non-
homogeneous Dirichlet boundary condition g D on �D is weakly enforced, i. e., it

49

2 FINITE ELEMENT METHODS

is not part of the DGFE space. The finite dimensional space VN is defined as

VN := {u ∈ L2(D) : u|K ◦ FK ∈ PpK (K̂), K ∈ T } = S p,0(D,T). (2.73)

In contrast to the FE spaces defined in Definitions 2.31 and 2.67, (2.73) defines
discontinuous functions.

The DGFEM defined by the bilinear and linear forms in (2.72) are symmetric
(‘−’ version) and non-symmetric (‘+’ version). For sufficiently smooth data (f ,
gN and gD), the functionals in (2.72) are well-defined and (2.71) is consistent.
The bilinear forms B±h (u, v) are continuous and coercive over appropriately de-
fined energy spaces and l∓h (v) is continuous. Therefore, this method fits into the
framework of Section 1.1. The approximation results for the DGFEM are given in
[112].

Stokes

Let D ⊂ R
3 be a bounded domain. The Stokes problem reads:

−ν�u +∇ p = f , div u = 0 in D (2.74)

with the boundary conditions

u = g on ∂ D.

Here, u denotes the velocity field, ν the viscosity and p the pressure. The inf-sup
condition [20, 61]

inf
0�=L2(D)/R

sup
0�=v∈H1

0 (D)3

− ∫
D q div v dx

|v|1 ‖q‖0
≥ CD > 0

guarantees a unique solution (u, p) ∈ H 1
0 (D)3 × L2(D)/R of (2.74). Here, |.|1

denotes the H 1-semi-norm.
The Stokes problem is a saddle-point problem. Classically, mixed FEM are used

to approximately solve (2.74): degree p for the velocities and p−k for the pressure.
Conforming methods need k = 2 and discontinuous methods k = 1 [108]. [96]
shows the stability of pressure stabilised hp-DGFEM for k = 0 (so-called equal
order methods).

The framework for vector valued problems given in Section 7.1 allows mixed
methods (k �= 0) as long as the underlying mesh T is the same in all components
of the vector valued FE spaces.

50

2.4 FURTHER EXAMPLES (FORMULATIONS AND OPERATORS)

2.4.2 Non-local Operators: Boundary Element Methods

Boundary Element Methods (BEM) are used to discretise boundary integral equa-
tions which can be derived from a homogeneous partial differential equation
Lu = 0 with Neumann (u N) or Dirichlet (u D) boundary conditions [93]. A bound-
ary integral equation in general form reads:
Find u ∈ H s/2(�) [1] such that

(A(u), v) =: a(u, v) = (f, v) ∀v ∈ H s/2(�), (2.75)

where f ∈ H−s/2(�), s ∈ {0,±1} and A(.) is one of the following integral opera-
tors:

uD(x) = V(σ)(x) :=
∫

�

σ(y)k(x, y) ds y,

uD(x) = −1/2ϕ(x)+K(ϕ)(x) := −1/2ϕ(x)+
∫

�

ϕ(y)γ1,yk(x, y) ds y,

uN (x) = 1/2σ(x)+K ′(σ)(x) := 1/2σ(x)+ pv
∫

�

σ(y)γ1,xk(x, y) ds y,

uN (x) = −W(ϕ)(x) := −fp
∫

�

ϕ(y)γ1,xγ1,yk(x, y) ds y.

γ1,x denotes the normal derivative with respect to x and σ(x) and ϕ(x) are used to
describe the solution u(x) using the kernel k(x, y) of the PDE Lu = 0:

u(x) =
∫

�

σ(y)k(x, y) ds y or u(x) =
∫

�

ϕ(y)γ1,yk(x, y) ds y.

The kernel k(x, y) fulfils Lk(. , y) = δ(y). (f, v) denotes the L 2 duality pair-
ing extended to H−s/2(�) × H s/2(�) by continuity. a(u, v) is the bilinear form∫
� A(u)(x)v(x) ds fulfilling

• continuity,

• Gårding inequality: There exists c > 0 and a compact operator

K : H s/2(�) → H−s/2(�)

such that ∀u ∈ H s/2(�):

a(u, u)+ (K u, u) ≥ c ‖u‖2
Hs/2(�)

.

51

2 FINITE ELEMENT METHODS

• injectivity in H s/2(�): a(u, u) = 0 ⇒ u = 0.

Then, (2.75) admits a unique solution ∀ f ∈ H −s/2(�) [93]. This method fits into
the framework of Section 1.1 and also into the software desing presented in Part III.

52

3
Algorithmic Realization

of hp-Finite Element
Spaces in R

3

In two dimensions, to resolve corner singularities of elasticity and Maxwell prob-
lems at an exponential rate of convergence in polygons, geometric vertex meshes
are sufficient. To resolve boundary layers due to singular perturbations as, e. g., in
viscous, incompressible flows and reaction diffusion problems, geometric bound-
ary layer meshes are necessary.

In three dimensions, geometric vertex and edge meshes are necessary to resolve
the singularities which arise in elasticity and Maxwell problems at an exponential
rate of convergence. To capture the features of viscous, incompressible flows and
reaction diffusion problems, again geometric boundary layer meshes are needed.
Solutions of eddy current interface problems also exhibit these boundary layers at
internal interfaces. A class of geometric edge, vertex and face meshes in general
polyhedra in R

3 are introduced in Section 3.1.
This whole chapter is devoted to the algorithmic realisation of mesh-degree com-

binations (T , p) used in hp-Finite Element Methods to get exponential conver-
gence. The implementation, which closely follows these guidelines, is described
in Part III. The main results presented in this chapter are:

1. an algorithm to create geometric vertex, edge and boundary layer meshes
built from trilinearly mapped hexahedra in arbitrary combination in any
polyhedron in R

3 with a proper polynomial degree distribution as introduced
in Chapter 2.

2. a generic assembly procedure for irregular meshes with arbitrary, anisotropic
polynomial degree distribution.

53

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

The first result is presented in the first two sections and the second one in the third
section. The last section gives some numerical examples with convergence plots
and run-time measurements.

Contrary to popular believe, we are convinced that it is beneficial to work only
with hexahedral meshes:

• Shape functions, interpolants and S matrices (c. f. Section 3.3.5) have ten-
sor product structure. Also, it is obvious what the effect of anisotropically
reducing the local polynomial degree in one direction is—which is not the
case in a tetrahedron.

• It is straight forward to mesh special engineering features like thin plates,
thin films or coatings. Meshing such thin structures with a good tetrahedral
mesh is almost impossible.

• Geometric refinements towards a geometric feature like an edge or face are
simple to achieve.

The drawback of hexahedral meshes is that local mesh refinements introduce irreg-
ularities in the mesh. It is not straight forward to handle these in an anisotropically
refined mesh with general, anisotropic local polynomial degrees. However, we
have solved these problems.

The main task treated in the section devoted to the assembly procedure (Sec-
tion 3.3) is to form globally continuous basis functions from local shape functions
(defined on the cells of the mesh). Problems arise across cell boundaries where
the mesh is irregular. In this case, the shape functions in the smaller cell have to
be constrained by their larger neighbours. There are different methods to enforce
these constraints [14, 15, 41, 42, 43, 47, 50, 68]—the one shown here is flexible (al-
lows for anisotropic refinement in arbitrary number and order and an anisotropic,
arbitrary degree) and still remains fast (pre-computed coefficients used during the
assembling).

3.1 Creating Geometric Meshes in Three
Dimensions

In the presence of singularities or boundary layers, geometric meshes (and degrees)
adapted to the specific situation have to be used in order to get exponential con-

54

3.1 CREATING GEOMETRIC MESHES IN THREE DIMENSIONS

vergence rates. The geometric grading factor σ ∈ (0, 1) and the number of layers
n characterise the meshes. Refer to [8, 83, 85, 98, 109] and the references therein
on how to chose these parameters and Chapter 2 for a theoretical description of the
meshes. We only work with σ = 1/2 for implementational reasons.

After a motivation of geometric meshes, a rough description of geometric vertex,
edge and boundary layer meshes is given. The geometric vertex and edge meshes
fit into the setting of Section 2.3, the geometric boundary layer meshes are not
considered there. Finally, we present an algorithm to create these meshes.

3.1.1 Exponential Convergence Needs Geometric Meshes

The use of geometric meshes in Chapter 2 is motivated below such that a simple
refinement rule can be drawn as conclusion. This rule is the basis for the algorithms
below.

Let u be a function we try to approximate with hp-FEM. The bounded domain
of interest is D ⊂ R

d . u is analytic in D \ S. Here, S is the set of ‘singularities’
(corners, edges and faces—typically on the boundary of D but possibly also in the
interior of the domain in case of jumping coefficients). In a cell K ∈ T away
from S, u|K is analytic. Therefore, it can be approximated exponentially with
polynomials of increasing order p.

Example 3.1 (One dimension) Let D = (0, 1) and u = r λ (a model for the sin-
gularities arising in one dimensional problems). u is analytic in D \ S = (0, 1].
In the cell K = (1/2, 1), u can be approximated exponentially by polynomials of
order p:

inf
v∈Pp

‖u − v‖L∞(K) ≤ Ce−bp.

Other norms than L∞(K), e. g. L2(K), are possible too.
Generally, the convergence rate b depends on

diam K

dist(K , S)
. (3.2)

The basic mesh design principle for exponential convergence is to keep the ratio
(3.2) constant over successive mesh refinements. Consequently, the convergence
rate b is also constant. The cells in the terminal layer touching S do not need any
special treatment as their size is exponentially decreasing with successive refine-
ments (and so does their error contribution).

55

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

In three dimensions, the basic idea stays untouched, only the interpretation
of diam K in (3.2) has to be changed. The set of singularities S is anisotropic
(i. e. contains corners and edges). Therefore, the geometric mesh must also be
anisotropic and aligned to S. This keeps

diam⊥ K

dist(K , S)

constant. Here,

diam⊥ K =
{

diam K if K ⊂ V0
a ,

diameter of largest inscribed sphere if K ⊂ Ve(a) ∪ V0
e .

Similarly for two or three dimensional problems with a boundary layer.
Conclusion: A geometric mesh is refined by subdividing the elements in the

terminal layer aligned to the singularities in S. Simultaneously, the polynomial
degree is increased in all other elements. In addition, if an element is subdivided
anisotropically, the polynomial degree is increased in those directions which are
not broken. This ensures exponential convergence in the presence of singularities
in three dimensions.

3.1.2 Description of Geometric Vertex, Edge and Boundary
Layer Meshes

A mesh T in a domain D can consist of various regions where different refinement
strategies have to be used. Three basic strategies can be distinguished:

• A geometric boundary layer mesh T (c. f. Figure 3.1 on the left) is given by
a one dimensional geometric mesh T 1 with grading factor σ and n layers
and a two dimensional domain Q:

T = {I × Q : I ∈ T 1}.
The meshes in the middle and on the right of Figure 3.1 are geometric bound-
ary layer meshes towards two and three faces respectively.

• A geometric edge mesh T (c. f. Figure 3.2 on the left) is given by a two
dimensional geometric mesh T 2 (an irregular vertex mesh refined towards

56

3.1 CREATING GEOMETRIC MESHES IN THREE DIMENSIONS

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X Y

Z

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X Y

Z

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X Y

Z

Figure 3.1: Geometric boundary layer mesh with grading factor σ =1/2 and 5 layers towards one (left),
two (middle) and three faces (right).

one corner with grading factor σ and n layers) and a one dimensional interval
I :

T = {Q × I : Q ∈ T 2}.
The meshes in the middle and on the right of Figure 3.2 are geometric edge
meshes towards two and three edges respectively.

• A geometric vertex mesh (c. f. Figure 3.3) is an irregular vertex mesh refined
towards one corner with grading factor σ and n layers.

The right most meshes in Figures 3.1 and 3.2 (geometric boundary layer mesh
and geometric edge mesh respectively) look the same from ‘outside’. However,
looking inside the domain by dropping 1/8 of the cube reveals the differences, c. f.
Figure 3.4.

3.1.3 Algorithmic Realization

Algorithm 3.1 is a simple algorithm which can be used to geometrically refine
meshes in any bounded polyhedral domain given the following information and
tools:

• a hexahedral initial partition T 1, (3.3)

• a-priori information which vertex, edge (or even face) is singular (i. e. a
singularity of the solution does or might occur there),

57

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X Y

Z

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X Y

Z

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X Y

Z

Figure 3.2: Geometric edge mesh with grading factor σ = 1/2 and 5 layers towards one (left), two
(middle) and three edges (right).

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X Y

Z

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X Y

Z

(a) Geometric boundary layer
mesh towards three faces.

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X Y

Z

(b) Geometric edge mesh to-
wards three edges.

Figure 3.3: Geometric vertex
mesh with grading
factor σ = 1/2 and 4
layers.

Figure 3.4: Meshes with grading factor σ = 1/2 and 6 layers. Here,
1/8 of the cube is cut away to reveal details inside the
domain.

• means to subdivide every given hexahedron in one of the seven possibilities
shown in Figure 3.15.

Algorithm 3.1 computes a cell-wise refinement indicator δl = (δl x , δly, δlz) de-
noting what changes should be made to the current cell K of the mesh T . Values
of 0 in any component of δl mean ‘no change’. A value of 1 in δl x means that the
x axis of the hexahedron should be broken, similarly δl y = 1 ⇒ break y axis and
δlz = 1 ⇒ break z axis. The eight possibilities offered by δl i ∈ {0, 1} are covered

58

3.1 CREATING GEOMETRIC MESHES IN THREE DIMENSIONS

Loop over all cells K in the mesh T :

• Let δl = (0, 0, 0) (the subdivision indicators for the three directions).

• Loop over all vertices of the cell:

– If a vertex is marked as singular, set δl = (1, 1, 1).

• Loop over all edges of the cell:

– If an edge is marked as singular, set the corresponding two entries in δl to 1:
if the edge is parallel to the x axis, set δly = δlz = 1,
if the edge is parallel to the y axis, set δlx = δlz = 1,
if the edge is parallel to the z axis, set δlx = δly = 1.

• Loop over all faces of the cell:

– If a face is marked as singular, set the corresponding entry in δl to 1: if the face is
perpendicular to the i axis, set δli = 1, ∀i ∈ {x, y, z}.

• Refine the cell K with the refinement indicator δl .

Algorithm 3.1: Geometric, anisotropic mesh refinement in three dimensions. Given a hexahedral mesh
T of a bounded polyhedron D and a marking of singular vertices, edges and faces, this
algorithm applies one anisotropic refinement step and returns the resulting mesh T′.

by the seven subdivisions in Figure 3.15 and ‘no subdivision’. Note that Algo-
rithm 3.1 does not change the polynomial degrees. This is done in Algorithm 3.2
below.

Remark 3.4 (Algorithm 3.1)

• The algorithm is also applicable in two dimensions with obvious changes.

• If a vertex in cell K is marked as singular, then the loops over the edges and
the faces can be economised because all entries of δl are already set to 1.

• The notion of ‘x axis’ etc. is local to the cell.

• The algorithm also works for geometric meshes towards internal vertices,
edges or faces. This is needed in eddy current interface problems where
boundary layers also arise at internal boundaries.

• The requirement (3.3) is not essential as shown by the result below.

59

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

Figure 3.5: Breaking a tetrahedron into four hexahedra. The thick lines show the initial tetrahedron. The
dotted lines represent new edges in the interior of the tetrahedron while all other new edges
are on the surface of the tetrahedron. The pictures on the right show the four individual
hexahedra.

• The generated meshes are 1-irregular (only singly constrained nodes).

Proposition 3.5 Given any bounded polyhedral domain D ⊂ R
3, there exists a

shape-regular, hexahedral initial mesh T 1 in D.

Proof: It is possible to mesh any bounded polyhedral domain D ⊂ R
3 with shape-

regular tetrahedra.1 Any tetrahedron can be broken into four trilinearly mapped
hexahedra as shown in Figure 3.5. Every face of the tetrahedron is broken into
four quadrilaterals by introducing edges joining the edge-midpoints and the centre
of gravity of the face. An additional vertex is introduced in the middle of the
tetrahedron and linked with the face-centres.

Breaking each tetrahedron into four hexahedra creates a shape-regular, hexahe-
dral mesh. The shape-regularity is preserved by choosing edge mid-points and
centres of gravity. �

Example 3.6 In simple geometries, it is beneficial to create the meshes by hand:
A tetrahedral mesh in the cube (−1, 1)3 needs 6 tetrahedra resulting in a mesh

1There even exist good algorithms and software for this task to create high quality tetrahedral meshes.

60

3.2 CREATING hp-FINITE ELEMENT SPACES

-1

-0.5

0

0.5

1

Z

-1

-0.5

0

0.5

1

X

-1

-0.5

0

0.5

1

Y

X Y

Z

X Y

Z

Figure 3.6: Edge mesh in the Fichera corner. The right picture shows an enlarged version centred at the
origin.

with 24 hexahedra using the procedure described in Proposition 3.5. However,
a hand-made mesh needs only one hexahedron. All meshes in the present thesis
are hand-made. In addition, in the hand-made mesh, the reference hexahedron
(0, 1)3 is affinely mapped to the physical hexahedron whereas in the automatically
generated mesh, all hexahedra are trilinearly mapped. In thin geometries (like a
plate), a hand-made hexahedral mesh is even more superior.

Example 3.7 Algorithm 3.1 used on D = (−1, 1)3 \ (−1, 0)3 (the so called
‘Fichera corner’) creates a mesh as shown in Figure 3.6. The three reentrant edges
and the reentrant corner (at the origin) were marked as singular.

3.2 Creating hp-Finite Element Spaces

Algorithm 3.2 shows a simple extension of Algorithm 3.1 to hp-refine mesh-degree
combinations (T , p). In addition to the refinement indicator δl computed by Al-
gorithm 3.1, Algorithm 3.2 computes a degree indicator δ p = (δpx, δpy, δpz).
Similarly to δl , δ p indicates what changes should be made to the polynomial de-
gree pK of the element (K , pK) of the current mesh-degree combination (T , p).

61

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

Loop over all elements (K , pK) in the mesh-degree combination (T , p):

• Determine the subdivision indicator δl = (δlx , δly , δlz) according to the rules given in Algo-
rithm 3.1.

• ∀i ∈ {x, y, z}: set δpi = 0 if δli = 1 and δpi = 1 otherwise.

• Refine the element (K , pK) with the refinement indicators δl and δ p.

Algorithm 3.2: Geometric, anisotropic hp-mesh-degree refinement in three dimensions. Given a hexa-
hedral mesh T of a bounded polyhedron D, a marking of singular vertices, edges and
faces and a degree vector p, this algorithm applies one anisotropic refinement step and
returns the resulting mesh-degree combination (T ′, p′).

• Create an initial regular hexahedral mesh T1 of D and choose the initial degree vector p1 ={
pK = (1, 1, 1)

}
K∈T . This mesh has one layer.

• Mark vertices, edge and faces as ‘singular’ towards which the mesh-degree combination should
be refined.

• Call Algorithm 3.2 n − 1 times.

Algorithm 3.3: Create an hp-mesh-degree combination (Tn , pn) with n layers, degree distribution pa-
rameter m = 1 and geometric grading parameter σ = 1/2 in any bounded polyhedron
D ⊂ R

3.

Values of 0 in any component of δ p mean ‘no change’. A value of 1 in δp x means
that the x component of p K should be increased by 1 and so on. The polynomial
degree distribution parameter is m = 1: In an isotropic mesh, the polynomial de-
gree pK of an element K on layer k is pK = max {(1, 1, 1), (�mk�, �mk�, �mk�)}.
Remark 3.8 (Simultaneous change of mesh and polynomial degree)
Note that Algorithm 3.2 simultaniously refines the geometric mesh T and the poly-
nomial degrees p contrary to p-FEM software like StressCheck [69] or Nεκταr
[72]. These software packages take an initial mesh and do not change it but only
increase the polynomial degrees.

The meshes presented in Section 3.1.2 (geometric vertex, edge and boundary
layer meshes) with geometric grading parameter σ = 1/2 and n layers can be gen-
erated using Algorithm 3.3. To create a geometric boundary layer mesh, the faces

62

3.2 CREATING hp-FINITE ELEMENT SPACES

with boundary layers have to be marked as ‘singular’. Similarly for a geomet-
ric vertex (edge) mesh: there, the singular vertices (edges) have to be marked.
Arbitrary combinations of geometric vertex, edge and boundary layer meshes are
possible by marking the respective vertices, edges and faces. There is no restriction
that they have to be on the boundary of the domain D: geometric meshes towards
internal singularities or internal layers are also possible.

Finally, an hp-FE space is created using the mesh-degree combination (T n, pn)

with n layers from Algorithm 3.3: VN = S
pn ,1
�D

(D,T n).

Remark 3.9 (Sequence of hierarchic hp-FE spaces)

• Algorithm 3.3 creates a sequence of mesh-degree combinations {(T n, pn)}n
by calling Algorithm 3.2 several times. It is straight forward to generate a
sequence of hp-FE spaces {VN }N from {(T n, pn)}n.

• The hp-FE spaces generated by Algorithm 3.3 are hierarchic, i. e. let VN1 =
S

pn,1
�D

(D,T n) and VN2 = S
pn+k ,1
�D

(D,T n+k) be the resulting spaces gener-
ated by Algorithm 3.3 with n and n+k layers respectively. Then, VN1 ⊆ VN2

for any k ≥ 0.

(2.50) is a key property of the determinant of the Jacobian of the cells in the
corner-edge neighbourhood V e(a) including edge. It is verified in the result below.

Proposition 3.10 Given any bounded polyhedron D ∈ R
3, Algorithm 3.3 gener-

ates a mesh T n fulfilling (2.50).

Proof: The condition on the Jacobian determinant for cells in the corner-edge
neighbourhood Ve(a) including edge (2.50) is

C1h3s2 ≤ det
d FK

dξ
≤ C2h3s2,

where

h := κ1(K) = max
x∈K

ra(x),

s := κ2(K) = max
x∈K

sin ϕ(x) = max
x∈K

re(x)

ra(x)
.

63

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

The element map FK : K̂ → K of an element K ∈ T n is a composition of a
trilinear element map FK̃ : K̂ → K̃ with K ⊂ K̃ ∈ T 1 and an affine element map
FK aff :

FK = FK̃ ◦ FK aff ,

where the affine map FK aff describes the subdivision in the reference situation, i. e.
it maps the reference element of K to a child of the reference element of K̃ .

The determinant of the Jacobian of FK is

det
d FK

dξ
= det

[
d FK̃

dξ
◦ FK aff · d FK aff

dξ

]
= det

[
d FK̃

dξ
◦ FK aff

]
· det

d FK aff

dξ
.

The factor det
[

d FK̃
dξ
◦ FK aff

]
can be bounded from above and below independently

of the number of layers n in T n only depending on the initial hexahedral mesh T 1.
Likewise,

c̃1‖FK̃ ‖‖FK aff(ξ)‖ ≤ ‖FK̃ ◦ FK aff(ξ)‖ ≤ c̃2‖FK̃ ‖‖FK aff(ξ)‖.
Therefore, it suffices to study

Caff
1 h3s2 ≤ det

d FK aff

dξ
≤ Caff

2 h3s2, (3.11)

i. e. we are in the reference situation (here, h and s are also taken in the reference
situation). The condition (3.11) needs to be verified for the cells in Ve(a), e. g. the
grayed cells in Figure 3.7.

The layers are denoted with l1 = 0, 1, . . . perpendicular to the edge e and the
levels are denoted with l2 = 1, 2, . . . along the edge. Figure 3.7 shows the layers
l1 = 0, 1, 2 and the levels l2 = 1, 2, 3. In a mesh with n layers (Figure 3.7 has 5
layers),

det
d FK aff

dξ
= 23(n−1)+l2+2 max{0,l1−1}.

To estimate the upper and lower bounds in (3.11), upper and lower bounds for h
and s in each layer-level combination (l1, l2) are required:

r2
e,up := 2 · 22(−n+1+l1), r2

e,low := 22(−n+1+l1) + 22(−n+l1),

h2
up = 22(−n+2+l2) + r2

e,up, h2
low = 22(−n+2+l2) + r2

e,low, (3.12)

s2
up =

r2
e,up

22(−n+1+l2) + r2
e,up

, s2
low =

r2
e,low

22(−n+1+l2) + r2
e,low

.

64

3.2 CREATING hp-FINITE ELEMENT SPACES

Figure 3.7: Cells in the corner-edge neighbourhood Ve(a) including edge. This mesh has 5 layers.

 0.01

 0.1

 1

-1 -0.5 0 0.5 1 1.5 2
l1

 0.01

 0.1

 1

 0 5 10 15
l1

 0.01

 0.1

 1

 0 10 20 30 40
l1

Figure 3.8: Plot of (3.13) for each cell in Ve(a) in T n against l1 for n = 4, 21 and 51 (from left to
right). × and + are computed with hup, sup and hlow, slow respectively.

Figure 3.8 shows plots of the quotient

det
d FK aff

dξ

h3s2 (3.13)

for different number of layers n for the upper and lower bounds of h and s. Clearly,
the quotient is bounded from above and below. It is also possible to compute the
bounds manually. �

Theorem 3.14 Given any bounded polyhedron D ∈ R
3, Algorithm 3.3 generates

a mesh-degree combination (T n, pn) fulfilling Definition 2.67 with degree distri-

65

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

bution parameter m = 1 and grading factor σ = 1/2. T n consists of trilinearly
mapped hexahedra.

Proof: The proof consists of three parts. First, the initial mesh-degree combination
(T 1, p1) is specified. Then, the second and third part inductively deal with the
degrees and sizes of the elements in an invocation of Algorithm 3.2.

1. As shown in Proposition 3.5, there exists a shape-regular mesh consisting
of trilinearly mapped hexahedra in any bounded polyhedron in R

3. The ini-
tial coarse grid (T 1, p1) generated in the first step of Algorithm 3.3 fulfils
Definition 2.67.

2. Applying Algorithm 3.2 to a degree vector p (induction over the number of
mesh layers):

• The vertex cell K is newly created. Therefore, its degree p K is not
increased, i. e. it stays at pK = (1, 1, 1).

• The degree pK of a cell in the regular part V0 is increased isotropi-
cally.

• The degrees pK of the cells K in the corner neighbourhood V 0
a ex-

cluding corner-edge neighbourhoods on layer L k , k ≥ 1 are increased
isotropically as all elements not touching a singular edge or vertex are
treated the same as an element in the regular part. The elements on the
layers Lk , k = 0, 1, are created in this invocation of the algorithm. The
elements on L0 are vertex elements, i. e. pK = (1, 1, 1), and those on
L1 also have pK = (1, 1, 1).

• The degrees pK of the cells in the edge neighbourhood V 0
e excluding

corner are increased isotropically as long as they do not touch the edge.
For these cells, the same arguments as in the corner neighbourhood
V0

a excluding corner-edge neighbourhoods holds. If the cell touches
the edge e, it is split up anisotropically along the edge and its degree
is increased in the direction along the edge. Assuming this is the n-
th invocation of Algorithm 3.2 and e is parallel to the z axis (in local
coordinates of the cell), the degree of these newly created cells is p K =
(1, 1, n + 1).

• Combining the arguments for V 0
e and V0

a shows that the degrees pK
of the cells in the corner-edge neighbourhood V e(a) including edge
behave as required.

66

3.2 CREATING hp-FINITE ELEMENT SPACES

3. Denote by T = {K } and T ′ = {
K ′
}

the old and new mesh respectively. Let
n be the number of layers in T . Applying Algorithm 3.2 to T only changes
the cells K touching a singular corner or edge. Hence, T ′ has n + 1 layers.

• For a vertex cell K ′a , diam K ′a = 1/2 diam Ka holds. Therefore, (2.65)
holds:

Cσ n+1 ≤ diam(K ′a) ≤ Cσ n+1.

• Most cells K in the corner neighbourhood V 0
a excluding corner-edge

neighbourhoods are not changed. However, the old vertex cell K a is
split up. Therefore, (2.64) holds with

min
K ′⊂V0

a

κ(K ′) = 1/2 min
K⊂V0

a

κ(K).

• As before, the cell K ′
e in the terminal layer of the edge neighbourhood

V0
e excluding corner fulfils (2.62) with

κ(K ′e) = 1/2 κ(Ke).

• The second part of (2.63) is asserted by the same argument as for V 0
a .

The first part of (2.63) for the cells in the terminal layer of the corner-
edge neighbourhood Ve(a) including edge:

κ2(K ′e) ≤ Cσ n

is fulfilled by κ2(K ′e) = 1/2 κ2(Ke) for sufficiently small cells Ke.

Summarising steps 2 and 3, an old mesh-degree combination (T , p) fulfilling Def-
inition 2.67 is transformed into another valid mesh-degree combination (T ′, p′).
Together with the fact that the coarse grid (T 1, p1) also fulfils Definition 2.67 (step
1), this concludes the proof. �

Proposition 3.15 (Complexity of Algorithm 3.3) The run-time complexity of Al-
gorithm 3.3 is

r t2(n) = O(n2),

i. e. the complexity for generating the hp-mesh-degree combination (T n, pn)

grows quadratically in the number of mesh layers n.

67

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

Proof: Obviously, Algorithms 3.1 and 3.2 have run-time complexity O(#T), where
#T is the number of cells in the mesh T . The number of cells per layer is bounded
by L0 independently of n [63]. Therefore, the run-time complexity of the Algo-
rithms 3.1 and 3.2 on the mesh T i is r t1(i) = O(i).

It takes n − 1 invocations of Algorithm 3.2 to generate a mesh with n layers:

r t2(n) =
n−1∑
i=1

r t1(i) = O (1/2(n − 1)(n − 2)) = O(n2).

�

3.3 Generic Assembly Procedure

A general variational formulation for FEM reads:
Find u ∈ V such that

a(u, v) = l(v) ∀v ∈ V . (3.16)

To approximate u ∈ V numerically, recall that a discretisation of the space V
is defined using a finite dimensional set of linearly independent functions {� i }
forming a basis of VN ⊂ V . The bilinear form a(. , .) and linear form l(.) are used
to generate the stiffness matrix A and load vector l on the space V N . Finally, the
linear system A�u = l is solved for u, u N = ��u an approximation for u.

Algorithmically, A and l are built element-wise, i. e. a triangulation of D into a
mesh T = {K } is used. On these cells K , the local shape functions are defined
according to the degree pK . The shape functions are assembled by T matrices into
the global basis functions.

3.3.1 T Matrices

Definition 3.17 (T matrix) Let m K the number of local shape functions {ϕ K
j }mK

j=1

in the element K and N the number of global basis functions {�i }Ni=1. The T
matrix T K ∈ R

mK×N of the element K describes how the restriction of the global
basis functions {�i }Ni=1 onto the element K are constructed from the local shape
functions:

�i |K =
mK∑
j=1

[
T K

]
j i ϕK

j

and in vector notation: �|K = T�K ϕK .

68

3.3 GENERIC ASSEMBLY PROCEDURE

1

1
1

2

2
2

3
3

34

K1

K4

1

1

1
1

2
2

2
2

3

3
3

34

K1

K2

K3

Figure 3.9: Regular (left) and irregular (right) mesh with two elements with three local shape func-
tions (linear) each and four global basis functions (hat functions). The hanging node in the
irregular mesh is marked with a ◦.

In classical FEM, the basis functions have to be continuous. From the point of
view of the element shape functions, the T matrices ensure the continuity of the
global basis functions by assembling them correctly. In others methods like the
discontinuous Galerkin FEM (DGFEM) and Boundary Element Method (BEM)
(c. f. Sections 2.4.1 and 2.4.2 respectively), the basis functions are usually discon-
tinuous. This can also be described by means of T matrices.

Example 3.18 (T matrix of a regular mesh) In a regular mesh2, there is a “one-
to-one” correspondence of local shape functions and global basis functions: Every
local shape function contributes to at most one global basis function. On the other
hand, the restriction of a global basis function onto an element gets contributions
from at most one local shape function.

Consider the regular mesh shown in Figure 3.9 on the left. Assume standard
linear nodal shape functions on the elements K 1 and K4 forming the usual hat
functions. The elements K1 and K4 have the T matrices

T K1
=
⎛
⎝1 0 0 0

0 1 0 0
0 0 0 1

⎞
⎠ and T K4

=
⎛
⎝0 1 0 0

0 0 1 0
0 0 0 1

⎞
⎠ . (3.19)

2The intersection of any two elements is either empty, a vertex or a side, c. f. Figure2.1 on page 28.

69

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

The row and column indices in the T matrices in (3.19) correspond to the indices
of the local shape functions (numbers inside the triangles in Figure 3.9) and the
global basis functions (numbers outside the triangles in Figure 3.9) respectively.

As a result of the “one-to-one” correspondence of local shape functions and
global basis functions, every row and every column of the two T matrices in (3.19)
have at most one entry equal to 1.

Example 3.20 (T matrix of an irregular mesh) Consider the mesh shown on the
right of Figure 3.9. The mesh is irregular. Clearly, there is no such “one-to-one”
correspondence of local shape functions and global basis function as it was the
case for the regular mesh.

Using Definition 3.17, the T matrices of the elements K2 and K3 are:

T K2
=
⎛
⎝0 1 0 0

0 0 1 0
0 1/2 0 1/2

⎞
⎠ and T K3

=
⎛
⎝0 1/2 0 1/2

0 0 1 0
0 0 0 1

⎞
⎠ . (3.21)

3.3.2 Assembly Procedure

Restricting the bilinear form a(. , .) and the linear form l(.) to an element K makes
it possible to compute the element stiffness matrices and element load vectors. The
global stiffness matrix A is assembled from the element stiffness matrices using the
T matrices:

A = aD(�,�) = a
(∑

K

T�K ϕK ,
∑

K̃

T�
K̃
ϕ K̃

)

=
∑
K ,K̃

T�K aK∪K̃ (ϕK ,ϕ K̃)T K̃ =
∑
K ,K̃

T�K AK K̃ T K̃ .

Here, aD(. , .) denotes the bilinear form a(. , .) from (3.16) and aK∪K̃ (. , .) the
bilinear form over the domain K ∪ K̃ taking as input local shape functions ϕ j .
aK∪K̃ (. , .) is evaluated by extending the ϕ j with 0 to D and using a(. , .).

This leads to the formal definition of the assembly operator:

Definition 3.22 (Assembly operator) The assembly operator A is defined as fol-
lows:

70

3.3 GENERIC ASSEMBLY PROCEDURE

• for assembling matrices

A = AK ,K̃∈T AK K̃ :=
∑

K ,K̃∈T

T�K AK K̃ T K̃ , (3.23)

• for assembling vectors

l = AK∈T l K :=
∑
K∈T

T�K l K . (3.24)

Remark 3.25 In classical FEM, the double sum in (3.23) collapses into a single
sum since AK K̃ ≡ 0 for K �= K̃ . This is not the case for non-local operators as
e. g. those in the Boundary Element Method or in the discontinuous Galerkin FEM.

This idea of T matrices separates the computation of the local element matrices
from the global stiffness matrix and the assembly process. The latter two can stay
unchanged even if new global basis functions, local shape functions or physical
problems (involving new element matrices) are introduced. This clear separation
on the algorithmic side allows clean interfaces on the implementation side and the
above mentioned properties carry over to the implementation (c. f. Section 6.1.2).

3.3.3 Generation of T Matrices

The generation of a T matrix for a regular mesh depends heavily on counting and
assigning indices with respect to topological entities such as vertices, edges and
faces. For an irregular mesh, this could also be done in a similar way. The present
and the following section describe a way to simplify the generation of the T matri-
ces for the cells in an irregular part of the mesh.

Regular Meshes

Generating a T matrix for a regular mesh is just a matter of counting and assigning
global and local degrees of freedom. A global degree of freedom corresponds to
a global basis function and a local degree of freedom corresponds to a local shape
function. All local degrees of freedom are associated to a topological entity of the
mesh (like a vertex, an edge, a face or a cell).

71

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

An element’s T matrix is generated column by column: Every column holds a
global to local degree of freedom association. The column index is the number of
the global degree of freedom and the row index is the number of the local degree
of freedom. In Example 3.18, the T matrices of the elements K1 and K4 both
have four columns. Every column is associated to a global degree of freedom (see
Figure 3.9 for the degrees of freedom)—every row is associated to a local degree
of freedom.

Irregular Meshes

Irregularities in meshes (c. f. Figure 3.9) can arise from different sources: overlap-
ping meshes, moving parts of a mesh or local refinements. We consider meshes
with hanging nodes (like to ones in Figures 3.9, 3.10 and 3.12) which result from
(possibly recursive) local refinements of a initially consistent mesh: the mesh on
the right of Figure 3.9 is a refined version of the initially regular mesh on the left.

In many other algorithms and implementations, several situations such as singly
constrained nodes (also referred to as 1-irregular meshes) or doubly constrained
nodes have to be distinguished and treated separately. 3 In the following, we present
an approach that extends the simple construction rules for regular meshes to the
irregular case and is not restricted to 1-irregular meshes. Briefly, if an element has
hanging nodes, the T matrix for the regular parent is generated and modified by an
S matrix (defined below).

Consider a mesh T for which all elements and associated T matrices have been
generated. Suppose the mesh T ′ is the result of splitting several elements of T .
The basis functions B := {�1, . . . ,�N } defined for T may be partitioned into two
sets—one denoted by Breplace containing all basis functions that can be described
solely by elements of T ′ that are not part of T and another one denoted by B keep
representing the rest:

B = Breplace ∪ Bkeep.

Note that Breplace is easily determined; the support of basis functions in B replace
consists entirely of newly inserted elements.

The set of basis functions B ′ related to the mesh T ′ contains all basis func-
tions in Bkeep plus an additional set Binsert of basis functions generated by regular

3There exist many implementations of this so-called constrained approximation, many of them with
different ideas and algorithms [14, 15, 41, 42, 43, 47, 50, 68].

72

3.3 GENERIC ASSEMBLY PROCEDURE

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

(a) Initial mesh T with indicated refine-
ment. Basis functions B located at • and
�: • ∈ Bkeep and � ∈ Breplace.

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

(b) Refined mesh T ′ with hanging nodes ◦,
• ∈ Bkeep, × ∈ Binsert.

Figure 3.10: Refinement of the lower left quadrilateral of a mesh T consisting of four quadrilaterals (a)
into the new mesh T ′ consisting of seven quadrilaterals (b). Indicated are the elements of
B = Breplace ∪ Bkeep in (a) and B′ = Binsert ∪ Bkeep in (b).

components of mesh T ′ formed by elements not part of T :

B ′ = Binsert ∪ Bkeep.

The remaining basis functions in Bkeep are not modified although this could
increase the efficiency. On the other hand, we are able to exploit the tensor product
structure (c. f. Section 3.3.5).

Example 3.26 In Example 3.18 we find B = B ′ since Breplace = ∅ = Binsert.

Example 3.27 Consider the mesh in Figure 3.10 resulting from refining the lower
left quadrilateral. Assume bilinear nodal basis functions indicated by different
symbols in the vertices of the mesh.

The mesh T is the one containing the four quadrilaterals and B consist of the
nine hat functions indicated by Bkeep = {•} and Breplace = {�} in Figure 3.10(a).

73

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

Figure 3.10(b) shows how B ′ is split into Bkeep = {•} and Binsert = {×}. ◦ indicate
hanging nodes.

Every element of a set of basis functions B or B ′ has a column in the T ma-
trix of every element. The entries in such a column give the coefficients of the
respective local shape functions with respect to the chosen global basis function.
As mentioned above, generating a T matrix for a regular mesh is just a matter of
counting and assigning indices to topological entities. This holds for B insert ⊂ B ′
since Binsert consist of the basis functions in the regular part of T ′. The columns in
the T matrices of the basis functions in Bkeep have to be modified by a so called S
matrix.

3.3.4 S Matrices

An S matrix follows the same idea as a T matrix: it describes how the larger func-
tions are constructed from the smaller ones.

Definition 3.28 (S matrix) Let K ′ ⊂ K be the result of an h-refinement of element
K . The S matrix SK ′K ∈ R

mK ′×mK describes how the restriction of the shape
functions {ϕK

j }mK
j=1 onto K ′ are constructed from the shape functions {ϕ K ′

l }mK ′
l=1 of

K ′:

ϕK
j

∣∣∣
K ′
=

mK ′∑
l=1

[
SK ′K

]
l j ϕK ′

l

and in vector notation: ϕ K
∣∣
K ′ = S�K ′K ϕK ′ . In the trivial case K = K ′ (i. e. no

refinement), the S matrix S K K is equal to the identity matrix.

Similar ideas can be found in the construction of prolongation operators in multi-
grid methods.

Proposition 3.29 (Application of S matrix) Let K ′ ⊂ K be the result of a refine-
ment of an element K . Then, the T matrix of K ′ can be computed as

T K ′ = SK ′K T̃ K + T̃ K ′,

where T̃ K denotes the T matrix of element K with columns not related to functions
in Bkeep set to zero and T̃ K ′ the T matrix for functions in Binsert with respect to K ′.

74

3.3 GENERIC ASSEMBLY PROCEDURE

1

1

0

FK : K̂ → K and FK ′ : K̂ → K ′

K
K ′K̂

K̂ ′

K̂
FK � K

�
�

�

FK ′

�
K̂ ′

H

�

FK
� K ′

FK ◦ H = FK ′

Figure 3.11: Element maps for K and K′.

Proof: If K = K ′, nothing is to be proved. Let now K ′ ⊂ K with strict inclusion.
Consider the global basis function � i restricted to the element K ′:

�i |K ′ = �i |K |K ′ =
mK∑
j=1

[
T K

]
j i ϕK

j

∣∣∣
K ′
=

mK∑
j=1

[
T K

]
j i

mK ′∑
l=1

[
SK ′K

]
l j ϕK ′

l ,

i. e.
[
T K ′

]
i = SK ′K

[
T K

]
i for all �i ∈ Bkeep. For �i ∈ Binsert, the assertion holds

by definition. �
The S matrices do not depend on the exact geometry of the elements but only on

the topology and the subdivision ratio.

Proposition 3.30 (S matrix in reference situation) Let K̂ ′ ⊂ K̂ be the result of
a refinement of the reference element K̂ with H : K̂ → K̂ ′ the subdivision map
(see Figure 3.11). The element maps are FK : K̂ → K and FK ′ : K̂ → K ′ and

FK ′ ◦ H−1 = FK (3.31)

holds. Then, S K̂ ′ K̂ = SK ′K .

Proof: The local element shape functions and the reference element shape func-
tions are connected by the element map:

ϕK
j ◦ FK = Nj ,

ϕK ′
j ◦ FK ′ = Nj .

(3.32)

75

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

Using Definition 3.28:

ϕK
j

∣∣∣
K ′
=

mK ′∑
l=1

[
SK ′K

]
l j ϕK ′

l .

Taking the local element shape functions back to the reference element K̂ by FK

yields

ϕK
j ◦ FK

∣∣∣
K̂ ′
=

mK ′∑
l=1

[
SK ′K

]
l j ϕK ′

l ◦ FK .

Using (3.31) and (3.32), it follows:

Nj
∣∣
K̂ ′ =

mK ′∑
l=1

[
SK ′K

]
l j Nl ◦ H−1. (3.33)

Comparing (3.33) and the definition of the S matrix S K̂ ′ K̂

N j
∣∣
K̂ ′ =

mK̂ ′∑
l=1

[
SK̂ ′ K̂

]
l j Nl ◦ H−1

concludes the proof. �

Example 3.34 (Examples of Meshes) The meshes in Figure 3.12 can be handled
by the algorithms with T and S matrices presented in this section. The subdivision
ratio used here is σ = 1/2, i. e. the children all have the same size.

Mesh (a) is constructed by a geometric refinement towards the lower left corner.
This mesh is 1-irregular and could also be handled by an algorithm which is able
to eliminate only singly constrained nodes.

Mesh (b) shows a quadrilateral (the top left one) which is refined three times
recursively, i. e. it is divided into 23 · 23 = 64 small quadrilaterals. This can no
longer be handled by an algorithm which is able to handle 1-irregular meshes only.
An S matrix can be applied recursively as it was done for the subdivision algorithm,
though.

The mesh (c) does not look very different to mesh (a) but the constrained nodes
are not just singly constrained. Again, the S matrix has to be applied several times.

76

3.3 GENERIC ASSEMBLY PROCEDURE

(a) 1-irregular mesh, geomet-
ric refinement towards
lower left corner.

(b) 3 uniform refinements of
top left quadrilateral, not
1-irregular.

(c) Geometric refinement of
the top right quadrilateral
towards its top left corner.
Not 1-irregular.

Figure 3.12: Different meshes which can be handled by applying the S matrices recursively.

10

Ĵ

Ĵ ′ Ĵ �

Figure 3.13: One dimensional reference element with left and right child.

3.3.5 Generation of S Matrices

If, in higher dimensions, the reference element shape functions are tensorised one
dimensional reference element shape functions, the S matrices also have a tensor
product structure. Therefore, we only consider reference elements which allow
tensorised element shape functions: quadrilaterals and hexahedra in two and three
dimensions, respectively.

For other element types like triangles or tetrahedra, the S matrices need to be
computed directly by solving a linear system as it is done in one dimension (see
below).

77

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

S Matrix in One Dimension

Let the reference element shape functions {N j } be defined on Ĵ = (0, 1) (c. f.
Figure 3.13). In one dimension, the S matrices can be computed by solving a
linear system. Given the subdivision map G : Ĵ → Ĵ ′, ξ �→ ξ/2, there holds

N| Ĵ ′ = S�
Ĵ ′ Ĵ N ◦ G−1, (3.35)

Evaluating (3.35) in m Ĵ distinct points in the interval [0, 1/2] results in a linear
system which can be solved for S Ĵ ′ Ĵ . The same holds for S Ĵ � Ĵ .

Example 3.36 For the reference element shape functions (c. f. Section 6.3.2)

N j (ξ) =

⎧⎪⎨
⎪⎩

1− ξ j = 1

ξ j = 2

ξ(1− ξ)P1,1
j−3(2ξ − 1) j = 3, . . . , m Ĵ

(3.37)

the S matrices are (m Ĵ = 4):

S Ĵ ′ Ĵ =

⎛
⎜⎜⎝

1/2 1/2 1/4 0
0 1 0 0
0 0 1/4 3/4

0 0 0 1/8

⎞
⎟⎟⎠ and S Ĵ � Ĵ =

⎛
⎜⎜⎝

1 0 0 0
1/2 1/2 1/4 0
0 0 1/4 −3/4

0 0 0 1/8

⎞
⎟⎟⎠ .

Remark 3.38 If the reference element shape functions are hierarchical—like those
given in (3.37)—the S matrices are hierarchical too. Therefore, in a FEM code, it is
only necessary to store the S matrices for the highest occurring polynomial degree.
If only moderate polynomial degrees are used, a computation (and caching) of the
S matrices only when needed is feasible.

S Matrix in Two Dimensions

Only quadrilaterals shall be considered as they allow tensor product reference el-
ement shape functions. The three different subdivisions of a quadrilateral (0, 1) 2

shown in Figure 3.14 are treated. The reference element shape functions are ten-
sorised one dimensional shape functions:

Ni, j = Ni ⊗ Nj . (3.39)

78

3.3 GENERIC ASSEMBLY PROCEDURE

K̂ ′ K̂ �

(a) Vertical.

K̂ ′

K̂ �

(b) Horizontal.

K̂ a K̂ b

K̂ cK̂ d

(c) Into four.

Figure 3.14: Variants of subdividing a quadrilateral.

Consider the vertical subdivision variant in Figure 3.14(a) with the subdivision
map

H : K̂ → K̂ ′, ξ �→
(

ξ1/2
ξ2

)

for the right child K̂ ′. By Definition 3.28, the S matrix S K̂ ′ K̂ is defined as

Ni, j
∣∣
K̂ ′ =

∑
k,l

[
SK̂ ′ K̂

]
(k,l),(i, j) Nk,l ◦ H−1.

Inserting (3.39) into this yields

(
Ni ⊗ Nj

)∣∣
K̂ ′ =

∑
k,l

[
SK̂ ′ K̂

]
(k,l),(i, j) (Nk ⊗ Nl) ◦ H−1. (3.40)

The S matrices for the one dimensional reference element shape functions used
in (3.40) are

Ni | Ĵ ′ =
∑
m

[
S Ĵ ′ Ĵ

]
mi Nm ◦ G−1 for the ξ1 part and

Nj =
∑

n

[I]nj Nn for the ξ2 part.

Note that the ξ2 part is not refined and therefore, the S matrix is the identity matrix

79

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

I. Plugging this into the left hand side of (3.40) gives:

(
Ni ⊗ Nj

)∣∣
K̂ ′ = Ni | Ĵ ′ ⊗ Nj =

∑
m,n

([
S Ĵ ′ Ĵ

]
mi Nm ◦ G−1

)
⊗ (

[I]nj Nn
)

=
∑
m,n

[
S Ĵ ′ Ĵ

]
mi · [I]nj Nm ◦ G−1 ⊗ Nn

comparing with the right hand side of (3.40)

=
∑
k,l

[
SK̂ ′ K̂

]
(k,l),(i, j) Nk ◦ G−1 ⊗ Nl

results in (using the definition of matrix tensor products of Fiedler [52]):

SK̂ ′ K̂ = S Ĵ ′ Ĵ ⊗ I for the left quadrilateral K̂ ′.

The right child K̂ � in the vertical subdivision variant has the S matrix

SK̂ � K̂ = S Ĵ � Ĵ ⊗ I.

Similarly, the children of the horizontal subdivision variant in Figure 3.14(b) have

SK̂ ′ K̂ = I⊗ S Ĵ ′ Ĵ for the bottom quadrilateral K̂ ′ and

SK̂ � K̂ = I⊗ S Ĵ � Ĵ for the top quadrilateral K̂ �.

It remains to compute the S matrices for the subdivision into four children as
in Figure 3.14(c). Since only the topology and the subdivision ratio influences the
S matrix, the subdivision of K̂ into the four children K̂ a , K̂ b, K̂ c and K̂ d can
be constructed by subdividing K̂ horizontally into two children and subdividing
both children vertically into two children. This is reflected by concatenating the S
matrices of the two subdivision processes above:

SK̂ d K̂ =
(
S Ĵ ′ Ĵ ⊗ I

) · (I⊗ S Ĵ � Ĵ

)
, SK̂ c K̂ =

(
S Ĵ � Ĵ ⊗ I

) · (I⊗ S Ĵ � Ĵ

)
,

SK̂ a K̂ =
(
S Ĵ ′ Ĵ ⊗ I

) · (I⊗ S Ĵ ′ Ĵ
)
, SK̂ b K̂ =

(
S Ĵ � Ĵ ⊗ I

) · (I⊗ S Ĵ ′ Ĵ
)
.

80

3.3 GENERIC ASSEMBLY PROCEDURE

Figure 3.15: Subdivision variants for a hexahedron in three dimensions.

Remark 3.41 It is possible to simplify the above results for the S matrices of the
subdivision into four children. For instance,

SK̂ c K̂ = S Ĵ � Ĵ ⊗ S Ĵ � Ĵ ,

but the original formulation has a much simpler implementation: A matrix tensor
product where one factor is an identity matrix is easier to implement than a general
matrix tensor product and the computational efficiency is not spoiled. This is so,
especially, if only the application of the whole product is sought.

S Matrix in Three Dimensions

With the same idea which was used to derive the two dimensional S matrices, the S
matrices in three and higher dimensions can be derived from the one dimensional
S matrices with matrix tensor products.

In three dimensions, the S matrices for the subdivision shown in Figure 3.15 into
two (three variants), four (three variants) or eight children take the form

SK̂ ′ K̂ =
∏(

A ⊗ B ⊗ C
)
.

In each of the factors of the above product, exactly one of A, B or C is a ‘one
dimensional’ S matrix; the other two are identity matrices. A subdivision into two
children results in one factor, into four children gives two factors and into eight
children yields three factors in the above product.

81

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

3.3.6 Complexity Estimates

The S and T matrices make local refinements possible. This flexibility has to be
paid for by a higher computational cost for the entries of the T matrices of elements
in irregular parts of the mesh. We show how expensive these computations are in
case of geometric vertex and edge meshes. Experiments in Section 3.4 confirm
these results and approve the conjecture that the computation of the T matrices is
the most expensive part in building an hp-FE space.

To compute the costs in the whole mesh, we first look a single application of an
S matrix:

Lemma 3.42 (Complexity of the application of an S matrix) The complexity t S

of the application of an S matrix to a column of the T matrix is:

• tS = O(p2) in one dimension,

• tS = O(p) · t (A) in two dimensions for an S matrix of the form A⊗ I, where
t (A) is the complexity for the application of the one dimensional S matrix A,

• tS = O(p2) · t (A) in three dimensions for an S matrix of the form A⊗ I⊗ I.

In three dimensions, the complexity of the application of an S matrix to one column
of the T matrix is O(p4).

Proof: In one dimension, the S matrices are nearly upper triangular (c. f. Exam-
ple 3.36) and of size p× p. Therefore, the matrix-vector product costs t S = O(p2).

In two dimensions, a T column is of size p2. In tensor product notation, each
part of size p is applied to a one dimensional S matrix (costing t (A)). Therefore,
tS = O(p) · t (A). The same argument applies for the p 2 parts of size p of a T
column in three dimensions. �

Proposition 3.43 (Creation of all T matrices in a geometric mesh)
Let (T n, pn) be a three dimensional geometric mesh-degree combination with n
layers generated by Algorithm 3.3 and the maximal polynomial degree p propor-
tional to n: p = �mn�. Then, the creation of the T matrices for all elements costs
tT = O(p7) and tT = O(p8), in a geometric vertex and geometric edge mesh,
respectively.

Proof: The number of layers n is equal to the maximal polynomial degree p in the
mesh-degree combination (T n, pn).

82

3.4 NUMERICAL EXPERIMENTS

In elements without hanging nodes, the T matrix is computed in O(p 3). There-
fore, consider elements with hanging nodes. In an element with hanging nodes,
there are O(p2) T columns modified via an S matrix with costs of O(p 4). In a geo-
metric vertex mesh, there are p layers, therefore, t T = O(p2+4+1). In a geometric
edge mesh, there are p layers and levels, therefore, t T = O(p2+4+2). The number
of elements per layer is bounded by L 0 independently of p (c. f. Proposition 2.28).
�

Remark 3.44 We do not consider geometric boundary layer meshes as there are
no hanging nodes in such a mesh (c. f. Figures 3.1 and 3.24).

3.4 Numerical Experiments

In the first numerical experiments, we compare the measured run-time costs with
the complexity estimates given in Section 3.3.6. Then, some convergence results
for the reaction diffusion equation in two and three dimensions are presented.

3.4.1 Run-Time Cost Analysis

Figures 3.16 and 3.17 show plots of the run-time costs of the hp-FE space gen-
eration algorithm and the stiffness matrix generation. The time measurements are
plotted versus the number of degrees of freedom (short ‘ndof’) and the number
of layers (up to 15) for three different meshes in the unit cube D = (0, 1) 3: a
geometric vertex mesh (c. f. Figure 3.3), a geometric edge mesh (c. f. Figure 3.2
on the right) and a geometric boundary layer mesh (c. f. Figure 3.1 on the right).
The former two are irregular meshes while the latter is a regular mesh (no hanging
nodes).

The plots in Figure 3.16 show the run-time costs of the two most expensive parts
of the hp-FE space generation algorithm (element creation including T matrix gen-
eration and the topological searches, c. f. Algorithm 6.3) and its total time. There
are more tasks in the hp-FE space generation algorithm than the two analysed here
but their run-time cost is barely noticeable compared to the computation of the T
matrices.

More precise estimates on the asymptotic behaviour of the run-time as shown
in Figure 3.16) can be found in Table 3.1: It shows an estimate for the order of
complexity of the most expensive part of the hp-FE space generation algorithm,

83

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

10-1

100

101

102

103

104

102 103 104 105 106

tim
e

[s
]

ndof = N

10-1

100

101

102

103

104

102 103 104 105 106

tim
e

[s
]

ndof = N

10-1

100

101

102

103

104

102 103 104 105 106

tim
e

[s
]

ndof = N

10-1

100

101

102

103

104

 16 10 8 4 2

tim
e

[s
]

number of layers = p

10-1

100

101

102

103

104

 16 10 8 4 2

tim
e

[s
]

number of layers = p

10-1

100

101

102

103

104

 16 10 8 4 2

tim
e

[s
]

number of layers = p

Figure 3.16: Run-time cost analysis of the hp-FE space generation algorithm plotted versus number of
degrees of freedom (top) and number of layers (bottom). Plotted are the total space build
time (dotted line), topological searches (dashed line) and creation of elements and T ma-
trices (solid line) for three different meshes: vertex mesh (+, left plots), edge mesh (�,
middle plots) and boundary layer mesh (©, right plots).
The dash-dotted lines show O(N2.4) and O(p7) for the vertex mesh (+, left plots) and
O(N1.8) and O(p8) for the edge mesh (�, middle plots) respectively for the number of
degrees of freedom N and the number of layers n (which is equal to the maximal polyno-
mial degree p).

the creation of elements and T matrices (the solid line in Figure 3.16). To estimate
the order, we use the Ansatz t (x) = α · x β where t (x) is the run-time of the
algorithm and x is either the number of layers (= highest polynomial degree) p or
the number of degrees of freedom N . Then,

β = log t (x2)− log t (x1)

log x2 − log x1
.

The values of β of the boundary layer mesh are not very meaningful as the algo-
rithm is still in its pre-asymptotic range for the values of N and p shown.

The results in Table 3.1 comply with the theoretical estimates of the complexity
of the creation of all T columns in Proposition 3.43, namely O(p7) and O(p8) for
the geometric vertex and edge mesh respectively.

84

3.4 NUMERICAL EXPERIMENTS

β N t [s] p β

2.442 5706 49.090 10 7.734
2.287 7716 102.600 11 7.354
2.340 10207 194.570 12 7.641
2.327 13256 358.680 13 7.715
2.215 16947 635.370 14 7.446

21371 1062.089 15

β N t [s] p β

1.873 23841 137.110 10 8.539
1.818 36813 309.430 11 8.359
1.847 54916 640.410 12 8.561
1.825 79571 1270.779 13 8.521
1.792 112455 2389.701 14 8.422

155519 4272.718 15

β N t [s] p β

1.426 61080 2.159 10 7.839
1.469 103140 4.559 11 8.141
1.575 167041 9.260 12 8.793
1.663 261158 18.719 13 9.349
1.708 396135 37.429 14 9.666

585278 72.920 15

Table 3.1: Estimates for the order of complexity of the algorithm for the creation of elements and T
matrices with respect to the number of degrees of freedom N in the left hand part of each
table and the number of layers p in the right hand part. The top left and top right tables show
the numbers of the vertex and edge mesh respectively. The bottom table shows the numbers
of the boundary layer mesh. The time t is measured in seconds (information on the CPU
used and how the time measurements are conducted are given in Section7.3).

10-1

100

101

102

103

104

105

101 102 103 104 105 106

tim
e

[s
]

ndof = N

10-1

100

101

102

103

104

105

 16 10 8 4 2

tim
e

[s
]

number of layers = p

Figure 3.17: Run-time cost analysis of the hp-FE space generation algorithm and stiffness matrix com-
putation plotted versus number of degrees of freedom (left) and number of layers (right).
Plotted are the total space build time (solid line) and the time for the stiffness matrix gen-
eration (dashed line) for three different meshes: vertex mesh (+), edge mesh (�) and
boundary layer mesh (©).

85

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

To give an impression how the run-time costs for the hp-FE space generation
relate to other typical tasks in a FE simulation, Figure 3.17 shows a comparison of
the run-time costs of the space generation with the integration and assembling of
the stiffness matrix ∫

D
∇u · ∇v dx.

The stiffness matrix evaluation takes about ten times longer on an irregular mesh—
on a regular mesh, the difference is even more pronounced.

3.4.2 Reaction Diffusion Equation

In this section, some numerical results of the reaction diffusion equation (intro-
duced in Section 1.3.1) in two and three dimension are shown.

The convergence graphs are shown in the relative energy error versus a power
of the number of degrees of freedom (short ‘ndof’). If a(. , .) is symmetric, the
energy error satisfies [106]:

‖uexact − uN‖2
E = a(uexact − uN , uexact − uN)

= a(uexact − uN , uexact)− a(uexact − uN , uN)︸ ︷︷ ︸
=0

Galerkin orthogonality (1.6)

= a(uexact, uexact)− a(uN , uexact)︸ ︷︷ ︸
=l(uN)=a(uN ,uN)

= ‖uexact‖2
E − ‖uN ‖2

E ,

where uN = ��u is the Finite Element solution and ‖u exact‖2
E is known exactly

(by symbolic integration performed by Mathematica or an overkill computation
using the same program). ‖u N‖2

E = a(uN , uN) where a(. , .) is the bilinear form
associated to the problem is computed by a(u N , uN) = u�Au. In the plots, the
relative energy error

‖uexact‖2
E − ‖uN‖2

E

‖uexact‖2
E

(3.45)

is shown.

86

3.4 NUMERICAL EXPERIMENTS

Two Dimensions

The problem solved in the following to sections is always

−a�u + cu = f in D ⊂ R
2,

u = 0 on �D,

∂u

∂n
= g on �N

on various domains D and with various sets of data a, c, f and g.

Problem with a Boundary Layer The domain D is the unit square (0, 1)2, c. f.
Figure 3.18 and �N = ∅, �D = ∂ D. The right hand side f and the reaction coeffi-
cient c are chosen to be 1. The diffusion coefficient a is chosen much smaller than
1. This results in a boundary layer with a thickness of O(

√
a) near the Dirichlet

boundary �D [83, 98]:

−a�u + u = 1 in D = (0, 1)2 ⊂ R
2,

u = 0 on ∂ D.

Figures 3.19 and 3.20 show the convergence histories of the relative energy error
(3.45) with a = 10−2 and a = 10−12 respectively. In the latter case, the energy of
the exact solution is taken to be 1 as the boundary layer is thin: the error introduced
by this is estimated to be of order

√
10−12 = 10−6 which is much smaller than the

achieved accuracy of order 10−4.

Remark 3.46 Both convergence plots in Figures 3.19 and 3.20 give the conver-
gence in log– 4

√
. scale although Proposition 2.33 predicts that the error was of the

order O(exp(−bN 1/3)). However, this is no longer true for boundary layer meshes,
where the number of degrees of freedom N behaves like O(p4) because of the lay-
ers and levels in the edge and corner neighbourhood (c. f. the situation in three
dimensions described in Section 2.3).

Singular Behaviour of the Solution The domain D is the L shaped domain
(−1, 1)2 \ (0, 1)× (−1, 0), c. f. Figure 3.21 for the partitioning of ∂ D into �D and

87

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

14 24 34 44 54 64 74 84 94

re
la

tiv
e

en
er

gy
 e

rr
or

ndof
Figure 3.18: Geometric boundary layer mesh in

the unit square generated using Al-
gorithm 3.2 with all edges marked
as singular. The (anisotropic) degree
pK is linearly distributed with m = 1.

Figure 3.19: Convergence of the relative energy er-
ror versus number of degrees of free-
dom in log– 4√. scale for the boundary

layer problem with a = 10−2: the
straight line shows exponential con-
vergence.

10-4

10-3

10-2

10-1

100

04 24 44 64 84 104 124

re
la

tiv
e

en
er

gy
 e

rr
or

ndof

�D

�N

�N

�N

�N

D

Figure 3.20: Convergence of the relative energy er-
ror versus number of degrees of free-
dom in log– 4√. scale for the boundary

layer problem with a = 10−12: the
straight line shows exponential con-
vergence.

Figure 3.21: Boundary conditions for the L shaped
domain.

88

3.4 NUMERICAL EXPERIMENTS

10-5

10-4

10-3

10-2

10-1

03 23 43 63 83 103 123 143

re
la

tiv
e

en
er

gy
 e

rr
or

ndof
Figure 3.22: Geometric vertex mesh in the L

shaped domain generated using Al-
gorithm 3.2 with the reentrant corner
marked as singular. The (isotropic)
degree pK is linearly distributed with
m = 1.

Figure 3.23: Convergence of the relative energy er-
ror versus number of degrees of free-
dom in log– 3√. scale for the two di-
mensional problem with a singular-
ity: the straight line shows exponen-
tial convergence.

�N . The right hand side f and the reaction coefficient c are chosen to be 0. With
the following Neumann boundary conditions

∂u

∂n
= 2

3r 4/3

[(
x
y

)
sin(2/3ϕ)+

(−y
x

)
cos(2/3ϕ)

]
. on �N ,

the problem −�u = 0 in the L shaped domain D has the exact solution u =
r 2/3 sin(2/3ϕ), where (r, ϕ) are the polar coordinates with respect to the origin. The
mesh and the convergence history are shown in Figures 3.22 and 3.23 respectively.

Three Dimensions

As in two dimensions, the following problem is solved:

−a�u + cu = f in D ⊂ R
2,

u = 0 on �D,

∂u

∂n
= g on �N

on different domains D and with different data a, c, f and g.

89

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X Y

Z

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

05 25 45 65 85 105 125 145

re
la

tiv
e

en
er

gy
 e

rr
or

ndof

Figure 3.24: Geometric boundary layer mesh in
the unit cube generated using Algo-
rithm 3.2 with the sides marked as
singular. The (anisotropic) degree
pK is linearly distributed with m = 1.

Figure 3.25: Convergence of the relative energy er-
ror versus number of degrees of free-
dom in log– 5√. scale for the three di-
mensional boundary layer problem:
the straight lines shows exponential
convergence.

Problem with a Boundary Layer The domain D is the unit cube (0, 1)3, c. f.
Figure 3.24 and �N = ∅, �D = ∂ D. The right hand side f and the reaction coeffi-
cient c are chosen to be 1. The diffusion coefficient a is chosen much smaller than
1. This results in a boundary layer with a thickness of O(

√
a) near the Dirichlet

boundary �D [83, 98]:

−a�u + u = 1 in D = (0, 1)3 ⊂ R
3,

u = 0 on ∂ D.

Figure 3.25 shows the convergence with a = 10−2 while Figure 3.24 shows the
mesh.

Singular Behaviour of the Solution (Vertex Singularity) The problem in three
dimensions is similar to the problem with the singularity in two dimensions. The
domain D is the Fichera corner (−1, 1)3 \ (−1, 0)3. The reentrant corner (located
at the origin) is marked as singular since it is known that the exact solution

u = √r sin(ϕ) sin(θ)

90

3.4 NUMERICAL EXPERIMENTS

-1

-0.5

0

0.5

1

X

-1

-0.5

0

0.5

1

Z

-1

-0.5

0

0.5

1

Y

X

Y

Z

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

24 44 64 84 104 124 144 164

re
la

tiv
e

en
er

gy
 e

rr
or

ndof

Figure 3.26: Geometric vertex mesh in the Fichera
corner generated using Algorithm 3.2
with the reentrant corner marked as
singular. The (isotropic) degree pK
is linearly distributed with m = 1.

Figure 3.27: Convergence of the relative energy er-
ror versus number of degrees of free-
dom in log– 4√. scale for the three di-
mensional problem with a vertex sin-
gularity: the straight line shows expo-
nential convergence.

has a singularity there. The coordinates (r, ϕ, θ) are the usual spherical coordinates
with respect to the origin.

The problem solved is

−�u + u = √r sin(ϕ) sin(θ)

(
1+ 5

4x2

)
in D = (−1, 1)3 \ (−1, 0)3,

∂u

∂n
=

⎛
⎜⎜⎝

sin(θ) sin(ϕ)

2
√

r
cos(θ) sin(ϕ)√

r
cos(ϕ)√

r

⎞
⎟⎟⎠ on �N ,

u = 0 on �D,

where only the quadrilateral with the corners (0, 0,−1), (−1, 0,−1), (−1, 0, 0)

and (0, 0, 0) has the homogeneous Dirichlet boundary condition. The mesh and
the convergence history are shown in Figures 3.26 and 3.27 respectively.

Remark 3.47 Figure 3.27 gives the convergence history in log– 4
√

. scale although

Proposition 2.69 states that the error should be of the order O(exp(−bN 1/5)).
However, there are no edge singularities in this problem. Therefore, there are no

91

3 ALGORITHMIC REALIZATION OF hp-FINITE ELEMENT SPACES IN R
3

layers and levels in the corner and edge neighbourhood, i. e. the number of degrees
of freedom is of order O(p4).

92

Part II

Applications

4 Maxwell’s Equations

Maxwell’s equations are used for modelling electro-magnetic wave phenomena.
The main physical quantities in Maxwell’s equations are the electric and magnetic
fields. There are problems where they can have unbounded singularities (c. f. the
numerical experiments in Section 4.3). For this reason, the numerical treatment
of Maxwell’s equations was classically done using Nédélec’s edge elements [87,
88]. However, implementing such elements is not trivial. In addition, proving
p- or hp-convergence for Nédélec’s edge element approximations is still an open
problem in three dimensions (the two dimensional case is studied in [5]). Recently,
Costabel and Dauge have introduced the weighted regularisation to overcome both
problems [29]. New results show that hp-FEM with weighted regularisation are
able to resolve Maxwell problems at an exponential rate of convergence [31, 32]—
we give numerical evidence for these results.

This chapter briefly reviews the weighted regularisation for Maxwell’s equations
in its second section. The first section reviews the variational formulation already
presented in Section 1.3.3. The final section shows numerical results in various
domains in two and three dimensions. There, numerical evidence is given for the
conjectured exponential convergence of the Eigenvalues in terms of degrees of
freedom.

95

4 MAXWELL’S EQUATIONS

4.1 Time Harmonic Maxwell’s Equations

The time harmonic Maxwell’s Equations are given in Section 1.3.3. Formally, the
electric source problem reads (1.24)

curl(µ−1 curl E)− ω2
(
ε + σ

iω

)
︸ ︷︷ ︸

=:ε̃

E = −iw J,

div εE = 0.

(4.1)

Eigensolutions of the electric problem (4.1) are found for J ≡ 0 and σ = 0:

curl(µ−1 curl E)− ω2εE = 0. (4.2)

The variational formulation for the electric source problem reads:
Find E ∈ H0(curl; D) such that
∫

D

(
µ−1 curl E ·curl v−ω2ε̃E ·v) dx =

∫
D

f ·v dx ∀v ∈ H0(curl; D), (4.3)

where

H (curl; D) := {u ∈ L2(D)d : curl u ∈ L2(D)d },

with the perfect conductor boundary conditions (1.28):

H0(curl; D) := {u ∈ H (curl; D) : u × n = 0 on ∂ D}. (4.4)

4.2 Weighted Regularisation

A well-known strategy for Finite Element computations of the Maxwell Eigenfre-
quencies is the use of ‘spurious-free’ elements whose classical representatives are
the two families of Nédélec’s edge elements [87, 88]. There are also good reasons
why one may prefer a discretisation of the Maxwell problem which uses standard
and widely used elements like nodal elements. In this case, the compatibility con-
ditions between neighbouring elements are point-wise and scalar as opposed to

96

4.2 WEIGHTED REGULARISATION

tangential and vector valued in the Nédélec case. The idea [67, 79] is to penalise
the divergence by adding (assume ε constant)∫

D
div u div v dx

to the variational form and introducing the variational space

Xn := {u ∈ H0(curl; D) : div u ∈ L2(D)}. (4.5)

This method has drawbacks in domains with reentrant corners [27, 28, 30]: it does
not capture the correct solution. The new idea developed in [29] is to introduce
intermediate spaces Xn[Y] between (4.4) and (4.5) coupled with the corresponding
modification of the bilinear form in (4.3), such that the space Hn := H 1(D)d is
dense in Xn[Y], the associated operator is elliptic and the solution in X n[Y] of the
new problem coincides with that of (4.1) (the proof is given in [29], Section 2.1).

The new bilinear form with weighted regularisation is

aY (u, v) :=
∫

D

(
µ−1 curl u · curl v − ω2ε̃u · v) dx + 〈div u, div v〉Y (4.6)

where Y is a space such that Hn is dense in

Xn[Y] := {u ∈ H0(curl; D) : div u ∈ Y },
‖u‖2

Xn[Y] := ‖curl u‖2
L2(D)d + 〈div u, div u〉Y + ‖u‖2

L2(D)d

and L2(D) ⊂ Y ⊂ H−1(D). Therefore, it suffices to concentrate on weighted L 2

spaces:
{ϕ ∈ L2

loc(D) : wϕ ∈ L2(D)}
with a weight w ∈ C∞(D). aY (u, v) is a continuous, coercive bilinear form for
ω = 0. Therefore, the source problem (4.3) with the bilinear form aY (u, v) fits
into the general framework of Section 1.1.

A simple choice for the weight w in three dimensions is

w = dist
(

x,
⋃
c∈C

c ∪
⋃
e∈E

e
)
. (4.7)

Other formulations for the weight w are possible, as long as they are norm-equiva-
lent to (4.7) (c. f. Section 4.2.1 below). Most importantly, it is possible to limit the
weight to 1 far away from singularities.

97

4 MAXWELL’S EQUATIONS

Plugging the weight into (4.6) yields

〈div u, div v〉Y =
∫

D
w2 div u·div v dx =

∫
D

dist
(

x,
⋃
c∈C

c∪
⋃
e∈E

e
)2

div u·div v dx

for the simple weight (4.7).
The Maxwell Eigenproblem is solved combing (4.2), (4.3) and (4.6):

Find frequencies ω and functions 0 �= E ∈ X n[Y] such that
∫

D
µ−1 curl E · curl v dx + 〈div E, div v〉Y = ω2

∫
D

εE · v dx ∀v ∈ Xn[Y].
(4.8)

(4.8) is a real Eigenproblem if the conductivity σ = 0, i. e. there are only insula-
tors in the domain D. If X n[Y] ⊂ L2(D)d = H is a compact embedding, we can
conclude that (4.8) fits into the setting of Section 1.3.4. However, the compactness
of Xn[Y] in L2(D)d is not straight forward—it is discussed in Section 4.2.1 below.

Remark 4.9 (4.8) can be solved using standard nodal FEM in each component of
the solution E which discretise Hn. If the boundary consists only of axi-parallel
planes, the perfect conductor boundary conditions (1.28) can be applied as care-
fully chosen Dirichlet boundary conditions to each of the three components of
Hn = H 1(D)3. The same applies to a two dimensional polygon with axi-parallel
edges.

According to [29], Hn
dense⊂ Xn[Y]. Therefore, using standard Finite Element

functions u N ∈ VN = S
p,1
�D

(T , D)3 can be used to approximate functions in
Xn[Y]. Suitable refinements of VN generate convergent series of Galerkin approx-

imations. Assuming Xn[Y]
compact⊂ L2(D)d , this implies that also Eigenvalues and

Eigenfunctions of (4.8) can be approximated and the FE approximations converge
to the true solution.

On the other hand, convergence of Nédélec’s edge elements using p- or hp-
extensions is not proven in three dimensions. However, there exists numerical
evidence for such a convergence [4, 33, 44].

4.2.1 Selection of Weights in the Weighted Regularisation

In this section, some more details on the weights are presented, following [29].

98

4.2 WEIGHTED REGULARISATION

First, in each of the subdomains introduced in Sections 2.2.1 (two dimensions)
and 2.3.1 (three dimensions) except V 0, a different weight wi should be applied.
In addition, in three dimensions, using the distance function ρ e (blowing up at the
corners), the edges are also isolated from each other. Therefore, the product of
all individual weight functions

∏
wi is equivalent to the weight wi in each of the

subdomains.

Two Dimensional Weights

The domains Va (vicinity of a corner a) and V 0 (regular part) and the distance
function ra(x) = |x − a| referenced in this section are the same as in Section 2.2.1.

The regularity in Va implies [29] that the weight should be chosen as

rγa
a . (4.10)

The exponent γa in (4.10) is

0 ≤ 1− π

ωa
< γa ≤ 1. (4.11)

Therefore, a global weight is

w =
∏
a∈C

rγa
a . (4.12)

The different γ. can be simplified to γmax:

w =
(∏

a∈C

ra

)γmax
. (4.13)

The following, simple weight w is equivalent to (4.12):

w = dist
(

x,
⋃
a∈C

a
)γmax

. (4.14)

Remark 4.15 (Compactness of X n[Y] ⊂ L2(D)d) In the limiting case γa = 1
in (4.11), wγa in (4.10) is polynomial. This property is desired as it makes the
evaluation of w2γa in aY (u, v) less expensive and the numerical integration more
accurate. However, the compactness of the embedding X n[Y] into L2(D)d is lost
for γa = 1 [29]. Therefore, convergence of discrete Eigensolution to the true
solutions can only be asserted for γa < 1.

99

4 MAXWELL’S EQUATIONS

Three Dimensional Weights

The domains V0
c , Ve(c), V0

e , V0 and distance functions rc, re, ρe referenced in this
section are the same as in Section 2.3.1.

The regularity in the different domains V 0
c , V0

e and Ve(c) implies [29] that the
weights should be chosen as

rγc
c in V0

c , rγe
e in V0

e , rγc
c · ργe

e in Ve(c). (4.16)

The exponents γe and γc in (4.16) are

0 ≤ 1−min
x∈e

π

ωe(x)
< γe ≤ 1, 0 ≤ 1/2− λDir

c,1 < γc ≤ 1,

where

λDir
c,±k = −1/2±

√
µDir

k + 1/4

and µDir
k the Eigenvalues of the Laplace-Beltrami operator on G c (c. f. Sec-

tion 2.3.1) with Dirichlet boundary conditions.
To sum up, a global weight is

w =
(∏

c∈C

rγc
c

)
·
(∏

e∈E

ρ
γe
e

)
. (4.17)

(4.17) is equivalent to (4.7). The different γ. can be simplified to γmax:

w =
(∏

c∈C

rc ·
∏
e∈E

ρe

)γmax
. (4.18)

Remark 4.15 also holds in the three dimensional case.

4.2.2 Computation of Weights

In the computation of the div-div element matrix, the weight w 2γ (x) is computed
together with the determinant of the Jacobian of the element map det F ′

K (x) at
every quadrature point. This is used during the numerical integration with the
quadrature rule. The evaluation of the weight w(x) is done by an external routine

100

4.3 NUMERICAL RESULTS

which is given as a template argument to the DivDiv class at compile time.1 This
routine needs as input the cell K and the reference coordinates ξ ∈ K̂ and returns
the value of w at this specific point.

Example 4.19 The simplest weight routine TrivialWeight always returns 1. The
compiler is able to completely eliminate the call to the weight function in this case.
This is for computations without weight. There are two other implementations of a
weight function: ShortestDist implementing (4.7) and ProductOfAll implementing
(4.18) for γmax = 1. In the case of γmax < 1, a post-processing routine nested
around the weight raises w to the given power.

Both ShortestDist and ProductOfAll know about the corners and edges with sin-
gularities and compute the distances to these. In the case of ShortestDist, the
shortest distance is returned and in the case of ProductOfAll, the product of all
distances is returned.

In this way, the spaces Xn[Y] can be implemented easily with good control of
the used weight. It can be concluded from [29] that Xn[Y] with the weight w

given in (4.7) and (4.18) and the sketched implementation satisfy all assumptions
required to capture the correct solutions of Maxwell’s equations in the formulation
(4.8).

4.3 Numerical Results

The numerical results for the benchmark problems [36] of (4.8) are obtained using
using Concepts (c. f. Part III) in two and three dimensions. The actual equation
solved here has an additional parameter s in front of the 〈. , .〉Y -form:
Find frequencies ω and functions 0 �= E ∈ X n[Y] such that∫

D
µ−1 curl E · curl v dx + s〈div E, div v〉Y = ω2

∫
D

εE · v dx ∀v ∈ Xn[Y].
(4.20)

This scaling parameter s > 0 can be chosen arbitrarily—it helps finding spu-
rious Eigenvalues. Physical Eigenfunctions E have div E ≡ 0 and the 〈. , .〉Y -
form disappears from (4.20) whereas spurious (non-physical) Eigenfunctions have

1The template technique lessens the runtime flexibility: The user cannot easily be prompted for an
arbitrary weight to be used. On the other hand, the evaluation of the weight can be highly optimised
by the compiler as all information is there at compile time. This is especially useful in this case as
the weight function is called O(p3) times in each cell K .

101

4 MAXWELL’S EQUATIONS

a non-zero divergence. The spurious Eigenvalues are scaled with this parameter s
whereas the physical Eigenvalues are independent of s.

Besides figures of the domains and meshes, all numerical examples below fea-
ture plots of the convergence of the first three Eigenvalues and a plot of the Eigen-
values versus the scaling parameter s. In the Eigenvalues versus s plots, the Eigen-
values λ = ω2 are categorised with the following criterion using the Eigenfunction
E:

‖ curl E‖2
0

s‖ div E‖2
Y

⎧⎪⎨
⎪⎩
≥ ρ physical Eigenvalue

≤ ρ−1 spurious Eigenvalue

otherwise undecided.

(4.21)

The value used for ρ is 1.5—this gives good results ([37] and our own experience).
The spurious Eigenvalues are lined up on straight lines through the origin in the
Eigenvalue versus s plots whereas the the physical Eigenvalues are lined up on
horizontal lines.

Note that we use γ = 1 in all computations and loose the compactness of
Xn[Y] ⊂ L2(D)d (c. f. Remark 4.15). Nonetheless, in our numerical experiments,
we are able to achieve convergence of the discrete solutions towards the true solu-
tions.

Below, we give numerical evidence for the exponential convergence of hp-
FEM with weighted regularisation to solve Maxwell Eigenvalue problems. Very
recently, Costabel, Dauge and Schwab have been able to prove the exponential
convergence theoretically [31, 32].

4.3.1 Sources of Errors in Eigenvalue Computations

The numerical results presented below are distorted by different errors.

Modelling error

We neglect this error source and take the model to be exact. The goal of the compu-
tations below is not the simulation of some physical phenomenon but studying the
performance of the method and its implementation (verification of the computer
program).

102

4.3 NUMERICAL RESULTS

Discretisation error

Assuming all matrices are known exactly and all matrix Eigenvalue problems are
solved exactly, the estimates in Section 1.3.4 and the Rayleigh Minimax principle
apply for any value of s: λk ≤ λk,N and div E = 0. By refining the hp-FE spaces,
the discretisation error is reduced.

Numerical quadrature error

In all examples in this thesis, the numerical integration in the bilinear and linear
forms is done using a tensor product Gauss Jacobi quadrature rule with p+ 2 inte-
gration points in reference coordinates.2 This enables us to integrate polynomials
of order 2p+ 3 exactly. Assuming an affine element map FK and therefore a con-
stant determinant of the Jacobian in the integration in reference coordinates leaves
us with 2p+ 3− 2p = 3 orders for the integration of the weight (2p is consumed
by the integration of div E · div v).

Non-affine element maps introduce a determinant of the Jacobian into the inte-
gration in reference coordinates which is a rational function and therefore cannot
be integrated exactly by the given rule.

Another source of quadrature errors is a non-polynomial weight w. This hap-
pens for exponents γ �= 1 or weights including a minimum operation (e. g. (4.14)
and (4.7) in two and three dimensions respectively). The polynomial degree of a
product weight (e. g. (4.13) and (4.18) in two and three dimensions respectively) is
(in most cases) too large to be integrated exactly by the given rule.

However, this does not harm the convergence as can seen by a Strang-type argu-
ment [103]: The integration order in large elements far from the edges and vertices
in E and C respectively is increased and the small elements close to E and C are
subdivided.

Eigensolver errors

For reasonably large Eigenproblems, only iterative solvers are feasible. We have
chosen ARPACK [77, 78] in shift-invert mode as our Eigensolver—the linear sys-
tem inside the Eigensolver is solved by Umfpack [38, 39, 40], Pardiso [91] or

2In case of an anisotropic polynomial degree pK , the order of the tensor product quarature rule is also
anisotropic. The sum factorisation technique for efficient evaluation of the numerical integration is
discussed in Section 6.4 (see also [84]).

103

4 MAXWELL’S EQUATIONS

M1

M1

M2

M2

Figure 4.1: L shaped domain (−1, 1)2 \ (0, 1) ×
(−1, 0).

Figure 4.2: Square (−1, 1)2 for the transmission
problem. The areas M1 and M2 are
made of different materials.

SuperLU [45]. ARPACK has a tolerance parameter to test for convergence which
we set to machine precision 2.2 · 10−16. This should eliminate numerical errors in
the Eigenvalue solver as much as possible.

However, ill-conditioned Eigenproblems can still create a large dispersion in the
numerical results. The condition of the Eigenproblem depends on the distance
of the Eigenvalue to the rest of the spectrum of the operator [22]. When a spu-
rious Eigenmode comes close to a physical Eigenmode, the condition number is
large. This is the reason for non-monotonicity in the convergence histories of the
Eigenvalues. Large condition numbers increase the influence of distortions of the
operator which are introduced by inexact numerical integration.

4.3.2 Two Dimensions

The L shaped domain (Figure 4.1) and a square for transmission problems (two
different materials M1 and M2 in a checkerboard pattern, Figure 4.2) are treated.
In both problems, singularities arise. The different materials M 1 and M2 in the
transmission problem are modelled by different dielectricities ε 1 and ε2.

L Shaped Domain

The Maxwell Eigenvalues λ = ω2 coincide with the non-zero Neumann Eigenval-
ues for the Laplace operator. Table 4.1 summarises the results of an overkill com-
putation for the non-zero Neumann Eigenvalues [36]. Note that λ3 = λ4 = π2.

104

4.3 NUMERICAL RESULTS

λ1 λ2 λ3 λ4 λ5
1.47562182408 3.53403136678 9.86960440109 9.86960440109 11.3894793979

Table 4.1: Non-zero Neumann Eigenvalues of the L shaped domain [36].

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

s
Figure 4.3: Geometric vertex mesh in the L shaped

domain refined towards the reentrant
corner.

Figure 4.4: Eigenvalues in the L shaped domain
(ordinate) plotted versus s (abscissa).
For this plot, 15770 degrees of free-
dom are used. The horizontal dashed
lines denote the exact Eigenvalues ac-
cording to Table 4.1.

The first and fifth Eigenfunctions have a strong principal singularity which does not
belong to H 1(D) whereas the second belongs to H 1(D) and the third and fourth
Eigenfunction are even analytic in D.

Figure 4.3 shows a geometric vertex mesh for the L shaped domain with refine-
ment towards the reentrant corner (0, 0). It is generated with the grading factor
σ = 1/2 (c. f. Section 2.2).

Figure 4.4 shows a plot of the Eigenvalues on the ordinate versus different s val-
ues on the abscissa. × denotes spurious Eigenvalues,+ denotes physical Eigenval-
ues and ◦ denotes undecided (none in this case). The categorisation is done using
the criterion (4.21). The Eigenvalues from Table 4.1 are indicated by horizontal
dashed lines. It is clearly visible that the spurious Eigenvalues (×) are lined up on
straight lines through the origin of the plot whereas the physical Eigenvalues (+)
are very close to the horizontal dashed lines.

105

4 MAXWELL’S EQUATIONS

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

03 53 103 153 203 253

re
la

tiv
e

er
ro

r

dof

s = 9
s = 6
s = 2

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

03 53 103 153 203 253

re
la

tiv
e

er
ro

r

dof

s = 9
s = 6
s = 2

Figure 4.5: Convergence of the 1st Eigenvalue in the L shaped domain in log-3√. plot. The plots are
done with m = 1 (left) and m = 1/2 (right).

10-10

10-8

10-6

10-4

10-2

03 53 103 153 203 253

re
la

tiv
e

er
ro

r

dof

s = 9
s = 6
s = 2

10-10

10-8

10-6

10-4

10-2

03 53 103 153 203 253

re
la

tiv
e

er
ro

r

dof

s = 9
s = 6
s = 2

Figure 4.6: Convergence of the 2nd Eigenvalue in the L shaped domain in log-3√. plot. The plots are
done with m = 1 (left) and m = 1/2 (right).

10-10

10-8

10-6

10-4

10-2

03 53 103 153 203 253

re
la

tiv
e

er
ro

r

dof

s = 9
s = 6
s = 2

10-10

10-8

10-6

10-4

10-2

03 53 103 153 203 253

re
la

tiv
e

er
ro

r

dof

s = 9
s = 6
s = 2

Figure 4.7: Convergence of the 3rd Eigenvalue in the L shaped domain in log-3√. plot. The plots are
done with m = 1 (left) and m = 1/2 (right).

106

4.3 NUMERICAL RESULTS

Figures 4.5–4.7 show the convergence history of the first three Eigenvalues for
selected values of s. In each figure, there are two plots: the one on the left hand
side with the classical refinement rule as introduced in Section 3.2 and the one on
the right hand side with a modified refinement rule: only in every second step also
the degrees were increased resulting in a polynomial degree distribution parameter
m = 1/2. The first Eigenvalue (convergence plot in Figure 4.5) has a strong un-
bounded singularity. Nevertheless, the plot in log- 3

√
. scale shows the anticipated

exponential convergence. The second Eigenvalue (convergence plot in Figure 4.6)
has its Eigenfunction in H 1. The convergence is also exponential but much faster.
The third Eigenvalue (convergence plot in Figure 4.7, coinciding with the fourth
Eigenvalue) has an analytic Eigenfunction. The convergence is still exponential in
log- 3

√
. scale but even faster.

It is observed that in Figures 4.5–4.6, the modified refinement rule wins over the
classical refinement rule. However, in Figure 4.7 the classical refinement is seen
to be more beneficial. It is well known that the optimal grading factor σ is close
to 0.15 [63]. A geometrical hp-mesh with the modified refinement rule is closer to
the optimal σ = 0.15 mesh than a mesh created with the classical refinement rule.
The exception in the last case (Figure 4.7, convergence of the third Eigenvalue):
the third and fourth Eigenfunction are known to be analytic. Analytic functions
are best approximated with a p-extension. The classical rule is closer to the p-
extension than the modified rule and therefore results in a faster convergence.

Transmission Problem

The transmission problem in the square (−1, 1)2 (c. f. Figure 4.2) features a sin-
gularity in the centre of the domain and jumps of the normal components over the
interfaces between the different materials M1 and M2. The materials M1 and M2
are modelled by different dielectricities ε1 �= 1 and ε2 = 1. Below, we present the
three cases ε1 = 1/2, ε1 = 10−2 and ε1 = 10−8.

The same Eigenvalues as for the Maxwell Eigenproblem can be computed by
the following Eigenproblem [36]:
Find frequencies ω and functions 0 �= u ∈ H 1(D) such that

∫
D

1/ε∇u · ∇v dx = ω2
∫

D
uv dx ∀v ∈ H 1(D). (4.22)

Using (4.22), the Eigenvalues λ = ω2 summarised in Table 4.2 can be computed.

107

4 MAXWELL’S EQUATIONS

ε1 = 1/2 ε1 = 10−2 ε1 = 10−8

λ1 3.3175487634 4.89319332489 4.9348021587
λ2 3.3663241572 7.20667542249 7.2252112326
λ3 6.1863895624 15.53698165311 24.6740046478
λ4 13.9263233310 24.46225024727 24.6740107936
λ5 15.0829909612 24.48745601340 24.6740108178

Table 4.2: Non-zero Neumann Eigenvalues of the transmission problem with different ε1 and ε2 = 1,
solved via (4.22) [36].

The use of the weighted regularisation in order to take the jumps into account
cannot be validated, because the exponent γ of the weight w has to satisfy two
incompatible conditions [37]:

• Compactness of Hn ⊂ Xn[Y]. In order that the number of spurious modes
does not tend to infinity as the mesh is refined, γ < 1 is required.

• Density of Hn ⊂ Xn[Y]. For the transmission problem only, to ensure the
approximation of the solutions, γ > 1 is required.

A possible solution is to use so-called node doubling at the interface and enforce
the conditions between the different materials with additional constraints. These
constraints are [70]:

• The tangential component of the electric field has to be continuous over the
interface.

• The normal component of the electric field has to satisfy

(El · nl)εl + (Er · nr)εr = 0, (4.23)

i. e. when εl = εr , the continuity of the normal component is enforced (ε l

and εr take the values of ε1 and ε2 depending on which interface we are
looking at). Here, nl and nr are the outward unit normal vectors, and E l and
Er are the electric field on the interface from the left and right respectively.

At the origin of the domain, where the four subdomains meet, the conditions
over the four interfaces for the normal and the tangential component should
not be inforced individually3 but as a sum [70].

3This would result in enforcing the Eigenfunction to be zero at the origin.

108

4.3 NUMERICAL RESULTS

This Ansatz introduces a set of homogeneous, linear constraints to the Eigenvalue
problem. A constrained matrix Eigenvalue problem can be solved using a QR
factorisation of the matrix of constraints [62].

As before, plots of the Eigenvalues versus the scaling parameter s are shown. In
these plots, × denotes spurious Eigenvalues, + denotes physical Eigenvalues and
◦ denotes undecided. The categorisation is done using the criterion (4.21). Ad-
ditionally, the Eigenvalues shown in Table 4.2 are indicated by horizontal dashed
lines.

Basic Weighted Regularisation ε1 = 1/2 is the easiest case with respect to the
size of the jumps at the interfaces. We try to compute the first two Eigenvalues with
basic weighted regularisation using the weight w = min (|x | , |y|) accomodating
for the jumps at the interfaces and the (possible) singularities at the origin.

Figures 4.10–4.11 show the convergence history of the basic weighted regulari-
sation method (without node doubling). Figure 4.8 shows the geometric edge mesh
in the transmission domain D = (−1, 1)2. The refinement towards the interfaces
between the different materials should enable the method to resolve the jump in
the normal component of the solution. The number of spurious Eigenvalues is—as
predicted—unbounded for increasing number of mesh layers n (c. f. Figure 4.9).
The convergence is not very good, however, the method seems to be able to find
the correct Eigenvalues, at least in the pre-asymptotic range.

Weighted Regularisation with Node Doubling at the Interfaces We compute
the first three Eigenvalues for the values of ε1 = 1/2, 10−2 and 10−8. In addition
to the results of the weighted regularisation, we present results of an edge element
code4 [3, 76] and the results of the equivalent problem (4.22) both on the same
mesh5 as the weighted regularisation computations (c. f. Figure 4.12).

Figure 4.13 shows the Eigenvalues computed with the weighted regularisation
for the different values of ε1. The number of spurious Eigenvalues is no longer
unbounded and the spurious and physical Eigenvalues are separated more clearly.
The plots in Figures 4.14–4.16 show the convergence histories for the first three
Eigenvalues: The weighted regularisation with node doubling is able to resolve the
Eigenvalues at an exponential rate of convergence—in most cases (see below). In

4The implementation of hp-edge elements in Concepts is due to Kersten Schmidt.
5This means we are using the same refinements and same polynomial degrees in all three cases. The

spaces and the number of degrees of freedom N are different in all three cases.

109

4 MAXWELL’S EQUATIONS

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20

s
Figure 4.8: Geometric edge mesh towards the in-

terfaces in the transmission domain
D = (−1, 1)2.

Figure 4.9: Weighted regularisation without node
doubling in a geometric edge mesh
(20766 degrees of freedom). Eigen-
values in the transmission domain
D = (−1, 1)2 (ordinate) plotted ver-
sus s (abscissa) for ε1 = 1/2. The
Eigensolver computes only Eigenval-
ues above 3 via the shift-invert method.

10-6

10-5

10-4

10-3

10-2

10-1

24 44 64 84 104 124

re
la

tiv
e

er
ro

r

ndof

s = 10
s = 6
s = 2

Figure 4.10: Convergence of the 1st Eigenvalue in
the transmission domain with ε1 =
1/2 in log- 4√. scale computed with the
weighted regularisation without node
doubling at the interface.

10-6

10-5

10-4

10-3

10-2

10-1

24 44 64 84 104 124

re
la

tiv
e

er
ro

r

ndof

s = 10
s = 6
s = 2

Figure 4.11: Convergence of the 2nd Eigenvalue in
the transmission domain with ε1 =
1/2 in log- 4√. scale computed with the
weighted regularisation without node
doubling at the interface.

110

4.3 NUMERICAL RESULTS

Figure 4.12: Geometric vertex mesh towards the origin in the transmission domain D = (−1, 1)2.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

s

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

s

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

s

Figure 4.13: Eigenvalues in the transmission domain D = (−1, 1)2 (ordinate) plotted versus s (ab-
scissa) computed with node doubling at the interface for ε1 = 1/2 (left), 10−2 (middle)
and 10−8 (right). The horizontal dashed lines denote the exact Eigenvalues according to
Table 4.2. 7680 degrees of freedom are used for these plots.

addition to the weighted regularisation, the plots also show the results of the edge
element code and the equivalent problem (4.22).

Choice ε1 = 1/2 All three methods show exponential convergence for the first
three Eigenvalues in the left plots of Figures 4.14–4.16. The exponential rate of
convergence of the weighted regularisation and the edge elements is the nearly the
same for the first two Eigenvalues.

Choice ε1 = 10−2 The edge elements and the equivalent problem show ex-
ponential convergence for the first three Eigenvalues in the middle plots of Fig-

111

4 MAXWELL’S EQUATIONS

10-12

10-10

10-8

10-6

10-4

10-2

43 63 83 103 123 143 163 183 203

re
la

tiv
e

er
ro

r

ndof

weighted reg., s = 6
edge elements

equivalent problem

10-12

10-10

10-8

10-6

10-4

10-2

43 63 83 103 123 143 163 183 203

re
la

tiv
e

er
ro

r

ndof

weighted reg., s = 2
edge elements

equivalent problem

10-12

10-10

10-8

10-6

10-4

10-2

43 63 83 103 123 143 163 183 203

re
la

tiv
e

er
ro

r

ndof

weighted reg., s = 6
edge elements

equivalent problem

Figure 4.14: Convergence history of the 1st Eigenvalue for ε1 = 1/2 (left), 10−2 (middle) and 10−8

(right). The results of the weighted regularisation with node doubling, the edge elements
and the equivalent problem all show exponential convergence in the log–3√. scale plots.

The problems for ε1 = 10−2 are described in the text.

10-12

10-10

10-8

10-6

10-4

10-2

43 63 83 103 123 143 163 183 203

re
la

tiv
e

er
ro

r

ndof

weighted reg., s = 6
edge elements

equivalent problem 10-12

10-10

10-8

10-6

10-4

10-2

43 63 83 103 123 143 163 183 203

re
la

tiv
e

er
ro

r

ndof

weighted reg., s = 2
edge elements

equivalent problem

10-12

10-10

10-8

10-6

10-4

10-2

43 63 83 103 123 143 163 183 203

re
la

tiv
e

er
ro

r

ndof

weighted reg., s = 6
edge elements

equivalent problem

Figure 4.15: Convergence history of the 2nd Eigenvalue for ε1 = 1/2 (left), 10−2 (middle) and 10−8

(right). The results of the weighted regularisation with node doubling, the edge elements
and the equivalent problem all show exponential convergence in the log–3√. scale plots.

The problems for ε1 = 10−2 and 10−8 are described in the text.

10-12

10-10

10-8

10-6

10-4

10-2

43 63 83 103 123 143 163 183 203

re
la

tiv
e

er
ro

r

ndof

weighted reg., s = 6
edge elements

equivalent problem

10-2

10-1

100

53 103 153 203 253 303

re
la

tiv
e

er
ro

r

ndof

weighted reg., s = 2
edge elements

equivalent problem 10-12

10-10

10-8

10-6

10-4

10-2

43 63 83 103 123 143 163 183 203

re
la

tiv
e

er
ro

r

ndof

weighted reg., s = 6
edge elements

equivalent problem

Figure 4.16: Convergence history of the 3rd Eigenvalue for ε1 = 1/2 (left), 10−2 (middle) and 10−8

(right). The results of the weighted regularisation with node doubling, the edge elements
and the equivalent problem all show exponential convergence in the log–3√. scale plots.

The problems for ε1 = 10−8 are described in the text. Note the different scales for in the
plot for ε1 = 10−2 (middle).

112

4.3 NUMERICAL RESULTS

ures 4.14–4.16. The weighted regularisation only does so for the third Eigenvalue.
The convergence histories for the first and second Eigenvalue deteriorate at a level
of the relative error of 10−6. This does not depend on s, the chosen Eigenvalue
solver (or its parameters)6 or the formulation of the constraints (4.23) at the ori-
gin7.

The middle plot in Figure 4.16 shows the convergence history for the third
Eigenvalue: It is approximated poorly. The reason is that the third Eigenfunc-
tion has a strong unbounded singularity at the origin. 8 This can also be seen in
Figure 4.13(b): The Eigenvalues computed with the weighted regularisation are
above 20 for s ≥ 2 and even above 25 for s ≥ 16—the true value is expected to be
close to 15.

Choice ε1 = 10−8 All three methods show exponential convergence for the first
three Eigenvalues in the right plots of Figures 4.14–4.16 with the following two
exceptions:

• The equivalent problem (4.23) is only able to resolve the second Eigenvalue
up to a relative precision of 10−7. This has been confirmed for different
meshes, refinements and parameters for the Eigensolver.

• The third Eigenvalue can only be resolved up to a relative precision of 10 −7.
The reason is that the third and fourth Eigenvalue9 are very close:

λ4 − λ3

λ4
≈ 10−7,

this results in an ill-conditioned matrix Eigenproblem [22]. The Eigensolver
ARPACK [78, 77] has problems yielding high accuracy under these circum-
stances.

6We normally use ARPACK [77, 78] with Umfpack as linear solver [38, 39, 40] but also tried the
Eigensolver JDBSYM [59] and the linear solvers Pardiso[91] and SuperLU [45]. The shift param-
eter for the shift-invert method and the number of Eigenvalues to be computed were varied.

7Tested variants are: individually over each interface, as a sum or no constraints at the origin at all.
8In the case of the equivalent problem (4.22), the third Eigenfunction has a jump between the two

subdomains with ε1.
9In fact, the fourth Eigenvalue is double: λ4 = λ5.

113

4 MAXWELL’S EQUATIONS

Figure 4.17: The thick L shaped domain is the
Cartesian product of the two dimen-
sional L shaped domain (−1, 1)2 \
(0, 1)×(−1, 0) with (0, 1) in the third
direction.

Figure 4.18: Fichera corner (−1, 1)3 \ (−1, 0)3.

4.3.3 Three Dimensions

The thick L shaped domain (Figure 4.17), the Fichera corner (Figure 4.18) and the
double Fichera corner are treated. The thick L shaped domain features a singularity
at the reentrant edge whereas the Fichera corner produces singular solutions at all
three reentrant edges and the reentrant corner. The double Fichera corner has two
cubes cut out opposite each other where the Fichera corner has only one. The open
domain D of the double Fichera corner is not simply connected and it features a
so-called topological singularity which behaves like 1/r at the origin.

The Thick L Shaped Domain

The reference solutions for the first few Eigenvalues λ = ω 2 of (4.8) are

1. either the sum of a non-zero Neumann Eigenvalue (NA1, NA2, . . .) in the
two dimensional L shaped domain and a Dirichlet Eigenvalue (DJ1, DJ2, . . .)
in (0, 1) (i. e. π 2, 4π2, . . .),

2. or the sum of a Dirichlet Eigenvalue (DA1, DA2, . . .) in the two dimensional
L shaped domain and a Neumann Eigenvalue (NJ0, NJ1, . . .) in (0, 1) (i. e.
0, π2, . . .).

The numerical values of the first nine Eigenvalues are shown in Table 4.3.
Figure 4.19 shows geometric edge meshes for the thick L shaped domain. The

left hand mesh is generated with the grading factor σ = 1/2. It is essentially a

114

4.3 NUMERICAL RESULTS

0

0.5

1

Z

-1

-0.5

0

0.5

1

X

-1

-0.5

0

0.5

1

Y

Y

X

Z

0

0.5

1

Z

-1

-0.5

0

0.5

1

X

-1

-0.5

0

0.5

1

Y

Y

Z

X

Figure 4.19: Geometric edge meshes in the thick L shaped domain refined towards the reentrant edge.
The meshes on the left and right have grading factors σ =1/2 and σ = 0.15 respectively.

tensor product of a two dimensional mesh for an L shaped domain with geometric
refinement towards the reentrant corner (c. f. Figure 4.3) and a simple one-element
mesh in the third direction. It is treated and built as a three dimensional mesh in
Concepts, though using the algorithm introduced in Section 3.2. The right hand
mesh in Figure 4.19 shows a geometric mesh with grading factor σ = 0.15. For
each number of layers, it is created using a hand written mesh generator.

Figure 4.20 shows a plot of the Eigenvalues on the ordinate versus different
s values on the abscissa. × denotes spurious Eigenvalues, + denotes physical
Eigenvalues and ◦ denotes undecided. The categorisation is done using the crite-
rion (4.21). The Eigenvalues from Table 4.3 are indicated by horizontal dashed
lines. It is clearly visible that the spurious Eigenvalues (×) are lined up on straight
lines through the origin of the plot whereas the physical Eigenvalues (+) are very
close to the horizontal dashed lines.

Figures 4.21–4.23 show the convergence history of the first three Eigenvalues
for selected values of s. In each figure, there are two plots: the one on the left hand
side with σ = 1/2 and the one on the right hand side with σ = 0.15. Figures 4.24–
4.26 show the convergence history of the first three Eigenvalues for selected values
of s. In each figure, there are two plots: the one on the left hand side with σ = 1/8

and the one on the right hand side with σ = 1/10. The second Eigenvalue shown
in Figure 4.22 has a strong singularity at the reentrant edge, the first and third are
in H 1 and could therefore also be captured by a method with a constant weight

115

4 MAXWELL’S EQUATIONS

λ1 = DA1 + NJ0 λ2 = NA1 + DJ1
9.6397238447 11.3452262252

λ3 = NA2 + DJ1 λ4 = DA2 + NJ0
13.4036357679 15.1972519265

λ5 = DA1 + NJ1 λ6 = DA3 + NJ0
19.5093282458 19.7392088022

λ7 = NA3 + DJ1 λ8 = NA4 + DJ1
19.7392088022 19.7392088022

λ9 = NA5 + DJ1
21.2590837990

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

s

Table 4.3: Numeric values of the first nine Eigen-
values in the thick L shaped domain.

Figure 4.20: Eigenvalues in the thick L shaped do-
main (ordinate) plotted versus s (ab-
scissa). For this plot, 18276 degrees
of freedom are used. The horizontal
dashed lines denote the exact Eigen-
values.

(i. e. γ = 0). None of these Eigenvalues are multiple. All plots are in log- 4
√

.

scale and show the anticipated straight lines. This gives experimental evidence for
the conjectured exponential convergence of Maxwell Eigenvalues in polyhedra.
Similarly to the two dimensional L shaped domain, the meshes with σ = 0.15 give
test best convergence results out of the four geometric grading parameters.

Fichera Corner

Figure 4.27 shows a geometric edge mesh for the Fichera corner. Note, that this is
not a tensor product type mesh. These refinements (with the many small elements)
do not reach far into the domain and are not visible ‘from the other side’ of the
domain.

As seen in the case of the thick L shaped domain, Figure 4.28 shows a plot of
the Eigenvalues on the ordinate versus the s values on the abscissa. Again, one can
see that the spurious Eigenvalues are lined up on straight lines through the origin
in the s vs. Eigenvalue plot.

Figures 4.29–4.31 show the convergence history of the first three Eigenvalues
for selected values of s. In each figure, there are two plots: the one on the left hand

116

4.3 NUMERICAL RESULTS

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

24 44 64 84 104 124 144 164

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

24 44 64 84 104 124 144 164

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

Figure 4.21: Convergence of the 1st Eigenvalue in the thick L shaped domain in log-4√. plot. The
left and right plots were done with σ = 1/2 and σ = 0.15 respectively. Note that the
convergence histories are identical for all three values of s.

10-6

10-5

10-4

10-3

10-2

10-1

100

24 44 64 84 104 124 144 164

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 30
s = 17

10-6

10-5

10-4

10-3

10-2

10-1

100

24 44 64 84 104 124 144 164

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 30
s = 17

Figure 4.22: Convergence of the 2nd Eigenvalue in the thick L shaped domain in log-4√. plot. The left
and right plots were done with σ = 1/2 and σ = 0.15 respectively.

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

24 44 64 84 104 124 144 164

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

24 44 64 84 104 124 144 164

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

Figure 4.23: Convergence of the 3rd Eigenvalue in the thick L shaped domain in log-4√. plot. The left
and right plots were done with σ = 1/2 and σ = 0.15 respectively.

117

4 MAXWELL’S EQUATIONS

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

24 44 64 84 104 124 144 164

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

24 44 64 84 104 124 144 164

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

Figure 4.24: Convergence of the 1st Eigenvalue in the thick L shaped domain in log-4√. plot. The
left and right plots were done with σ = 1/8 and σ = 1/10 respectively. Note that the
convergence histories are identical for all three values of s.

10-6

10-5

10-4

10-3

10-2

10-1

100

24 44 64 84 104 124 144 164

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

10-6

10-5

10-4

10-3

10-2

10-1

100

24 44 64 84 104 124 144 164

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

Figure 4.25: Convergence of the 2nd Eigenvalue in the thick L shaped domain in log-4√. plot. The left
and right plots were done with σ = 1/8 and σ = 1/10 respectively.

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

24 44 64 84 104 124 144 164

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

24 44 64 84 104 124 144 164

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

Figure 4.26: Convergence of the 3rd Eigenvalue in the thick L shaped domain in log-4√. plot. The left
and right plots were done with σ = 1/8 and σ = 1/10 respectively.

118

4.3 NUMERICAL RESULTS

-1

-0.5

0

0.5

1

Z

-1

-0.5

0

0.5

1

X

-1

-0.5

0

0.5

1

Y

X Y

Z

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

s
Figure 4.27: Geometric edge mesh in the Fichera

corner refined towards reentrant
edges and corner.

Figure 4.28: Eigenvalues in the Fichera corner (or-
dinate) plotted versus s (abscissa). ×
denotes spurious Eigenvalues, + de-
notes physical Eigenvalues and ◦ de-
notes undecided. For this plot, 45102
degrees of freedom are used.

side with the simplified weight (4.7)

w = dist
(

x,
⋃
c∈C

c ∪
⋃
e∈E

e
)

and the one on the right with the weight (4.18)

w =
∏
c∈C

rc ·
∏
e∈E

ρe.

The second Eigenvalue shown in Figure 4.30 is a double Eigenvalue and the next
shown in Figure 4.31 is suspected to be either a double or even a triple Eigen-
value. All these plots are in log- 5

√
. scale and show the anticipated straight lines.

This gives experimental evidence for the conjectured exponential convergence of
Maxwell Eigenvalues in polyhedra. As no exact values for the Eigenvalues in the
Fichera corner are known, extrapolated values were used to generate the conver-
gence graphs. These values are shown in Table 4.4. Comparing the left and right
plots in Figures 4.29–4.31 reveals only slight differences in the convergence rates
for the weights (4.7) and (4.18).

Figures 4.32–4.34 show the convergence history of the first three Eigenvalues
for selected values of s for h- and p-extensions as opposed to hp-extensions which

119

4 MAXWELL’S EQUATIONS

10-4

10-3

10-2

10-1

100

25 35 45 55 65 75 85 95 105

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

10-4

10-3

10-2

10-1

100

25 35 45 55 65 75 85 95

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

Figure 4.29: Convergence of the 1st Eigenvalue in the Fichera corner in log-5√. plot. The left and right
plots were done using the weights w (4.7) and (4.18) (γmax = 1) respectively.

10-4

10-3

10-2

10-1

100

25 35 45 55 65 75 85 95 105

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

10-4

10-3

10-2

10-1

100

25 35 45 55 65 75 85 95

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

Figure 4.30: Convergence of the 2nd Eigenvalue in the Fichera corner in log-5√. plot. The left and right
plots were done using the weights w (4.7) and (4.18) (γmax = 1) respectively.

10-4

10-3

10-2

10-1

100

25 35 45 55 65 75 85 95 105

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

10-4

10-3

10-2

10-1

100

25 35 45 55 65 75 85 95

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

Figure 4.31: Convergence of the 3rd Eigenvalue in the Fichera corner in log-5√. plot. The left and right
plots were done using the weights w (4.7) and (4.18) (γmax = 1) respectively.

120

4.3 NUMERICAL RESULTS

extrapolated Eigenvalue 3.197 5.878 10.6955
reliable digits 2 4 4

Table 4.4: Extrapolated Eigenvalues for the Fichera corner

extrapolated Eigenvalue 6.82 8.806 9.72
reliable digits 2 3 2

Table 4.5: Extrapolated Eigenvalues for the double Fichera corner

were shown so far. In each figure, there are two plots: the one on the left hand
side with h-extensions and the one on the right hand side with p-extensions. The
chosen weight was the simplified weight (4.7). In the h-extension case, the degree
of all elements was p = 2 and all refinements were uniform. In the p-extension
case, 7 · 82 = 448 elements were used and the degree was uniform and isotropic in
the whole domain D. Two (expected) conclusion can be drawn from these results:

• The hp-extensions (Figures 4.29–4.31) give a higher precision than h- or
p-refinement at the same number of degrees of freedom.

• Neither the h- nor the p-extensions can deliver exponential convergence like
the hp-extensions.

4.3.4 Double Fichera Corner

The computations in the double Fichera corner are done with the simplified weight
(4.7), γmax = 1. The mesh is created by marking the origin and the reentrant edges
using Algorithm 3.3.

Figure 4.35 shows a plot of the Eigenvalues on the ordinate versus the s values
on the abscissa. As before, the spurious Eigenvalues are lined up on straight lines
through the origin in the s vs. Eigenvalue plot and the physical Eigenvalues are on
horizontal lines. The horizontal, dashed lines have the values given in Table 4.5.
The third and fourth Eigenvalues are double (λ 3 = λ4 and λ5 = λ6).

Figures 4.36–4.38 show the convergence histories of the first three Eigenvalues
for selected values of s. As before, we can observe a non-monotone convergence
behaviour for the smallest value of s shown here (s = 6), c. f. Section 4.3.1.

121

4 MAXWELL’S EQUATIONS

10-4

10-3

10-2

10-1

100

25 35 45 55 65 75 85 95 105

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

10-4

10-3

10-2

10-1

100

25 35 45 55 65 75 85 95 105

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

Figure 4.32: Convergence of the 1st Eigenvalue in the Fichera corner in log-5√. plot. The left and right
plots were done using uniform h- and p-extensions respectively.

10-4

10-3

10-2

10-1

100

25 35 45 55 65 75 85 95 105

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

10-4

10-3

10-2

10-1

100

25 35 45 55 65 75 85 95 105

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

Figure 4.33: Convergence of the 2nd Eigenvalue in the Fichera corner in log-5√. plot. The left and right
plots were done using uniform h- and p-extensions respectively.

10-4

10-3

10-2

10-1

100

25 35 45 55 65 75 85 95 105

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

10-4

10-3

10-2

10-1

100

25 35 45 55 65 75 85 95 105

re
la

tiv
e

er
ro

r

ndof

s = 20
s = 9
s = 6

Figure 4.34: Convergence of the 3rd Eigenvalue in the Fichera corner in log-5√. plot. The left and right
plots were done using uniform h- and p-extensions respectively.

122

4.3 NUMERICAL RESULTS

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20

s

10-2

10-1

100

25 45 65 85 105 125

re
la

tiv
e

er
ro

r
ndof

s = 12
s = 6

s = 18

Figure 4.35: Eigenvalues in the double Fichera
corner (ordinate) plotted versus s (ab-
scissa). × denotes spurious Eigen-
values, + denotes physical Eigenval-
ues and ◦ denotes undecided. For this
plot, 61920 degrees of freedom are
used.

Figure 4.36: Convergence of the 1st Eigenvalue in
the double Fichera corner in log- 5√.

plot.

10-3

10-2

10-1

100

25 45 65 85 105 125

re
la

tiv
e

er
ro

r

ndof

s = 12
s = 6

s = 18

10-4

10-3

10-2

10-1

100

25 45 65 85 105 125

re
la

tiv
e

er
ro

r

ndof

s = 12
s = 6

s = 18

Figure 4.37: Convergence of the 3rd Eigenvalue in
the double Fichera corner in log- 5√.

plot.

Figure 4.38: Convergence of the 3rd Eigenvalue in
the double Fichera corner in log- 5√.

plot.

123

4 MAXWELL’S EQUATIONS

4.3.5 Conclusion

The weighted regularisation is able to deliver the conjectured exponential conver-
gence in the two and three dimensional examples with constant coefficients consid-
ered. The singularities introduced by the reentrant corners and edges in the given
domains are resolved as predicted.

However, the weighted regularisation fails to deliver exponential convergence
in some cases of the two dimensional example with jumping coefficients. The
instability of the weighted regularisation is not systematic. In the example with
the jumping coefficients, the weighted regularisation is compared to the ‘classical’
discretisation method for Maxwell’s equations (Nédélec’s edge elements): the edge
elements yield exponential convergence on the same mesh-degree combination as
the weighted regularisation.

Experience with Scaling Parameter s

The equation (4.20) solved in the numerical examples contains a scaling parameter
s not present in the formulation (4.8). We discuss our numerical experience in the
selection of the parameter s and its impact in the presence of spurious Eigenvalues.

Larger values of s move the spurious Eigenvalues further up while they increase
the gap to the exact value.

Consider the Eigenvalues versus s plots. The lining-up on straight lines through
the origin of the spurious Eigenvalues is good—already for moderate numbers of
degrees of freedom. However, only in the asymptotic limit, the physical Eigenval-
ues are lined up on horizontal lines. The plot in the middle of Figure 4.16 shows
this most clearly (and can also be observed in all other examples). The numerical
values for the third Eigenvalue (15.5. . .) are found on a slightly curved line be-
tween (s = 2, λ = 20) and (s = 13, λ = 25). Increasing the number of degrees of
freedom brings this curve more and more down to the exact value.

124

5
Elliptic Partial Differential

Equations with
Stochastic Coefficients

If one is able to control the discretisation error, and assuming that the modelling
error inherent in the selected partial differential equations is negligible (i. e. that the
adopted PDEs precisely describe the physics of the system under consideration),
the gap that remains between simulation and observation must be due to uncertainty
in the input data.

This requires new developments in several areas of applied mathematics and en-
gineering: input parameters are to be replaced by random variables, whose statis-
tics must be estimated, and the governing PDEs must be reformulated as stochastic
PDEs. Traditional deterministic Finite Element solutions must be reformulated to
allow for randomness in input data and solution.

This chapter focuses on this latter aspect, i. e. the formulation, design and im-
plementation of deterministic Finite Element-based solution methods to stochastic
elliptic PDEs. More theory and the related proofs can be found in [99, 107].

After a short introduction in the first section, the Karhunen-Loève expansion of
the stochastic diffusion coefficients to separate stochastic and physical variables is
introduced in the second section. The third section gives a detailed description of
the stochastic Galerkin method. The fourth and fifth sections carefully explain the
two key computational tasks: the fast computation of the Karhunen-Loève expan-
sion and the parallel solution of the deterministic problems, respectively. Finally,
the last section shows some numerical examples.

125

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

5.1 Introduction and Problem Formulation

The model problem is a stationary elliptic diffusion problem in a domain D with
stochastic diffusion coefficient a(x, ω) assumed for simplicity to be isotropic. To
specify assumptions on the coefficients a(x, ω), let (�,�, P) be a σ -finite prob-
ability space and D ⊂ R

d a bounded open set with Lipschitz boundary � = ∂ D.
Assume that a ∈ L∞(D × �) is strictly positive, with lower and upper bound α

and β respectively,

0 < α ≤ a(x, ω) ≤ β <∞, λ× P-a. e. (x, ω) ∈ D ×�, (5.1)

where λ is the Lebesgue measure in R
d . (5.1) implies a ∈ L2(�, d P; L∞(D)).

Consider the following model problem, with stochastic left hand side,

− div(a(x, ω)∇xu(x, ω)) = f (x) in D

u(x, ω) = 0 on ∂ D
P-a. e. ω ∈ �. (5.2)

The coefficient a(x, ω) as well as the solution u(x, ω) are random fields in D ⊂
R

d, i. e. they are random variables X ∈ (�,�, P) in every physical location x ∈
D. a and u are both jointly measurable functions from D ×� to R.

Assume that the known information about the diffusion coefficient a includes its
mean field and its two-point correlation, given by

Ea(x) :=
∫

�

a(x, ω) d P(ω) and Ca(x, x′) :=
∫

�

a(x, ω) · a(x′, ω) d P(ω),

i. e. that Ea(x) and Ca(x, x′) are explicitly and exactly known.1 Equivalently, the
covariance Va could be given, since

Va(x, x′) = Ca(x, x′)− Ea(x)Ea(x′).

For Ca, Va to exist, a(x, ω) must have finite second moments (which is assured by
(5.1)).

Given this information on a(x, ω) and a known deterministic source term f (x)

(this could be relaxed as well, see e. g. [99, 100]; but here, our aim is to solve

1This is a rather optimistic assumption since often a functional form of Ca(x, x′) is postulated with a
finite number of free parameters which are statistically estimated from the available data. However,
this problem has to be solved on the modelling side.

126

5.1 INTRODUCTION AND PROBLEM FORMULATION

(5.2)), u(x, ω) is a mathematically well-defined object. However, the task ‘com-
pute u(x, ω)’ is less obvious to realize numerically and of limited interest in prac-
tice. In applications, only certain statistics and moments of u(x, ω) are of interest,
and this is also our goal of computation: given statistics E a and Ca of the data,
compute statistics of the random solution u, like Eu, Cu or probabilistic level sets,

Dδ
ε := {x ∈ D : P(|u(x, ·)| > δ) < ε} .

Overview of Numerical Methods

Monte Carlo Method

The simplest approach to a numerical solution of (5.2) is Monte Carlo simulation.
There is a vast choice of literature on this subject of which only [66, 71] are men-
tioned. This means to generate numerous samples of a(x, ω) with prescribed statis-
tics, solve (5.2) for each sample, and to determine the statistics of u(x, ω) from the
set of solutions. Due to the generally slow convergence of Monte Carlo methods,
this approach requires a rather large number of ‘samples’, i. e. a large number of
solutions of deterministic boundary value problems. Conceptually, Monte Carlo
simulation corresponds to a ‘collocation in ω’.

Perturbation Methods

Perturbation methods (see e. g. [17]) to solve (5.2) represent the stochastic solution
as an exponentially convergent infinite series, in which each term solves a problem
with the same deterministic coefficient (that is, independent of ω) but different
stochastic loadings. It turns out that in order to compute exactly even the simplest
statistic of u, namely Eu , one has to know the distribution function of a(x, ·) at
any x ∈ D—a very strong requirement.

Stochastic Galerkin Methods

In this chapter, we outline a stochastic Galerkin method [55] for the numerical
solution of (5.2) which can be understood as Galerkin discretisation in probability
space. The idea of reducing a stochastic equation to a large system of deterministic
ones is not new—stochastic Galerkin methods have attracted considerable attention
in recent years, we mention here only [60] and the references therein.

127

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

Unlike the ‘collocation’ type Monte Carlo approaches, in stochastic Galerkin
Finite Element Methods the stochastic ‘variable’ ω is discretised by an orthogo-
nal projection with respect to the probability measure P onto a finite dimensional
subspace of (�,�, P). The probability space being infinite dimensional, the feasi-
bility of a stochastic Galerkin discretisation of (5.2) strongly depends on the avail-
ability of a good basis of L 2(�, d P). In numerous works [60, 113], the use of a
so-called Wiener Chaos expansion [110, 111] has been advocated. Here, a Kar-
hunen-Loève [80, 81] expansion of the random field a(x, ω) is used to generate
coordinates with certain optimality conditions for the deterministic approximation
of the random solution. This is made possible by a kernel independent Fast Mul-
tipole Method [93, 94] to compute the Eigenpairs of the covariance operator for
a(x, ω) in log-linear complexity per Eigenpair.

The stochastic Galerkin FEM is, like the deterministic FEM, based on a vari-
ational formulation of (5.2). To define it, introduce the Hilbert space H 1

0 (D) of
H 1

0 (D)-valued random fields with finite second moments

H1
0 (D) := L2(�, d P; H 1

0 (D)).

Then, the variational form of (5.2) reads
Find u ∈ H1

0 (D) such that for every v ∈ H 1
0 (D)

∫
�

(∫
D

a(x, ω)∇xu · ∇xv dx
)

d P(ω) =
∫

�

(∫
D

f (x, ω)v(x, ω) dx
)

d P(ω).

(5.3)
We conclude this section by mentioning that under assumption (5.1), the ex-

istence and uniqueness of a solution u to (5.3) follows from the Lax-Milgram
Lemma.

5.2 Karhunen-Loève Expansion

To reduce (5.2) to a deterministic (albeit infinite dimensional) problem, determinis-
tic and stochastic variables in the coefficient a(x, ω) are separated. The theoretical
tool required to achieve this is the so-called Karhunen-Loève expansion.

Let the random diffusion coefficient a ∈ L 2(D×�), then Va ∈ L2(D× D) and
its covariance operator

Va : L2(D) → L2(D), (Vau)(x) :=
∫

D
Va(x, x ′)u(x′) dx′ ∀u ∈ L2(D)

128

5.2 KARHUNEN-LOÈVE EXPANSION

10-5

10-4

10-3

10-2

10-1

100

 0 2 4 6 8 10 12

re
la

tiv
e

L2 -n
or

m
 o

f r
em

ai
nd

er

M

10-5

10-4

10-3

10-2

10-1

100

 0 40 80 120 160

re
la

tiv
e

L2 -n
or

m
 o

f r
em

ai
nd

er

M

10-5

10-4

10-3

10-2

10-1

100

 0 500 1000 1500 2000

re
la

tiv
e

L2 -n
or

m
 o

f r
em

ai
nd

er

M

Figure 5.1: Convergence rates of the Karhunen-Loève series in one (left plot), two (middle) and three
dimensions (right). All plots show the relative decay of the Karhunen-Loève series remain-
der after truncation at level M in the L2-norm plotted against the truncation parameter M .
The kernel is exp(−10|x − x′|2) and the domain D is the unit box (−1, 1)d .

is a symmetric, positive semi-definite and compact integral operator. Therefore, it
has a countable sequence {λm , ϕm}m≥1 of Eigenpairs with real, bounded Eigenval-
ues λ1 ≥ λ2 ≥ ... with λm → 0 as m →∞.

Moreover, there exists a sequence of random variables {Xm}m≥1 such that
∫

�

Xm(ω) d P(ω) = 0 and
∫

�

Xn(ω)Xm(ω) d P(ω) = δnm ∀n, m ≥ 1,

and a(x, ω) can be expanded in a Karhunen-Lo ève expansion:

a(x, ω) = Ea(x)+
∑
m≥1

√
λmϕm(x)Xm(ω). (5.4)

Remark 5.5 (Convergence of the Karhunen-Loève expansion)
In (5.4), the Karhunen-Loève series converges in L2(D × �) at the same rate as
the sum of Eigenvalues, c. f. Figure 5.1.

Additionally, if the sequences {ϕm}m≥1 and {Xm}m≥1 are uniformly bounded in
L∞(D) and L∞(�; d P) respectively, and if

∞∑
m=1

√
λm <∞, (5.6)

then the Karhunen-Loève (5.4) converges uniformly on D ×�.

129

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

Below, a(x, ω) is approximated by a deterministic function a M(x, ω) of the
first M random variables {Xm}Mm=1 by truncating the Karhunen-Loève expansion
(5.4). Since truncation of the Karhunen-Loève expansion after M terms will later
be seen to lead to an M + d dimensional deterministic problem, the complexity
of our approach strongly depends on the size of M which in turn (compare (5.6))
depends on the decay of the Karhunen-Loève Eigenvalues λ m .

5.2.1 Decay Properties of the Karhunen-Loève Eigenvalues

Decay criteria for the Karhunen-Loève Eigenvalue sequence {λm}m≥1 are crucial,
since the Eigenvalue decay determines the complexity of the stochastic Galerkin
FEM as we shall see below.

The decay rates for the Karhunen-Loève Eigenvalues are shown to depend on
the regularity of the covariance kernel Va . Roughly speaking, the smoother the
covariance kernel of the coefficient, the faster the Karhunen-Loève Eigenvalues
decay, with analyticity implying exponential decay and finite Sobolev regularity
giving rise to algebraic decay. Remarkably, these results hold true already for
piecewise regularity of the covariance kernel. For proofs, refer to [99, 107].

Definition 5.7 (Piecewise regularity) Let D be a bounded domain of R
d . A cor-

relation function V : D × D → R is said to be piecewise analytic/smooth/H p,q

on D × D if there exists a finite sequence {D j }Jj=1 of subdomains of D such that

D = ⋃J
j=1 D j and V is analytic/smooth/H p ⊗ H q in an open neighbourhood of

D j × D j ′ for any pair (j, j ′).

The decay rates of the Eigenvalues depend heavily on the regularity of the kernel
V :

Proposition 5.8 (Eigenvalue decay rates) Let V ∈ L 2(D × D), D ⊂ R
d be a

symmetric correlation kernel defining a compact, self-adjoint and positive integral
operator via

V : L2(D) → L2(D), (Vu)(x) =
∫

D
V (x, x ′)u(x′) dx′. (5.9)

Let {λm}m≥1 be the Eigenvalue sequence of V.

130

5.2 KARHUNEN-LOÈVE EXPANSION

• Analytic kernel:
If V is piecewise analytic on D × D , then there exist constants c1, c2 > 0
such that

0 < λm ≤ c1 exp
(−c2m1/d) ∀m ≥ 1. (5.10)

• Entire kernel:
Let V be a Gaussian covariance kernel given by

V (x, x ′) := σ 2 exp

(
−|x − x′|2

γ 2δ2

)
(5.11)

where σ, γ > 0 are real parameters and δ is the diameter of the domain D.
Then, there holds

0 < λm � σ 2 (1/γ)m1/d+2

�(m/21/d)
∀m ≥ 1, (5.12)

where � is the Gamma function interpolating the factorial.

• Sobolev kernel:
If V ∈ L2(D × D) is symmetric and piecewise H p,0 (p ≥ 1), then

0 < λm � m−(2p−1)/d ∀m ≥ 1. (5.13)

Remark 5.14

• Many covariances which occur in engineering practice are piecewise ana-
lytic [92].

• The parameters σ and γ of the entire kernel in (5.11) are referred to as the
standard deviation and the correlation length of a respectively (given V is
the covariance of a as shown in Section 5.1). This kernel admits an analytic
continuation to the whole complex space C

d (an entire function). Therefore,
the Eigenvalue decay is even faster than in (5.10).

• The decay estimate (5.12) is sub-exponential in dimension d > 1. This is
essentially due to the higher multiplicity of the Eigenvalues in dimensions
larger than 1. To visualise this effect, the largest 2000 Eigenvalues of the
three dimensional, factorisable kernel V (x, x ′) = exp(−10|x − x ′|2) are
plotted in Figure 5.2 together with a theoretical estimate obtained by drop-
ping the (asymptotically negligible) numerator (1/γ)m1/d+2 in (5.12).

131

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

10-4

10-3

10-2

10-1

100

 0 2 4 6 8 10 12

λ m

m

10-5

10-4

10-3

10-2

10-1

100

 0 40 80 120 160

λ m

m

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 500 1000 1500 2000

λ m

m

Figure 5.2: Eigenvalue decay of analytic covariance kernel exp(−10|x − x′|2) in one (left plot), two
(middle) and three dimensions (right). Plotted are the Eigenvalues λm against their index
m (solid line), multiplicity taken into account. The dashed line shows the approximation
1/�(m/21/d) from (5.12). The domain D is the unit box (−1, 1)d .

• The Eigenvalue decay rate of a Sobolev kernel can only deteriorate by a
multiplicative factor in case of a small correlation length.

Example 5.15

• The kernel

V (x, x ′) := σ 2 exp

(
−|x − x′|1+ε

γ 1+εδ1+ε

)

admits only Sobolev regularity for 0 ≤ ε < 1. δ is the diameter of D.

• For D = (−1, 1), the first ten Eigenvalues of the analytic kernel V (x, x ′) =
exp(−|x − x ′|2) are plotted in Figure 5.3. The plot also shows the first ten
Eigenvalues of the kernel V (x, x ′) = exp(−|x − x ′|1+ε) for various values
of ε.

5.2.2 Karhunen-Loève Eigenfunction Estimates

The point-wise convergence of the Karhunen-Loève expansion is essential for the
error control in (5.2) when truncating the Karhunen-Loève expansion after M
terms. So, beside criteria ensuring a fast decay of the Eigenvalues, the Eigen-
functions of the covariance kernel need to be estimated in the L∞(D) norm. It
turns out that the smoothness assumption on the covariance kernel allows also a
good point-wise control of the Eigenfunctions.

132

5.3 STOCHASTIC GALERKIN METHOD

10-6

10-5

10-4

10-3

10-2

10-1

100

 1 2 3 4 5 6 7 8 9 10

λ m

m

Figure 5.3: Eigenvalue decay depends on the regularity of the kernel. The plot is in one dimension,
D = (−1, 1) showing the Eigenvalues for the kernel exp(−|x − x′|1+ε) for (from top to
bottom) ε = 0, ε = 1/4, ε = 1/2, ε = 3/4, ε = 9/10, ε = 0.99, ε = 0.999 (all have Sobolev
regularity) and ε = 1 (an entire kernel, solid line).

Proposition 5.16 Let V ∈ L2(D × D) be symmetric and piecewise smooth. De-
note by {λm , ϕm}m≥1 the sequence of Eigenpairs of the associated covariance op-
erator via (5.9), such that ‖ϕm‖L2(D) = 1,∀m ≥ 1. Then, for any s > 0 and any

multi-index α ∈ N
d , there holds

‖∂αϕm‖L∞(D) � |λm |−s ∀m ≥ 1,

where the constant depends on s,α and J (Definition 5.7).

5.3 Stochastic Galerkin Method

In this section, the stochastic Galerkin method used to solve (5.2) is developed
along with appropriate error estimates. In a first step, a is replaced by its Karhunen-
Loève expansion aM . Secondly, the random variables X m in aM are replaced by
deterministic variables ym ∈ R. These ym are discretised with a spectral Finite
Element Method. Eventually, detailed algorithms sum up the whole process and
show how (5.2) can be solved approximately in parallel.

Throughout this section, assume that the diffusion coefficient a satisfies (5.1)
and possesses a Karhunen-Loève expansion (5.4) such that the following assump-
tions are satisfied:

133

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

1. The family X = {Xm}m≥1 of random variables is uniformly bounded in the
probability space L∞(�, d P), i. e.

∃cX > 0, ‖Xm‖L∞(�,d P) ≤ cX ∈ R ∀m ≥ 1. (5.17)

2. The family X = {Xm}m≥1 of random variables is independent.

Remark 5.18 The error analysis of (5.2) when truncating the Karhunen-Loève se-
ries (5.4) of a can be carried out without Assumption 2—it is made only to simplify
the exposition (for details see [107]).

5.3.1 Truncation of the Karhunen-Loève Expansion of a

Assumption 1, coupled with the decay estimates in Proposition 5.8, implies the
uniform convergence on D ×� of the Karhunen-Loève expansion of a.

For any M ∈ N, define the truncated coefficient

aM (x, ω) = Ea(x)+
M∑

m≥1

√
λmϕm(x)Xm(ω). (5.19)

The following point-wise error estimates for the truncated coefficient hold, depend-
ing on the smoothness of the coefficient a(x, ω).

Proposition 5.20 (Truncated coefficient error estimates) If Va is piecewise an-
alytic/smooth on D × D and (5.17) holds, then the Karhunen-Loève expansion of
a converges uniformly on D ×� at the rate

‖a − aM‖L∞(D×�) �
{

exp
(−c2(1/2− s)M1/d

)
Va pw. analytic

M1−(p−1)(1−2s)/d Va pw. smooth
∀M ∈ N,

(5.21)
for any s > 0, p ≥ 1 and with a constant depending on the spatial dimension d, s
from Proposition 5.16, c1 and c2 from Proposition 5.8, cX from Assumption 1 and
J from Definition 5.7.

Remark 5.22

• Since p can be chosen arbitrarily large and s arbitrarily close to 0 in (5.21),
the remainder of the Karhunen-Loève series of a after truncation is rapidly
and uniformly decaying on D ×�.

134

5.3 STOCHASTIC GALERKIN METHOD

• If the family X = {Xm}m≥1 is independent (Assumption 2), it can be shown
that the ellipticity (therefore the existence and uniqueness of a solution) of
the stochastic problem (5.2) is preserved with the same upper and lower
bounds α, β in (5.1) for any M ≥ 0 when replacing the diffusion coefficient
a by aM.

Combining Proposition 5.20 and a Strang-type argument shows that the error due
to replacing the diffusion coefficient a by its truncated Karhunen-Loève expansion
aM in (5.2) is rapidly decaying as M → ∞, at least in the case of piecewise
analytic/smooth covariance kernel Va . This is essential since the number of terms
M retained in the Karhunen-Loève expansion will later determine the deterministic
dimension necessary for the stochastic Galerkin method.

Proposition 5.23 Consider a diffusion coefficient a satisfying (5.1) such that Va is
piecewise analytic/smooth on D × D. If u and u M are the solutions of (5.2) and

− div(aM(x, ω)∇xuM (x, ω)) = f (x) (5.24)

respectively, then

‖u−uM‖H1
0 (D) � ‖u‖H1

0 (D) ·
{

exp
(−c2(1/2− s)M1/d

)
if Va piecewise analytic

M1−(p−1)(1−2s)/d if Va piecewise smooth,

for all M ≥ 0 and p ≥ 1.

5.3.2 Associated Deterministic Problem

We study (5.24), obtained by truncation at level M of the Karhunen-Loève expan-
sion of the diffusion coefficient a in (5.2). The random variables X m in (5.19)
are replaced by deterministic variables ym ∈ R. Without loss of generality,
cX = 1/2 (Assumption 1) is assumed in the following, so that for {Xm}m≥1 in (5.4),
Range Xm ⊂ I := [−1/2, 1/2] ∀m ≥ 1. Denote by ρm the probability measure
associated to the random variable X m ,

ρm(B) := P(Xm ∈ B) for any Borel set B ⊆ R,

135

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

and define a probability measure on R
M by ρ := ρ1 × ρ2 × . . .× ρM .2 Associate

the mapping ãM with aM by

ãM : D × I M → R,

(x, y1, . . . , yM) �→ Ea(x)+
M∑

m=1

√
λmϕm(x)ym .

(5.25)

Consider the deterministic problem with the variational form
Find ũM ∈ H 1

0 (D)⊗ L2(I M , dρ) such that

− div(ãM (x, y)∇x ũM (x, y)) = f (x) (5.26)

The uniform ellipticity of all truncates a M (which follows from (5.21) for large M
or Remark 5.22) ensures the well-posedness of (5.26).

The solution of (5.24) can be obtained by solving (5.26) by backward substitu-
tion:

Proposition 5.27 If ũ M is the solution of (5.26) and u M solves (5.24), then

uM (x, ω) = ũM (x, X1(ω), . . . , X M (ω)),

λ× P-a. e. (x, ω) ∈ D ×�.

5.3.3 Stochastic Regularity

The solution ũ M of the deterministic elliptic problem (5.26) has an analytic exten-
sion into a subset of C

M as is shown below. As simplification, assume that ρ ∼ λ

is the Lebesgue measure on I M .

Remark 5.28 This assumption is very strong: it implies that the random variables
{Xm}Mm≥1 are independently identically distributed with a uniform distribution on
[−1/2, 1/2].

The solution ũ M solves
Find ũM ∈ H 1

0 (D)⊗ L2(I M) such that

− div(ãM(x, y)∇x ũM (x, y)) = f (x). (5.29)

2Note that ρ �= P (P ist the continuous probability measure in (5.1)–(5.3)): ρ → P as M →∞ ‘in
law’. However, ρ(�) = 1 ∀M , i. e. ρ is a probability measure on �.

136

5.3 STOCHASTIC GALERKIN METHOD

If the number of terms M retained in the truncated Karhunen-Loève expansion
is large, the number of degrees of freedom necessary for the accurate solution of
Problem (5.29) appears to be prohibitive. However, this is not the case in general
due to favourable regularity properties of the solution ũ M (x, y) with respect to y.

To show this, a result on stochastic regularity is presented which allows to show
that the computational effort in solving (5.29) is moderate, even for large M .

Proposition 5.30 Let ũ M be the solution of (5.26). Then, as an H 1
0 (D)-valued

function on I M , ũM can be analytically extended to an open neighbourhood of
I M in C

M , whose size in ym is increasing for m → M like 1/νm, where νm :=√
λm‖ϕm‖L∞(D) for m ≥ 1.

5.3.4 Stochastic Spectral Discretisation

The analyticity of ũ M as a function of y ensures an exponential convergence rate
of its Finite Element approximations obtained by a p-method with respect to y.

Therefore, define for r ∈ N, the space of polynomials of degree at most r ,

Pr := span{1, t, t2, . . . , tr } ⊂ L2(I)

and, for r = (r1, r2, . . . , rM) ∈ N
M , an anisotropic polynomial space by tensor

product

Pr :=
M⊗

i=1

Pri ⊂ L2(I M).

Further, for r ∈ N
M , we shall denote by ũ M,r the solution of the variational

problem (5.29) in the subspace H 1
0 (D)⊗ Pr ,

∫
I M

∫
D

ãM (x, y)∇x ũM,r (x, y) · ∇xv(x, y) dx d y

=
∫

I M

∫
D

f (x)v(x, y) dx d y. ∀v ∈ H 1
0 (D) ⊗Pr . (5.31)

Based on the quasi-optimality of any Galerkin projection of (5.29) and on Propo-
sition 5.30, the convergence rate of the y-semi-discretisation of (5.29) is estimated
in terms of the overall numberof deterministic problems N r to be solved, inde-
pendently of the number of terms M retained in the truncated Karhunen-Lo ève
expansion.

137

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

Proposition 5.32 Let a ∈ L∞(D ×�) satisfy (5.1). Suppose that Va is piecewise
analytic such that (5.10) holds with two strictly positive constants c1 and c2. Define

rm :=
⌈

M1/d

m1/d

⌉
∀1 ≤ m ≤ M. (5.33)

Then, there holds, with constants depending only on c 1 and c2 and with c3 a true
constant,

Nr := dim Pr � ec3 M

and

‖ũM − ũM,r‖H1
0 (D)⊗L2(I M) � exp

(
−c2M1/d

)
� exp

(
−c2c−1/d

3 (log Nr)
1/d

)
.

(5.34)

Remark 5.35

• Due to the y-analyticity of ũ M , one can show that the asymptotic error esti-
mate (5.34) also holds in H 1

0 (D)⊗ L∞(I M).

• The convergence rate (5.34) is algebraic for d = 1 and sub-algebraic for
d > 1, which makes the computation in these cases rather expensive. How-
ever, using different polynomial FE spaces for the y-discretisation, which
are not of tensor product type, the convergence rate can be improved beyond
algebraic. The construction of these spaces as well as their properties will
be addressed in [107].

Nonetheless, the use of tensor product FE spaces has an important advan-
tage: an appropriate choice of the basis decouples the problem into exactly
Nr deterministic diffusion problems, which can be solved in parallel (see
Section 5.3.6).

• In Proposition 5.32, exact Eigenpairs {(λm , ϕm)}m of the Karhunen-Loève
expansion are assumed. However, a similar result holds for approximated
Eigenpairs {(λh

m , ϕh
m)}m after choosing M ≈ |log h|d , in order to balance

the Karhunen-Loève truncation error and the Eigenvalue discretisation error
(c. f. [107]).

138

5.3 STOCHASTIC GALERKIN METHOD

1. Choose a steering parameter 0 < θ ≤ 1.

2. Choose an overkill level K ∈ N (in practice K ≤ 15).

3. Compute
ũM,k·em ∀1 ≤ k ≤ K , 1 ≤ m ≤ M,

with {e1, e2, . . . eM } a basis of R
M .

4. Compute the decay rate of the relative error (size of domain of analyticity of ũM with respect
to yk)

ηm,k :=
‖ũM,k·em − ũM,(k−1)·em ‖

‖ũM,(k−1)·em ‖
for all 1 ≤ k ≤ K , 1 ≤ m ≤ M .

5. Initialise the polynomial degree r := (0, 0, . . . , 0) ∈ N
M .

6. Compute the ‘active’ stochastic dimensions

Mθ :=
{

m : ηm,rm+1 ≥ θ · max
1≤n≤M

ηn,rn+1

}
.

7. Compute the new polynomial degree (raise rm for all m ∈Mθ)

rnew := r +
∑

m∈Mθ

em

8. If maxm rm < K goto 6 otherwise stop.

Algorithm 5.1: Adaptive selection of stochastic degree rm .

5.3.5 Adaptive Selection of Stochastic Degree

Proposition 5.32 gave an error estimate of the spectral discretisation in the stochas-
tic variable based on the assumption of piecewise analyticity of the correlation
function Va(x, x ′) in D × D and based on the a-priori selection (5.33) of the
stochastic polynomial degrees rm which are in turn based on the stochastic reg-
ularity result Proposition 5.30.

Alternatively, it is possible to numerically determine the polynomial degree r,
using Algorithm 5.1 which successively identifies the coordinates ym in which the
largest change in the Finite Element solution occurs when the polynomial degree
rm is increased.

139

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

Remark 5.36 (Simplification of Algorithm 5.1)

• Algorithm 5.1 to generate the adaptive polynomial degree r can be simplified
by replacing the stochastic PDE by a stochastic algebraic equation,

(
β0 +

M∑
m=1

βm ym

)
u = 1

where

β0 := inf
D

Ea and βm :=
√

λm‖ϕm‖L∞(D) &
√

λm for m ≥ 1.

• Moreover, {ηm,k}Kk=1 can be computed only for a small value of K and use
a-priori knowledge (exponential decay in k) to predict ηm,k for all k > K by
linear regression on {logηm,k }Kk=1.

Figures 5.4–5.7 show the results obtained using the algebraic version of Algo-
rithm 5.1 (Remark 5.36) for different correlation lengths (γ = 1, 1/2, 1/5 and 1/10)
on the unit square and the L-shaped domain. The plots all have the same scales
for the Eigenvalues λm (shown on the left ordinate) and the polynomial degree r m

(shown on the right ordinate).

5.3.6 Complete Algorithm

The analyticity of the covariance kernel Va can be exploited to semi-discretise
(5.31) with respect to y at a polynomial convergence rate, as stated in Proposi-
tion 5.32.

It is possible to obtain the solution of the semi-discrete problem (5.31) numer-
ically by solving a large number (depending on r) of independent deterministic
elliptic boundary value problems with different data: the corresponding algorithm
is derived below. Consequently, to compute the solution of (5.31), already avail-
able deterministic solvers combined with the algorithm derived in the following
can be used.

The semi-discretisation of (5.31) with respect to y can be done using any basis
of Pr . Generally, this results in a coupled system of deterministic elliptic boundary
value problems. However, there exists a choice of a basis of P r which leads to a

140

5.3 STOCHASTIC GALERKIN METHOD

10-5

10-4

10-3

10-2

10-1

100

101

 2 4 6 8 10 12 14 16 18 20
 0

 2

 4

 6

 8

 10

 12

λ m r m

m

10-5

10-4

10-3

10-2

10-1

100

101

 2 4 6 8 10 12 14 16 18 20
 0

 2

 4

 6

 8

 10

 12

λ m r m

m

Figure 5.4: Eigenvalue decay (left ordinate, solid line) and adaptive polynomial degree (obtained using
the algebraic version of the Algorithm 5.1) (right ordinate, dashed line) in the unit square
(left plot) and L-shaped domain (right plot) for the entire kernel exp(−|x−x′|2) (correlation
length γ = 1) in two dimensions. The polynomial degree r results in 26,624 and 165,888
deterministic problems on the left and right respectively.

10-5

10-4

10-3

10-2

10-1

100

101

 2 4 6 8 10 12 14 16 18 20
 0

 2

 4

 6

 8

 10

 12

λ m r m

m

10-5

10-4

10-3

10-2

10-1

100

101

 2 4 6 8 10 12 14 16 18 20
 0

 2

 4

 6

 8

 10

 12

λ m r m

m

Figure 5.5: Eigenvalue decay (left ordinate, solid line) and adaptive polynomial degree (obtained using
the algebraic version of the Algorithm 5.1) (right ordinate, dashed line) in the unit square
(left plot) and L-shaped domain (right plot) for the entire kernel exp(−4|x − x′|2) (corre-
lation length γ = 1/2) in two dimensions. The polynomial degree r results in 69,120 and
147,456 deterministic problems on the left and right respectively.

141

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

10-5

10-4

10-3

10-2

10-1

100

101

 2 4 6 8 10 12 14 16 18 20
 0

 2

 4

 6

 8

 10

 12
λ m r m

m

10-5

10-4

10-3

10-2

10-1

100

101

 2 4 6 8 10 12 14 16 18 20
 0

 2

 4

 6

 8

 10

 12

λ m r m

m

Figure 5.6: Eigenvalue decay (left ordinate, solid line) and adaptive polynomial degree (obtained using
the algebraic version of the Algorithm 5.1) (right ordinate, dashed line) in the unit square
(left plot) and L-shaped domain (right plot) for the entire kernel exp(−25|x − x′|2) (corre-
lation length γ = 1/5) in two dimensions. The polynomial degree r results in 32,768 and
262,144 deterministic problems on the left and right respectively.

10-5

10-4

10-3

10-2

10-1

100

101

 2 4 6 8 10 12 14 16 18 20
 0

 2

 4

 6

 8

 10

 12

λ m r m

m

10-5

10-4

10-3

10-2

10-1

100

101

 2 4 6 8 10 12 14 16 18 20
 0

 2

 4

 6

 8

 10

 12

λ m r m

m

Figure 5.7: Eigenvalue decay (left ordinate, solid line) and adaptive polynomial degree (obtained using
the algebraic version of the Algorithm 5.1) (right ordinate, dashed line) in the unit square
(left plot) and L-shaped domain (right plot) for the entire kernel exp(−100|x − x′|2) (cor-
relation length γ = 1/10) in two dimensions. The polynomial degree r results in 524,288
and 524,288 deterministic problems on the left and right respectively.

142

5.3 STOCHASTIC GALERKIN METHOD

decoupled system. Denote, for r ∈ N, the Eigenpairs of the symmetric bilinear
form

(u, v) �→
∫ 1/2

−1/2

u(t)v(t)t dt (5.37)

in Pr := span{1, t, t2, . . . , tr } by {µ j,r , Pj,r }rj=0.

For convenience of notation, define on the index set N
M the ordering

j ≤ r ⇐⇒ 0 ≤ jm ≤ rm ∀1 ≤ m ≤ M.

Further, set

P j,r :=
M⊗

i=1

Pji ,ri (5.38)

for j ≤ r ∈ N
M . Clearly,

Pr = span{P j,r : 0 ≤ jm ≤ rm∀1 ≤ m ≤ M},
and {P j,r} j≤r is the basis of Pr used to decouple the semi-discrete problem.

Proposition 5.39 For a given r ∈ N
M, let ũM,r be the solution of (5.31). For

every multi-index j ≤ r , denote by ũ M, j ∈ H 1
0 (D) the solution of the deterministic

diffusion problem in D
− div(ãM, j∇ũM, j) = f j (5.40)

where

ãM, j (x) := Ea(x)+
M∑

m=1

√
λm · ϕm(x)µ jm,rm ,

f j (x) := f (x) ·
M∏

m=1

∫ 1/2

−1/2

Pjm ,rm (t) dt .

(5.41)

Then,
ũM,r(x, y) =

∑
j≤r

ũM, j (x)P j,r(y). (5.42)

143

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

The statistics of uM , solution to (5.24), can be then obtained by backward sub-
stitution, via Proposition 5.27. For the simplest statistics, the mean and the corre-
lation, there holds

Proposition 5.43 If u M solves (5.24) and ũ M, j solves (5.40) for all j ≤ r, then

EuM (x) =
∑
j≤r

ũM, j (x)

M∏
m=1

∫ 1/2

−1/2

Pjm,rm (ym) dym

CuM (x, x ′) =
∑
j≤r

ũM, j (x)ũM, j (x
′)

M∏
m=1

∫ 1/2

−1/2

Pjm,rm (ym)2 dym

Algorithm 5.2 summarises the steps developed for solving (5.2).

5.4 Fast Computation of Karhunen-Loève
Expansion

In order to use the (truncated) Karhunen-Loève expansion (5.4) in practice, its first
M Eigenpairs must be computed efficiently and accurately in arbitrary domains D.
In one dimension, for particular kernels, explicit Eigenfunctions are known (e. g.
[60]). These can be used to obtain explicit Eigenpairs also for multidimensional
tensor product domains D, if Va(x, x′) is separable. This is often the case in
subsurface flow problems, where D is a box.

To deal with random coefficients in arbitrary geometries, however, an efficient
numerical approximation of the Eigenpairs of the operator associated to the co-
variance kernel via (5.9) is an essential step in solving (5.2). Note that only the
Eigenpairs {λm, um} with λm �= 0 are of interest. The Karhunen-Loève Eigenvalue
problem reads in variational form:
Find λm and 0 �= ϕm ∈ L2(D) such that

∫
D×D

Va(x, x ′)ϕm(x′)v(x) dx ′ dx = λm

∫
D

ϕm(x)v(x) dx ∀v ∈ L2(D).

(5.47)
Since the Eigenpairs of Va are used to approximate the diffusion coefficient a, L∞
approximations of the Eigenfunctions are needed.

144

5.4 FAST COMPUTATION OF KARHUNEN-LOÈVE EXPANSION

1. Computation of the deterministic part of the Karhunen-Loève expansion of a:

• Assume Va .

• Choose truncation order M .

• Compute the first M Eigenpairs {λm , ϕm}Mm=1 of Va . (5.44)

2. Computation of the polynomial basis used for semi-discretisation:

• Compute anisotropic polynomial degree r = (rm)M
m=1 ∈ N

M according to Algo-
rithm 5.1.

• Compute Eigenpairs {µ j,rm , Pj,rm }rm
j=0 in Prm := span{1, t, t2, . . . , trm } of (5.45)

(u, v)→
∫ 1/2

−1/2
u(t)v(t)t dt.

3. Semi-discretisation:

• Assume Ea and f .

• Compute ũM, j solution of the deterministic diffusion problem in D (5.46)

− div(ãM, j∇ ũM, j) = f j

where

ãM, j (x) = Ea(x)+
M∑

m=1

√
λm · ϕm(x)µ jm ,rm ,

f j (x) = f (x) ·
M∏

m=1

∫ 1/2

−1/2
Pjm ,rm (t) dt

and for all j = (j1, j2, . . . , jM) ∈ N
M with 0 ≤ jm ≤ rm ∀1 ≤ m ≤ M .

4. Post-processing:

• Assume {Xm }Mm=1.

• Compute statistics of uM (x, ω) via backward substitution

uM (x, ω) =
∑

j

ũM, j (x) ·
M∏

m=1

Pjm ,rm (Xm(ω))

Algorithm 5.2: Complete algorithm for solving (5.2).

145

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

To compute Karhunen-Loève Eigenpairs, a FE discretisation of (5.47) with
piecewise constants on a regular triangulation Th of D with mesh-width h is used
(which will later also be used for the FE approximation of (5.2)). Assume that T0
is partitioned as in Definition 5.7. This ensures that a is analytic/smooth/H p⊗H q

in an open neighbourhood of every element of T 0, depending on the (piecewise)
regularity of a in D. Let Th be an extension of T0. Let

S p,0(Th , D) := {v ∈ L2(D) : v|K ∈ Pp ∀K ∈ Th}
denote the FE space of discontinuous, piecewise polynomials of order p on T h .

Then, the Galerkin approximation of (5.47) with the Finite Element space VN =
S p,0(Th , D) ⊂ L2(D) reads:
Find 0 �= λh

m , ϕh
m ∈ VN such that

∫
D×D

Va(x, x′)ϕh
m(x′)v(x) dx ′ dx = λh

m

∫
D

ϕh
m(x)v(x) dx ∀v ∈ VN . (5.48)

Proposition 5.49 Suppose that a ∈ L∞(D × �) such that Va ∈ H p+1(D) ⊗
L2(D). Let (λm, um) be an Eigenpair of Va with λm �= 0. Then, for every p ≥ 0
holds for h → 0

‖ϕm − ϕh
m‖L∞(D) � h p+1, |λm − λh

m | � h p+1

where the constants depend on Va and m.

For the proof, refer to [99].
The calculation of Karhunen-LoèveEigenpairs involves the solution of the dense

matrix Eigenproblem corresponding to (5.48), i. e. of

Vϕ = λMϕ. (5.50)

Here, both matrices V and M are symmetric and positive definite, with M being
diagonal if the basis of S0,0(Th, D) is chosen as the characteristic functions of the
elements K ∈ Th .

For physical domains D in three dimensions and realistic meshes Th , the size of
the Eigenproblem can be as large as 106 and standard Eigensolvers are not appli-
cable.

An iterative Eigensolver based on Krylov subspaces [58, 59] which requires
only matrix vector multiplies is used. The multiplication ϕ �→ V ϕ is done in

146

5.4 FAST COMPUTATION OF KARHUNEN-LOÈVE EXPANSION

O(N log N) operations using a variant of the Fast Multipole Method for general
kernels.

The main idea of the Fast Multipole Method for general kernels is to expand the
kernel V (x, x ′) in a series which decouples the variables x and x ′. Truncation of
the expansion introduces a controllable error for x and x ′ far away from each other.
On the other hand, evaluating the truncated expansion of the kernel and especially
ϕ �→ V f ϕ is very fast (where V f denotes the matrix for the far field only). The
near field matrix V n for x and x ′ close together is then evaluated traditionally
resulting in a sparse matrix.

The following subsections review the Fast Multipole Method for general kernels
[93, 94].

5.4.1 Kernel Expansions in Fast Multipole Methods for General
Kernels

Definition 5.51 (Valid kernel expansion) Let η ∈ [0, 1) and I an index set and
V : D × D → C a kernel function. Then, V is said to have a valid kernel
expansion if for all x0, x′0 ∈ D, x0 �= x′0 and expansion orders m ∈ N, there exists
an approximation Vm of the form

V (x, x ′) ≈ Vm(x, x′; x0, x ′0)

:=
∑

(µ,ν)∈Im

κ(µ,ν)Xµ(x; x0)Yν(x′; x′0)

for Im ⊂ I× I such that for all x, x ′ ∈ D satisfying

|x − x0| + |x′ − x′0| ≤ η|x0 − x′0|

the error is bounded by

|V (x, x ′)− Vm(x, x′; x0, x′0)| ≤ C exp (−C(η)m) |x − x′|−ŝ (5.52)

with C(η) > 0 a decreasing function and C a constant both independent of m. ŝ
denotes the singularity order of the kernel for x = x ′.

147

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

Čebyšev Kernel Expansion

V is interpolated by Čebyšev polynomials. The Čebyšev polynomial of the first
kind on I = [−1, 1] for µ ∈ Z reads

Tµ(x) = cos(µ arccos(x)).

The Čebyšev interpolant of f defined on I is given by

fm(x) :=
∑
µ∈Z

|µ|<m

f̂µTµ(x), where f̂µ := 1/m

m∑
i=0

f (xi)Tµ(xi)

for the Čebyšev points xi = cos((i+ 1/2)π/m) ∈ I , i. e. the m roots of Tm . In higher
dimensions, a tensor product Ansatz is used.

Definition 5.51 is verified for kernels of the form V (x, x ′) = V (x′ − x) admit-
ting an analytic extension into C

d \ {0} in [93, 94]. The Čebyšev kernel expansion
reads

Vm(x, x′; x0, x′0) =
∑

(µ,ν)∈N
d
0×N

d
0|µ+ν|∞<m

(x0 − x)µ

µ!
(x′ − x′0)ν

ν! · (µ+ ν)!cµ+ν(x0, x′0),

(5.53)
where the coefficients c i , i ∈ N

d
0 , are defined by the polynomial interpolation

∑
µ∈Zd

|µ|∞<m

f̂µ(x0, x′0)Tµ

(
z

η‖x0 − x′0‖∞
)
=

∑
µ∈N

d
0 ,|µ|∞<m

cµ(x0, x′0)zµ, (5.54)

f (ξ ; x0, x′0) := V
(
χ(ξ ; x′0 − x0)

)
,

χ(ξ ; x′0 − x0) := η
∥∥x′0 − x0

∥∥ · ξ + x′0 − x0.

Remark 5.55 The evaluation of the coefficients f̂µ in (5.54) requires O(md) eval-
uations of V at the Čebyšev points of order m. However, the kernel V is not explic-
itly needed (in closed form) but can be given by a subroutine. It is trivial to adapt
the Čebyšev kernel expansion to new kernels. Therefore, it suites our needs very
well.

148

5.4 FAST COMPUTATION OF KARHUNEN-LOÈVE EXPANSION

Kernels V which are only piecewise analytic in D × D with D = ⋃J
j=1 D j

should be considered separately in each D j × Dj ′ (c. f. Definition 5.7). There, the
requested analytic extension is possible.

Other Kernel Expansions

Other kernel expansions which are primarily used in boundary element methods
are presented in [93, 94]: Taylor expansion [65, 64], Multipole expansion [16] and
fast Helmholtz solvers [34, 35].

5.4.2 Cluster Expansion

The previous section showed how a kernel can be approximated. In general, this
approximation is not valid for all (x, x ′) ∈ D × D. In order to define a global
approximation on D × D, a collection of local approximations is used, where
each of the local approximations is associated with an appropriate block of a given
partition of D × D. Those blocks are called clusters and the combination of local
approximations a cluster expansion.

More precisely, denote by P (D) the set of all subsets of D.

Definition 5.56 (Čebyšev radius and centre) For any set A ⊂ R
d , the Čebyšev

ball of A is the smallest ball containing A, i. e. define

• the Čebyšev radius ř A by

řA := inf
x∈Rd

sup
x′∈A

|x′ − x|.

• the Čebyšev centre čA by

řA = sup
x′∈A

|x′ − čA|.

Definition 5.57 (Far and near field) Suppose C ⊂ P (D) × P (D) to be a finite
partition of D × D and let η ∈ (0, 1). An element (σ, τ) ∈ C is called η-cluster iff

řσ + řτ ≤ η|čσ − čτ |.

149

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

The set of all η-clusters in C,

F := F (C, η) = {(σ, τ) ∈ C : (σ, τ) is an η-cluster}
is called the far field of grain η and its complement N := N (C, η) = C \F (C, η)

the associated near field.

Definition 5.58 (Cluster expansion) Let the kernel V (x, x ′) satisfy the Defini-
tion 5.51. Then, for an analytic kernel V ,

Vm(x, x′) :=
{

Vm(x, x′; čσ , čτ) if (x, x′) ∈ σ × τ and (σ, τ) ∈ F ,

V (x, x ′) otherwise

for all (x, x ′) ∈ D × D, x �= x′ is a so-called cluster expansion of the kernel
V (x, x ′). For a piecewise analytic kernel V , define

Vm(x, x′) :=

⎧⎪⎨
⎪⎩

V j j ′
m (x, x′; čσ , čτ) if (x, x′) ∈ σ × τ, (σ, τ) ∈ F j j ′,

σ ⊂ Dj and τ ⊂ D j ′ ,

V (x, x ′) otherwise,

where F j j ′ is the far field of D j × Dj ′ .

Proposition 5.59 (Local error bound) By construction, the local error bound in
(5.52) remains valid for a cluster expansion:

|V (x, x ′)− Vm(x, x′)| ≤ C0(C1η)m |V (x, x ′)|
for all (x, x ′) ∈ D × D, x �= x′.

Hence, the matrix vector multiplication ϕ �→ Vϕ is approximated by

ϕ �→ Ṽϕ := V nϕ + V f ϕ, (5.60)

where V n is the near field matrix

[
V n]

i, j :=
∫

σ×τ
(σ,τ)∈N

Va(x, x′)ϕ j (x′)ϕi (x) dx ′ dx,

150

5.4 FAST COMPUTATION OF KARHUNEN-LOÈVE EXPANSION

ϕi are basis functions of S p,0(Th, D), and V f is the far field approximation by

ϕ �→ V f ϕ :=
J∑

j, j ′=1

∑
(σ,τ)∈F j j ′

X�σ
(

F j j ′
στ (Y τϕ)

)
. (5.61)

The matrices Xσ , Y τ and Fστ are defined by

[
Xσ

]
µ, j :=

∫
σ

Xµ(x; čσ)ϕ j (x)dx

[
Y τ

]
ν,i :=

∫
τ

Yν(x′; čτ)ϕi (x′)dx′

[
F j j ′

στ

]
µ,ν
:= κ

j j ′
(µ,ν)

(čσ , čτ)

for (µ, ν) ∈ Im .

Remark 5.62

• The cluster algorithm is only based on Definition 5.51. This ensures the
exponential convergence with respect to the expansion order m. In addition,
it leads to a low rank approximation of the far field part of V .

• In the acceleration of the matrix vector multiplication ϕ �→ Vϕ it is essential
that the matrices X σ , Y τ and Fστ are never formed explicitly. Typically, the
entries [Fσ,τ]µ,ν only depend on µ + ν with |µ + ν| < m. Therefore, only
O(m p) instead of O(m2p) entries have to be evaluated and stored (p ∈
{2, 3} depends on the chosen kernel expansion).

• The Čebyšev kernel expansion (5.53) preserves the symmetry of the kernel V :
Vm(x, x ′) = Vm(x′, x). If, in addition, the given partition C is symmetric,
i. e. (σ, τ) ∈ C ⇒ (τ, σ) ∈ C, then, Ṽ in (5.60) is also symmetric for
Galerkin discretisations.

5.4.3 Cluster Algorithm

The main goal is to efficiently (in terms of storage and computation time) realise
(5.61) in the matrix vector multiplication (5.60). To this end, an appropriate parti-
tion C is needed.

151

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

• If |A| < c, return ({A} ,∅),
• else

– (A0, A1) := split(A).

– (Vi ,Ei) := tree(Ai , c) for i = 0, 1.

– Return (V0 ∪ V1 ∪ {A} ,E0 ∪ E1 ∪ {(A, A0), (A, A1)}).

Algorithm 5.3: (V,E) = tree(A, c). Generates a tree (V,E) out of a set A of cells of the domain D.
V is the set of vertices and E the set of edges in the tree. Split bisects a set A into two
disjoint sets A0 and A1 such that the Čebyšev radius of both sets is reduced.

An efficient way is to use a hierarchical decomposition of the mesh T . Algo-
rithm 5.3 generates such a decomposition, a so-called cluster tree:

Definition 5.63 (Cluster tree) A cluster tree B(A) of a finite set A consists of sub-
sets of P (A) \ ∅ where

• root(B(A)) := A ∈ B(A),

• σi ∩ σ j ∈
{∅, σi , σ j

}
for σi , σ j ∈ B(A)

holds. The subsets σ ⊂ B(A) are called nodes of the tree B(A) or clusters of A.
The children of a node σ are the subsets σ i ∈ B(A), i ∈ Iσ with |Iσ | minimal,
satisfying

σi ⊂ σ, σi �= σ, σ =
⋃
i∈Iσ

σi .

A node σ of B(A) is called a leaf if it has no children, i. e. Iσ = ∅.

For a piecewise analytic kernel V , a cluster tree of each D j in Definition 5.7 has to
be computed leading to a multi-rooted cluster tree.

The hierarchical decomposition of the mesh is used in Algorithm 5.4 to generate
the partition C of the mesh into its far field F and its near field N by calling
partition(T ,T). This partition is symmetric in the sense of Remark 5.62. For a
piecewise analytic kernel V , the far fields {F j j ′}Jj, j ′=1 have to be computed by J 2

calls to partition.

152

5.4 FAST COMPUTATION OF KARHUNEN-LOÈVE EXPANSION

• If (⋃
a∈A

a,
⋃
b∈B

b
)

is an η-cluster, then return (∅,{(A, B)}),
• else:

– Let A′ := children(A) and B ′ := children(B ′). (5.64)

– Return

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋃
a∈A′,
b∈B′

partition(a, b) if A′ �= ∅ and B′ �= ∅ and |A| = |B|,

⋃
a∈A′

partition(a, B) if A′ �= ∅ and (|A| > |B| or B ′ = ∅),

⋃
b∈B′

partition(A, b) if B ′ �= ∅ and (|B| > |A| or A′ = ∅),

({(A, B)} ,∅) otherwise.

Algorithm 5.4: (N , F) = partition(A, B). The tree generated with tree in Algorithm 5.3 serves as
mean to define the children of a set of cells in (5.64).

The matrix vector multiplication ϕ �→ V ϕ =: v in (5.60) is evaluated in five
steps:

1. Compute the near field contribution ϕ n := V nϕ.

2. Compute uτ := Y τϕ for all τ .

3. Compute

uσ :=
∑

(σ,τ)∈⋃ j, j ′ F j j ′
F j j ′

στ uτ .

4. Compute

ϕ f :=
∑
σ

X�σ uσ .

5. Sum up the near field and far field contributions v := ϕ n + ϕ f .

153

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

The steps 2–5 compute the far field contribution given in (5.61). The steps 2 and
4 can be accelerated by once more taking advantage of the hierarchical decompo-
sition. The idea is to not store the matrices X σ and Y τ but represent them using
the hierarchical decomposition and so-called shift operators. For details, we refer
to [93, 94].

5.4.4 Overall Error and Complexity

The following result [93, 94] shows the overall error caused by the discretisation
and the approximation of V by Ṽ . The result is first given for a source problem:
Given f ∈ H−s/2(D), find u ∈ H s/2(D) such that

(V(u), v) = a(u, v) = (f, v) ∀v ∈ H s/2(D), (5.65)

where V(u) is given by (5.9). (5.65) is solved with VN = S p,p(D,) for p = 0, 1.

Proposition 5.66 Assume that the bilinear form in (5.65) is coercive, s < 2p + 1
and t > 0. Let the cluster approximation Vm of the far field satisfy Definition 5.51
with a sufficiently small grain η. Choose the expansion order m according to

m ≤ C| log h|
with C > 0 sufficiently large.

• There exists h0 > 0 such that the Galerkin discretisation with the perturbed
matrix Ṽ in (5.60) is stable.

• The Galerkin solution of Ṽ u = f converges with

‖u − uN‖Hs/2(D) ≤ Chmin(t,p+1−s/2) ‖ f ‖H−s/2+t (D) . (5.67)

According to Proposition 1.37, the convergence (5.67) also holds for Eigenprob-
lems such as (5.47)—the Eigenvalues converge twice as fast as the Eigenvectors.

The complexity of the algorithm is essentially log-linear [93]:

Proposition 5.68 (Complexity of the cluster algorithm) Let J 2 be the number
of analyticity domains in Definition 5.7. Then, the complexity of the cluster al-
gorithm is O(N log5 N J 2) and the storage requirements are O(N log4 N J 2).

154

5.5 PARALLEL SOLUTION OF DETERMINISTIC PROBLEMS

blocksize=1000 � number of deterministic FE problems in a block
nofproblems=7776 � total number of deterministic FE problems

start=0
end=0
while [$start -lt $nofproblems]; do � loop over all blocks

let "end = start + blocksize - 1"
if [$end -ge $nofproblems]; then

let "end = nofproblems - 1"
fi
� submit job to queueing system
qsub -v start=$start,end=$end -l nodes=1 diffusion job
let "start += $blocksize"

done

Algorithm 5.5: Master script (Bash syntax)

5.5 Parallel Solution of Deterministic Problems

As the deterministic Finite Element problems (Proposition 5.40) are all completely
independent, they can be solved in parallel on a Beowulf type cluster [18]. This
parallelisation is achieved by a simple shell script (referenced as the master script)
which runs on the administration node of a Beowulf cluster. These deterministic
FE problems are so-called “embarrassingly parallel”.

The master script (Algorithm 5.5) is given the total number of deterministic
problems to be solved and the size of the blocks in which the deterministic prob-
lems should be grouped. Using this data, the master script sets up a job for every
block of problems3 in the queueing system of the Beowulf cluster [7] using a job
script. The queueing system calls the job script when enough CPUs on the cluster
are available. As we only request one CPU per job, this should happen fairly often.
It is up to the queueing system to parallelise the whole process. If enough CPUs
are available, all blocks are solved in parallel. If the cluster is nearly full (only very
few CPUs available at the same time), it might even occur, that the whole problem
is solved serially—this is the worst case scenario.

3A typical size of a block should give a run time of an hour or less, depending on the total number of
problems.

155

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

mkdir -p $LOCAL SCR
TEMPDIR=‘mktemp -d $LOCAL SCR/diffusion XXXXXX‘ � temporary directory

rcp $WORK SRV:$PBS O WORKDIR/diffusion.tar.gz $TEMPDIR � get archive
cd $TEMPDIR
tar xzf diffusion.tar.gz � unpack input archive

diffusion -f diffusion.concepts -s $start -e $end � call FE solver

res archive=results s ${start} e ${end}.tar.gz
tar czvf $res archive alpha*vector diffusion.out � results archive
rcp $res archive $WORK SRV:$PBS O WORKDIR � send results back

cd $HOME
rm -rf $TEMPDIR

Algorithm 5.6: Job script (Bash syntax)

The job script (Algorithm 5.6) is aware of the archive diffusion.tar.gz
containing the input data and the Finite Element solver and the indices of the prob-
lems via input arguments. This archive is then unpacked and the FE solver is run.
One block of problems is solved by executing the FE solver once. It reads in
the mesh and additional data and computes orthogonal polynomial basis (5.45) at
start-up. Then, all the deterministic problems are solved serially one after another.
According to (5.41), the stiffness matrix and the load vector have to be computed
separately for every problem. Every deterministic FE solve generates one vector of
coefficients. The resulting data of all deterministic problems in the block is again
archived and sent back to the administration node of the cluster.

When all jobs generated by the master script have been run, a result archive
from every block exists on the administration node. The collected data can then be
used to do some post-processing. Most of the post-processing can again be done
serially: computing the approximation of the mean and correlation of the quantity
of interest u is not much more than a sum over all solutions of the deterministic
problems (Proposition 5.43). More complicated statistics like probabilistic level
sets

Dδ
ε := {x ∈ D : P(|u(x, .)| > δ) < ε}

156

5.6 NUMERICAL RESULTS

might require additional Monte Carlo evaluation of stochastic integrals—which
again can be performed in parallel.

5.6 Numerical Results

5.6.1 Software

Both key computational tasks from Algorithm 5.2 (computation of the Karhunen-
Loève expansion and the solution of the deterministic problems) are done with the
same class library Concepts (c. f. [26, 54, 93] and Part III). The main advantage is
that transfering the data for the Karhunen-Loève expansion from (5.44) to (5.46)
in Algorithm 5.2 is particularly easy due to shared data structures. The two differ-
ent computational tasks are performed with two different main programs and on
different hardware. More precisely, the computations are done on the same mesh
T 4 and the Fast Multipole solver which computes the Karhunen-Loève expansion
assigns the values of the Eigenfunctions {ϕm} to the cells of the mesh (which have
a unique number). Therefore, the Finite Element solver is able to read the data
and assign it to the correct cells using the same unique cell numbers. This makes
it even possible to use a further refined mesh (compared to the Karhunen-Loève
expansion) for the Finite Element computations.

Karhunen-Loève Expansion

The Karhunen-Loève expansion (5.44) in Algorithm 5.2 is solved by a generalised
Fast Multipole Method (c. f. Section 5.4). In our present implementation, this step
is performed serially since the complexity of the Fast Multipole Method is log-
linear in N . We are able to treat reasonably large Finite Element meshes with
several hundred thousand degrees of freedom with this serial implementation. As
Ansatz functions, piecewise constants S0,0(D,T) or piecewise linears S1,0(D,T)

are used. The Eigenproblem is solved using JDBSYM by Roman Geus and Oscar
Chinellato [58, 59].

4Note that this assumption was made only for convenience of implementation—if an adaptive FE
solver for the equation (5.40) is available, then for each j , a different mesh adapted to the coefficient
ãM, j could be created. This, however, would require more sophisticated post-processing when
computing mean and variances of the stochastic Galerkin solution.

157

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

Deterministic Finite Element Problems

For the deterministic Finite Element problems (5.46), we use a linear or quadratic
FEM (i. e. S1,1(D,T) and S2,1(D,T) respectively). The resulting linear system
is solved using a a diagonally preconditioned conjugate gradient algorithm.

Orthogonal Polynomials

The computation of the orthogonal polynomials in step (5.45) is also important but
not very complex. It amounts to solving matrix Eigenvalue problems of the type
Ax = λBx with symmetric and positive semi-definite matrices A and B of size
r j . Due to the product form (5.38) of the shape functions in the stochastic variable,
only the univariate form (5.37) needs to be discretised. Since in the adaptive algo-
rithms for the selection of the stochastic polynomial degrees the optimal degrees
are a-priori unknown, the univariate generalised Eigenproblem needs to be solved
for all possible polynomial degrees r j which could occur. This could be done in
MATLAB for degrees between 1 and 20 once and the Eigenpairs stored on disk for
the main calculation. However, as these Eigenproblems are very moderate in size,
we actually compute them during the start-up phase of a block of deterministic
problems using LAPACK [75] (c. f. Section 5.5).

Post-processing

The post-processing is again done serially (mostly on the administrative node of
the Beowulf cluster). We compute the expected value and variance of ũ N and their
respective L2- and H 1-norms according to Proposition 5.43.

As in Section 5.3.3, we assume that the random variables {Xm}Mm≥1 in (5.19) are
independently identically distributed with a uniform distribution on [− 1/2, 1/2].

5.6.2 Hardware

The computations were performed on the following machines.

• The Karhunen-Loève expansion (i. e. the solution of the large Eigenproblem
with generalised Fast Multipole Methods) was done on a Sun Fire 880 with
32 GBytes of physical main memory and 8 processors at 800 MHz—only
using one processor, though. GCC 3 [57] was used to compile the software.

158

5.6 NUMERICAL RESULTS

M r P
1 (0) 1
1 (1) 2
1 (2) 3
3 (3, 1, 1) 16
3 (4, 1, 1) 20

M r P
3 (5, 1, 1) 24
4 (5, 1, 1, 1) 48
6 (6, 1, 1, 1, 1, 1) 224
6 (7, 2, 2, 1, 1, 1) 576
8 (8, 2, 2, 1, 1, 1, 1, 1) 2592

Table 5.1: Adapted polynomial degrees in the stochastic variables for different truncation parameters
M of the Karhunen-Loève expansion. These values are found with Algorithm5.1 (θ = 0.7).

• The deterministic Finite Element problems were solved on the Linux Be-
owulf cluster Asgard [7]. The compute nodes have two Pentium III (Kat-
mai) at 500 MHz and 1 GByte of main memory. The compute nodes are
interconnected with fast Ethernet. Again, we used GCC 3 [57] to compile
the software.

5.6.3 Computations

The model problem used is (5.2) on D = (0, 1)2 with

Ea(x) = 2+ x, Va(x, x′) = exp(−|x − x ′|2), f (x) = 1.

There is no exact solution available.
The Eigenvalue problem (5.48) was solved using 2 · 44 = 512 cells with piece-

wise constants: VN = S0,0
∂ D(Th , D) without using a Fast Multipole Method (but

with the full matrix). The results of (5.48) of the chosen kernel Va(x, x′) are de-
picted in Figure 5.4.

The deterministic FE problems were solved using 2 · 4level cells with piecewise
linear or quadratic basis functions: VN = S

p,1
∂ D (Th , D), where p = 1 or 2, with a

diagonally preconditioned conjugate gradient solver.

Stochastic Galerkin Method

The plots in Figure 5.8 show the convergence history of the relative error of the
H 1-norm squared of the expected value and the variance of the solution of the

159

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

10-4

10-3

10-2

10-1

100 101 102 103 104re
l.

er
ro

r
of

 H
1 -n

or
m

2 o
f e

xp
. v

al
ue

number of problems P

10-4

10-3

10-2

10-1

100

100 101 102 103 104

re
l.

er
ro

r
of

 H
1 -n

or
m

2 o
f v

ar
ia

nc
e

number of problems P

Figure 5.8: Relative error of the H1-norms squared of the expected value (left) and the variance (right)
plotted versus the number of problems P . The dotted lines show the Monte Carlo method
and the dashed lines the stochastic Galerkin method. The dash-dotted lines show O(1/P1/2)

and the solid lines give the sub-algebraic theoretical convergence (5.34).
Two different Monte Carlo computations are shown: both with M = 15, + with linear
FEM on refinement level 5 (961 degrees of freedom in the spatial discretisation) and × with
quadratic FEM on level 8 (261121 degrees of freedom). The seeds of the pseudo-random
number generator were the same for both computations.
Four different stochastic Galerkin computations with the adaptive degrees from Table5.1
are shown: ∗ with linear FEM on level 5 (961 dof), ◦ with linear FEM on level 6 (3969 dof),
� with quadratic FEM on level 5 (3969 dof), � with quadratic FEM on level 8 (261121
dof).

model problem. The plotted quantity in the case of the expected value is

∥∥EuM (x)
∥∥2 − ∥∥Eu(x)

∥∥2

∥∥Eu(x)

∥∥2
,

where ‖Eu(x)‖2 was obtained by Rhomberg extrapolation of the last seven values
of the adaptive stochastic degree computations with M = 3, . . . , 8 and quadratic
FEM on level 8. The same procedure was applied for the variance.

The convergence histories of the computations with different spatial resolutions
in Figure 5.8 show that it is important to equilibrate the errors from different
sources. In this case (ignoring the modelling error), error contributions come from
the discretisation in the stochastic and spatial variables and the discretisation of the

160

5.6 NUMERICAL RESULTS

Karhunen-Loève expansion (5.48). There are different parameters to control these
discretisations: M and r for the stochastic variables and the polynomial degree p
and the refinement level for the spatial variables. The Karhunen-Loève expansion
(5.48) is controlled by the level only. The discretisation error of the Karhunen-
Loève expansion (5.48) does not play a role in the range of parameters discussed
here: We compared the convergence histories of two computations where only the
level of the Karhunen-Loève expansion in (5.48) differed and they were identical.
The same decrease of the convergence rate as seen for the coarser discretisations
(∗, ◦ and � in Figure 5.8) would also happen with the finest discretisation (� in
Figure 5.8 with quadratic FEM on level 8) if the number of problems P was higher:
On these curves, only the stochastic resolution is increased, and the errors are not
equilibrated.

Monte Carlo Method

Most of the code for the computations with the stochastic Galerkin method and the
Monte Carlo method are identical. Only the diffusion coefficient, the right hand
side and the post-processing differ slightly. The same methods for distributing the
work load on a Beowulf type cluster as described in Section 5.5 can be applied to
the Monte Carlo method.5

The Monte Carlo computations are done using (5.19) with a new realisation of
{Xm}Mm=1 for each aM (x, ω). The Xm are modelled as independently identically
distributed random variables with a uniform distribution on [− 1/2, 1/2] (c. f. Re-
mark 5.28). Each realisation ym of Xm is computed using

ym = rand()

RAND MAX
− 1/2,

where rand() calls the pseudo-random number generator of the GNU C library
returning a pseudo-random integer between 0 and RAND MAX. The right hand
side can be kept unchanged for all FE problems to be solved.

In the post-processing step, the expected value and the variance are computed
using

EuM (x) = 1

P

P∑
i=1

ũi (x), varuM (x) = 1

P − 1

P∑
i=1

(
ũi (x)− EuM (x)

)2
,

5It has to be taken care of properly seeding the pseudo-random number generator.

161

5 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

where P is the number of realisations of a M (x, ω) and ũ i (x) the resulting solu-
tion. The results taken at intermediate steps yield the convergence history shown
in Figure 5.8. Apparently, the error of the H 1-norms squared of the expected value
and the variance converge with O(1/P 1/2).

Conclusions

The convergence histories of the stochastic Galerkin method (dashed lines) in Fig-
ure 5.8 indicate superior convergence properties compared to the Monte Carlo
method (dotted lines):

• The convergence rate of the Monte Carlo method O(P 1/2) is algebraic.

• Although the stochastic Galerkin method converges only with a sub-
algebraic rate in two dimensions (5.34), it is able to beat the Monte Carlo
method in our experiments.

• The stochastic Galerkin method performs better than the Monte Carlo
method already in the pre-asymptotic range.

• Refining the spatial discretisation dramatically improves the approximation
using the stochastic Galerkin method. On the other hand, the Monte Carlo
method benefits from better spatial discretisation only by decreasing the con-
vergence rate later (c. f. range P = 103 to 104 in Figure 5.8).

• The convergence of the stochastic Galerkin method is more predictable than
the convergence of the Monte Carlo method.

• The discretisation in the stochastic variables can be controlled much better
in the case of the stochastic Galerkin method using a non-uniform r . The
stochastic discretisation of the Monte Carlo method is only controlled by the
truncation level M in (5.19).

162

Part III

Software: Concepts

6 hp-Finite Element
Methods in Concepts

In the introduction of this thesis, we have defined our mission: Bijectivley map
well-defined mathematical formulations of physical models to simulation software.
We concentrate on variational formulations of operator equations given in the form
Find u ∈ U such that

a(u, v) = l(v) ∀v ∈ V . (6.1)

This problem and specific instances of it are mapped onto a hierarchy of classes
implemented in C++ in the software Concepts [26, 54, 73, 74]. A short presentation
of Concepts has already been given in the introduction to this thesis, it is introduced
further in the first section of this chapter. In addition, the choice of C++ as an object
oriented programming language shall be justified.

In the rest of the chapter, the main ingredients and their implementation of our
hp-discretisation of H 1

�D
(D) are explained: meshes and subdivisions, shape func-

tions and global basis functions and fast integration techniques for the element
matrices.

6.1 Introduction

6.1.1 Object Oriented Programming

C++ is a flexible, object oriented language supporting the high level paradigms
polymorphism (inheritance) and parametrised types (templates). On the other
hand, it is still possible to write hand-optimised low level code to get maximal
performance in critical parts of the code. Additionally, compilers with good opti-
misation capabilities are widely available [57]. C++ is widely used in both scien-
tific and commercial applications.

165

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

The main advantage of object oriented programming (as opposed to structured
programming as in the C and Fortran world) is the high level of abstraction which
is possible. If a sufficiently high level of abstraction (comparable to the abstract
mathematical formulation (6.1)) is reached a unified and timeless design of smula-
tion software is possible. To reach such a high level of abstraction with a structured
programming language would be a much more complex task.

Cleverly adding some low level code in critical parts to the otherwise high level
software makes it possible to write C++ code which even outperforms Fortran
[101].

UML Diagrams

The design of object oriented software can be described using UML diagrams (the
Unified Modelling Language UML [89] is a graphical language). We use UML
diagrams to describe the statics and the dynamics of Concepts.

A box in a UML diagram denotes a class (if the name is underlined, it denotes
an object, i. e. an instance of a class). Italic identifiers are abstract (i. e. have no
implementation behind), whereas underlined members are static (i. e. class and not
object attributes). Arrows with empty heads ()) denote relations in a class hierar-
chy. Dashed arrows in a class hierarchy are used for specialisations of interfaces
whereas solid arrows mean normal specialisation. An empty or filled diamond (♦
and �) at an arrow tail means aggregation: the class on the arrow head is tightly
linked to the class on the arrow tail.

In the text, abstract classes are typeset in italic sans-serif like AbstractClass and
concrete classes in sans-serif like NormalClass.

6.1.2 Basic Classes in Concepts

An application in Concepts typically performs the following steps:

1. Build a meshed domain of interest D. A mesh T is built from cells which
contain the element maps.

2. Build a space VN on the mesh. The space creates the elements. Typical for
FEM and BEM: the elements are associated to cells in the mesh.1

1As introduced in Chapter 2, the cells are geometric entities (including coordinates and neighbourhood
information). The elements add Finite Element information to the cells: polynomial degree, shape
functions etc. (at least in the cases considered here).

166

6.1 INTRODUCTION

«interface»
Mesh

+ncell(): int
+scan(): Scan<Cell>

«interface»
Space

+dim(): int
+nelm(): int
+scan(): Scan<Element>

«interface»
Element

+T(): TMatrix

«interface»
Cell

+child(): Cell

«interface»
Scan

+eos(): bool
+operator++(): P

P
«interface»

ElementMap
+operator()(x:Real[dim]): Real[dim]

Figure 6.1: Classes in Concepts representing mesh, space and elements.

3. Build the system matrix A and the system vector l from the element contribu-
tions computed by the bilinear and linear forms a(. , .) and l(.) respectively.

4. Solve the resulting linear system with the solver.

Refer to the introduction (including Figure 0.1 on page 6) of this thesis for an
example.

In Concepts, there are classes for the space, the mesh and the elements: see
Figure 6.1. The main member of the classes Mesh and Space is scan(). In both
classes, it returns a Scan<P> with the template parameter P set accordingly. The
instance of Scan is a scanner over the space or the mesh and makes it possible to
loop over the elements of the space or the cells of the mesh. Typically, the construc-
tor of a space loops over all cells of the mesh and creates an associated element to
every cell.2 The most important member of the class Element is T(): It returns
the T matrix (c. f. Section 3.3) of an element. The T matrix is used to assemble
the local shape functions defined on the element into global basis functions of the
space defined on the whole domain D. The element map FK : K̂ → K is realized
by ElementMap.

Figure 6.2 shows the classes of Concepts for the bilinear and linear form, the
stiffness matrix and load vector and the linear solver. The constructor of the stiff-
ness matrix SparseMatrix takes as arguments a space and a bilinear form. It as-
sembles the stiffness matrix by looping over the elements of the space and calling
the application operator operator() of the bilinear form on the elements. The same
is done in the constructor of the load vector Vector. By using these abstract class
declarations, it is possible to explicitly implement the assembly operator (c. f. Defi-
nition 3.22): Algorithm 6.1 shows the constructor of Vector, i. e. the assembling of

2However, there are methods where elements do not have a cell of the mesh associated to it. For this
reason, Element in Figure 6.1 does not have a relation with Cell .

167

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

«interface»
Operator

+operator()(fncY:Function,fncX:Function)
+spaceX(): Space
+spaceY(): Space

SparseMatrix
-spcX: Space
-spcY: Space
-A: HashedSparseMatrix
+SparseMatrix(spc:Space,bf:BilinearForm)

CG
-A: Operator
+Solver(a:Operator)

Function
-spc: Space
+operator+(fnc:Function): Function
+operator-(fnc:Function): Function
+space(): Space

Vector
+data: Real[]
+Vector(spc:Space,lf:LinearForm)

ElementMatrix
-data: Real[]
+ElementMatrix(m:int,n:int)
+transpose():
+operator()(i:int,j:int): Real

«interface»
BilinearForm

+operator()(elmX:Element,elmY:Element,em:ElementMatrix)

«interface»
LinearForm

+operator()(elm:Element,em:ElementMatrix)

Figure 6.2: Classes in Concepts for bilinear and linear forms, stiffness matrix and load vector and the
solver.

the global load vector—the assembly operator of a stiffness matrix looks similar.
The solver is, like SparseMatrix, derived from the general class Operator . Opera-
tor is the realization of the general concept of an operator between vector spaces.
A solver (in this case conjugate gradients CG) fits into this concept, too.

Remark 6.2 The solver and matrix classes are either our own implementation
(CG, GMRes, SparseMatrix and DenseMatrix) or interfaces to other packages
(SuperLU [45, 46], PETSc [11, 12, 13], Pardiso [91] and Umfpack [38, 39, 40]).

6.2 Mesh Classes in Concepts

This section is devoted to the classes in Concepts which handle the mesh T . The
first part explains the data structures in some detail. The second part shows how the
different subdivision strategies for quadrilaterals and hexahedra are implemented.

6.2.1 Classes to Handle a Mesh

The most important part of a mesh is a scanner over all cells in the mesh (c. f. Sec-
tion 6.1.2 and Figure 6.1). For one, two and three dimensions, there are separate
specialisations of Mesh, namely Mesh1, Mesh2 and Mesh3 respectively. A real-
ization of a specific mesh (like a line in one dimension) is then a specialisation of
the respective interface class as shown in Figure 6.3.

The scanner of a mesh is used to loop over the cells of a mesh. A Cell consists
of a topological entity of the respective dimension (for instance Edge, Triangle or

168

6.2 MESH CLASSES IN CONCEPTS

Vector::Vector(const Space& spc, LinearForm& lf) : v_(new F[n_]) {
memset(v_, 0, n_ * sizeof(v_[0])); // set the load vector to 0

ElementMatrix A(3, 1), B(3, 1); // initialize 2 element matrices

Space::Scan* sc = space().scan(); // get a scanner to loop over the space
while (*sc) { // loop over all elements of the space
Element& elm = (*sc)++; // get the current element
const TMatrixBase& T = elm.T(); // get the T matrix of the element
lf(elm, A); // evaluate the linear form
A.transpose(); T(A, B); // ** apply the T matrix **
B.transpose();

for(int i = T.n(); i--;) { // add the element’s contribution
v_[T.index(i)] += B(i,0); // into the global load vector

}
}
delete sc;

}

Algorithm 6.1: Constructor of the class Vector which implements the assembly operator for a load vec-
tor (3.24). This does not depend on any particular implementation of the Finite Element
space or the linear form but only on the abstract classes. The key point is the application
of the T matrix: (l�K T K)� = T�K l K , c. f. (3.24).

«interface»
Mesh

+ncell(): int
+scan(): Scan<Cell>*

«interface»
Mesh1

+scan(): Scan<Cell1>*

«interface»
Mesh2

+scan(): Scan<Cell2>*

«interface»
Mesh3

+scan(): Scan<Cell3>*

Line
-vtx: Vertex[]
-edg: Edge[]
-cell: Cell1[]
+Line()

Import2dMesh
-vtx: Vertex[]
-edg: Edge[]
-cell: Cell2[]
+Import2dMesh(coord:string,elm:string,boundary:string)

Import3dMesh
-vtx: Vertex[]
-edg: Edge[]
-tri: Triangle[]
-quad: Quad[]
-cell: Cell3[]
+Import3dMesh(coord:string,elm:string,boundary:string)

Figure 6.3: Classes for meshes I. An implementation of a concrete mesh is a sibling of Line, Im-
port2dMesh or Import3dMesh depending on the spatial dimension. Import2dMesh and Im-
port3dMesh can be used to import mesh descriptions from files (with the same structure as
in [6]).

169

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

• Initialise an (empty) list of auxiliary data for edges.

• Loop over all cells in the mesh

– For each edge of the cell

∗ If the edge is not yet in the list, add it.

∗ Register the current cell to the edge.

Algorithm 6.2: Finding neighbours over edges in a two dimensional mesh. This algorithm creates a
temporary list where all edges are stored including links to their adjacent cells.

Hexahedron) and an element map. For each of these topological entities, there is a
specialisation of Cell (this is not shown). The cell links topological and geometrical
information.

The hierarchy of the topological classes is shown in Figure 6.4. An important
part of the topological information is knowledge about a cell’s neighbours. How-
ever, this information is only stored implicitly in the data structure. A Quad stores
links to its four edges and an Edge stores links to its two vertices. If two quadri-
laterals share an edge, the edge only exists once in memory. To find out which two
quadrilaterals share an edge, one has to loop over all quadrilaterals and check their
edges. Algorithm 6.2 does this for a two dimensional mesh: it builds a (temporary)
data structure containing references to all edges and the links to the cells belonging
to the respective edges. In the implementation of this algorithm and others in this
chapter, data structures of the Standard Template Library STL [86, 102] allowing
efficient access to the data, are used.

Figure 6.5 shows the Object Diagram of a three dimensional mesh.

6.2.2 Subdivision Strategies

In Chapter 2, it was shown that anisotropic refinements are necessary for expo-
nential convergence of hp-FEM. Restricting ourselves to refining an edge into two
equally sized parts3, the refinements in Figure 3.14 on page 79 need to be possible
for a quadrilateral.

3The subdivisions ratio or geometric grading factor is σ =1/2.

170

6.2 MESH CLASSES IN CONCEPTS

Connector
-key: int
-attrib: Attribute
+Connector(key:int,attrib:Attribute)
+child(i:int): Connector*
+related(): int
+operator==(cntr:Connector): bool

Connector0
-counter: int
+Connector0(attrib:Attribute)
-Connector0(key:int,attrib:Attribute)

Connector1
-counter: int
+Connector1(attrib:Attribute)
-Connector1(key:int,attrib:Attribute)

Connector2
-counter: int
+Connector2(attrib:Attribute)
-Connector2(key:int,attrib:Attribute)

Connector3
-counter: int
+Connector3(attrib:Attribute)
-Connector3(key:int,attrib:Attribute)

Vertex
+Vertex(attrib:Attribute)
+child(int): Vertex*

Edge
-vtx: Vertex[]
-child: Edge[]
+Edge(vtx0:Vertex,vtx1:Vertex,attrib:Attribute)
+child(i:int): Edge*
+vertex(i:int): Vertex*

(a) Basic topological classes including zero and one dimensional specialisations Ver-
tex and Edge respectively.

Connector2
-counter: int
+Connector2(attrib:Attribute)
-Connector2(key:int,attrib:Attribute)

Triangle
-edg: Edge[]
-rho: Z2[]
-child: Triangle[]
+Triangle(edg0:Edge,...,edg2:Edge,attrib:Attribute)
+child(i:int): Triangle*
+edge(i:int): Edge*
+vertex(i:int): Vertex*
+rho(i:int): Z2

Quad
-edg: Edge[]
-rho: Z2[]
-child: Quad[]
+Quad(edg0:Edge,...,edg3:Edge,attrib:Attribute)
+child(i:int): Quad*
+edge(i:int): Edge*
+vertex(i:int): Vertex*
+rho(i:int): Z2

(b) Two dimensional specialisation of the topological classes: Triangle and
Quad.

Connector3
-counter: int
+Connector3(attrib:Attribute)
-Connector3(key:int,attrib:Attribute)

Tetrahedron
-tri: Triangle[]
-rho: Z2[]
-tau: Z3[]
-child: Tetrahedron
+Tetrahedron(tri0:Triangle,...,tri3:Triangle,attrib:Attribute)
+child(i:int): Tetrahedron*
+face(i:int): Triangle*
+edge(i:int): Edge*
+vertex(i:int): Vertex*
+rho(i:int): Z2
+tau(i:int): Z3

Hexahedron
-quad: Quad[]
-rho: Z2[]
-tau: Z4[]
-child: Hexahedron
+Hexahedron(quad0:Quad,...,quad6:Quad,attrib:Attribute)
+child(i:int): Hexahedron*
+face(i:int): Quad*
+edge(i:int): Edge*
+vertex(i:int): Vertex*
+rho(i:int): Z2
+tau(i:int): Z4

(c) Three dimensional specialisations of the topological classes: Tetrahedron and Hexahe-
dron. The additional specialisations Prism and Pyramid are not shown here.

Figure 6.4: Classes for meshes II. A mesh consists of several cells: in one dimension of Edge1d and in
three dimension of Tetrahedron3d and Hexahedron3d. Each of these cells has a reference
to a topological entity and a reference to an element map. The class diagrams above show
the hierarchy of the topological classes. The member counter in Connector0–Connector3
is a static variable responsible for the generation of unique identifiers (the key) per spatial
dimension. Z2, Z3 and Z4 are additive groups with two, three and four elements respectively
used to describe orientation flags.

171

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

:Mesh3

:Vertex :Edge :Face :Cell3

:Cell3:Face:Edge:Vertex

vtx edg tri or quad cell

vtx edg tri or quad

chld

tri or quad

tri or quad

chld

edg

edg

chld

vtx

vtx

Figure 6.5: Objects in a mesh. The objects of a three dimensional mesh have the shown relations. If at
least one of the cells is refined, the grayed part is added.

Quad
+setStrategy(strategy:QuadSubdivision*)
+getStrategy(): QuadSubdivision*

«interface»
QuadSubdivision

+createChildren(q:Quad)
+removeChildren(q:Quad)
+newEdge(q:Quad,i:int): Edge*
+newVertex(q:Quad,i:int): Vertex*

QuadSubdiv4
-inst: QuadSubdiv4*
+instance(): QuadSubdiv4*

QuadSubdiv2H
-inst: QuadSubdiv2H
+instance(): QuadSubdiv2H

QuadSubdiv2V
-inst: QuadSubdiv2V*
+instance(): QuadSubdiv2V*

*

subdivStrategy
0..1

Figure 6.6: Subdivision strategies for a quadrilateral. The class Quad was already introduced in Fig-
ure 6.4 but not all members were shown there. Here, only the ‘new’ members are depicted.

This is achieved by applying the Strategy Pattern [56] to the subdivision algo-
rithm in Quad (c. f. Figure 6.6). To remain backwards compatible (there was only
the possibility to subdivide into four new quadrilaterals before), QuadSubdiv4 is
the default.

Calling setStrategy with the appropriate argument changes the strategy in Quad.
This has to be done before asking for the children of Quad (such a call for a child
subdivides a cell if it has not yet been subdivided). However, if there already exist
children of Quad, trying to change the subdivision strategy throws an exception.
This exception is caught and handled correctly, the program does not abort but goes
on.4 However, the subdivision strategy and the children remain unchanged.

4Here, exceptions are not used to let the program fail but to indicate a special (i. e. exceptional) situa-
tion. However, precautions are taken to handle this situation (and cath the exceptions).

172

6.2 MESH CLASSES IN CONCEPTS

Figure 6.7: Refinement in directions ξ1, ξ2 and ξ3.

Figure 6.8: Examples of refinements resulting from combinations of refinements in Figure6.7.

The different refinements for a hexahedron are handled similarly (compared to
three different strategies for the quadrilateral, there are seven for the hexahedron,
examples are depicted in Figures 6.7 and 6.8). There is the additional technicality
that the faces of the hexahedron need to be refined in the correct way in order
to create the children correctly. This is solved by asking for the right subdivision
strategy on the faces (which are quadrilaterals). If one of the faces cannot be refined
in the necessary way (because of a different refinement strategy which was used
previously for this face), an exception is thrown—with the same effects as in the
case of the quadrilateral above.

Remark 6.3 (Geometric deadlock problem) The handling of some combina-
tions of refinements in neighbouring elements is not implemented (c. f. Figure 6.9).
Nevertheless, they can be asked for—the result is an exception. The implementa-
tion of means to handle the combination shown in Figure 6.9 would not be straight
forward. Furthermore, it is possible to refine one of the two elements to get a
combination which is easier to handle (c. f. Figure 6.10).

In the case shown in Figure 6.9, the main problem arises on the face which is
shared by the two hexahedra. There, the identification of a ‘first’ and a ‘second’

173

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

Figure 6.9: Illegal subdivision combination in
neighbouring elements.

Figure 6.10: Legal subdivision combination in
neighbouring elements.

child is ambiguous. The handling depends on these denotations, though. This
problem is explained in more details in Section 7.2.

6.3 hp-Discretisation of H 1
�D

(D)

For hp-FEM, S
p,1
�D

(D,T) with D ⊂ R
d bounded (d = 2 or 3) has to be imple-

mented. Here,

S
p,1
�D

(D,T) := {
u ∈ H 1

�D
(D)d : u|K ◦ FK ∈ V pK ∀K ∈ T

}
and (6.4)

H 1
�D

(D)d := {
u ∈ H 1(D)d : u|�D

= 0
}
.

To be able to represent all meshes described in Sections 2.2 and 2.3, anisotropic
refinements (h-refinements) and an anisotropic polynomial degree vector p =
{ pK }K∈T need to be possible. The notation T and V pK

in (6.4) is explained below.

In this section, the implementation of S
p,1
�D

(D,T) in Concepts is described. The
mathematical techniques and requirements were given in Chapter 3. The aim of the
implementation of the FE space is a list of elements. Every element contains all
necessary information (like geometry, assembling [T matrix] and shape functions).
The object representing the space provides methods to loop over all elements in
this list and to refine selected elements anisotropically in h and p.

This section is subdivided as follows: Firstly, the notion of the mesh T and the
polynomial degree are detailed. The next part explains the shape functions used
in one, two and three dimensions. Then, the support of a global basis function
and how it is found are described. The central part describing the building of the

174

6.3 hp-DISCRETISATION OF H 1
�D

(D)

0
1

2
3

4

5 6

7

8
9

10
11

0 (bottom)

1 (left)
2

3
4 (behind)

5

Figure 6.11: Numbering of the edges (left) and faces (right) in a hexahedron.

elements and the T matrices etc. follows last. A run-time cost analysis of the most
expensive parts is given in Sections 3.3.6 and 3.4.

6.3.1 Specification of Mesh T and Polynomial degree p

Mesh T

The classes to handle a mesh are described in Section 6.2.
Let T 1 be a conforming, hexahedral5 mesh of D (sometimes referred to as the

coarsest mesh, the superscript 1 refers to the number of layers in the mesh). Then,
T has to be a hierarchical refinement of T 1. A refinement of a hexahedral element
can be in direction ξ1, ξ2 or ξ3 or a combination of these. Using such mesh refine-
ments, T no longer needs to be conforming. The hanging nodes are handled with
S matrices during the assembling procedure (c. f. Section 3.3.3).

Polynomial degree p

The notation V pK in (6.4) is described. pK is the polynomial degree on element
K ∈ T . It has the following structure:

pK :=
{

pc
K ∈ N

3, p fi
K ∈ N

2 for i = 0, . . . , 5, p
e j
K ∈ N for j = 0, . . . , 11

}
,

(6.5)

5Concepts is also able to handle other element types (such as tetrahedra, prisms and pyramids). They
are not covered in this work.

175

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

where c, f and e stand for cell, face and edge respectively. The numbering of the
faces and edges of an element is given in Figure 6.11. Further on, K in pc

K , p fi
K or

p
e j
K is omitted if it is clear from the context.
The following assertions hold for p K :

• p ≥ 1 for all components p of p K .6

• If K and K ′ share a face or an edge, the polynomial degree on this face or
edge is the same in both elements.7

• The polynomial degree on a child of a cell, face or edge is smaller or equal
than the polynomial degree on the cell, face or edge itself, i. e. parents have
larger or equal polynomial degree than children.

Now, V pK from (6.4) can be defined:

V pK :=P �
pc

0
⊗ P �

pc
1
⊗ P �

pc
2︸ ︷︷ ︸

interior

+

P �

p
f0
0

⊗P �

p
f0
1

⊗ 1− ξ3

2︸ ︷︷ ︸
face f0

+P �

p
f1
0

⊗ 1− ξ2

2
⊗P �

p
f1
1

+ · · ·
︸ ︷︷ ︸

faces fi , i = 1, . . . , 5

+

P �
pe0 ⊗

1− ξ2

2
⊗ 1− ξ3

2︸ ︷︷ ︸
edge e0

+ 1+ ξ1

2
⊗ P �

pe1 ⊗
1− ξ3

2
+ · · ·︸ ︷︷ ︸

edges ei , i = 1, . . . , 11

+

1− ξ1

2
⊗ 1− ξ2

2
⊗ 1− ξ3

2
+ . . .︸ ︷︷ ︸

vertices

where P �
p := 1−ξ 2

4 · Pp and Pp = span{ξ i : 0 ≤ i ≤ p}. It is assumed that the

reference element is K̂ = (−1, 1)3. The terms 1−ξ
2 and 1+ξ

2 originate from the
linear shape functions, c. f. (6.8).

6It is possible to have piece-wise constant elements (p = 0) in Concepts, for instance for Boundary
Element Methods, but this is not considered in this work.

7In fact, the polynomial degree on this face or edge is only stored once for both elements. For the faces,
this involves handling the different possible orientations of the face which lead to a permutation of

p
fi
0 and p

fi
1 . This has to be taken care of in the implementation but will not be considered further

here.

176

6.3 hp-DISCRETISATION OF H 1
�D

(D)

Remark 6.6 pc ∈ N
3 can be chosen arbitrary. p fi ∈ N

2 and pe j ∈ N can be
raised if necessary (enriching the Finite Element space on the faces or edges) but
not chosen arbitrary—the reason is explained in Section 6.3.3.

Remark 6.7 (Trunk spaces) It has been shown (e. g. [48, 49, 106]) that it helps
save degrees of freedom to restrict the total polynomial degree in the interior and
on the faces of a hexahedron. These so-called trunk spaces are also implemented
in Concepts. There is nearly no sacrifice in accuracy in typical applications with
respect to the full tensor product space, though. However, the amount of saved
degrees of freedom is considerable: for p = 8 the full tensor product space in
one hexahedron has 729 degrees of freedom and the trunk space has only 346.
Figure 6.12 shows a comparison of the sparsity patterns. The plots were done with
the following constraint polynomial spaces:

span
{

x j yk : j + k ≤ max
{

p fi
0 , p fi

1

}+ 1
}

on the faces and

span
{
xi y j zk : i + j + k ≤ max{pc

0, pc
1, pc

2} + 1
}

in the interior. In general, one could think of the following constraint polynomial
spaces: {x j yk : f f (j, k, p fi) = 1} and {x i y j zk : f c(i, j, k, pc) = 1} with
indicator functions f f and f c for the faces and the interior respectively. In fact, it
would not be hard to add such an interface for user supplied functions f f and f c.

6.3.2 Shape Functions

The reference element in which the shape functions are defined is (−1, 1) 3. The
shape functions currently implemented are those proposed in [72]. They can easily
be exchanged as long as the basis functions remain hierarchic and contain the first
two linear shape functions.

In one dimension, the shape functions of order p (c. f. Figure 6.13) are

Ni (ξ) =

⎧⎪⎨
⎪⎩

1−ξ
2 i = 0,

1+ξ
2 i = 1,

1−ξ
2

1+ξ
2 P1,1

i−2(ξ) 2 ≤ i ≤ p.

(6.8)

177

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

0 50 100 150 200 250 300

0

50

100

150

200

250

300

(a) Trunk space. Size: 346 ×
346, number of non-zeros:
9528 (8.0%).

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

(b) Tensor product space.
Size: 729 × 729, number
of non-zeros: 18533
(3.5%).

Figure 6.12: Sparsity pattern of stiffness matrices in three dimensions for p = 8. The full tensor product
stiffness matrix is sparser but twice as large (in size and number of non-zeros) compared
to the matrix of the trunk space. The sparsity patterns themselves depend on the choice of
the shape functions (see below). These plots here should illustrate the effect of the trunk
spaces.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1
-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1
-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1
-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1
-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

Figure 6.13: Shape functions (6.8) in one dimension for p = 1, . . . , 6.

178

6.3 hp-DISCRETISATION OF H 1
�D

(D)

The Jacobi polynomials P 1,1
i (ξ) are integrated Legendre Polynomials: L i (ξ) =

P0,0
i (ξ) and

∫ ξ

−1
(1− x)α(1+ x)β Pα,β

i (x) dx = −1

2i
(1− ξ)α+1(1+ ξ)β+1 Pα+1,β+1

i−1 (ξ)

⇒
∫ ξ

−1
P0,0

i (x) dx = −1

2i
(1− ξ)(1+ ξ)P1,1

i−1(ξ),

i. e. the shape functions given in (6.8) are essentially the integrated Legendre poly-
nomials.

In higher dimensions, the shape functions are tensorised one dimensional shape
functions. In two dimensions, this is done for the quadrilateral elements and in
three dimension for the hexahedral elements.

The reason for choosing the shape functions (6.8) is the good sparsity pattern of
the mass and stiffness matrices and the good behaviour of the condition number.
Figure 6.14 shows the sparsity patterns of the mass and stiffness matrices of one
element corresponding to the bilinear forms

i(u, v) =
∫

K
uv dx (mass matrix),

a(u, v) =
∫

K
∇u · ∇v dx (stiffness matrix)

in one, two and three dimensions with internal and external degrees of freedom.
Figure 6.15 shows the condition numbers of the mass and stiffness matrices corre-
sponding to the above bilinear forms of one element in one, two and three dimen-
sions with homogeneous Dirichlet boundary conditions on the whole of ∂ D (i. e.
only the internal degrees of freedom are considered). Again, the trunk spaces give
better results (i. e. lower condition number).

6.3.3 Support of a Basis Function

Since every Finite Element function u ∈ VN = S
p,1
�D

(D,T) is also in H 1(D), it has
to be made sure that u is continuous over element boundaries. This is automatically
fulfilled by enforcing continuity for all basis functions of V N . A key component of
this task is to find the correct support for each basis function. The basis function is
then combined from the individual shape functions in the cells of the support.

179

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

0 5 10 15 20

0

5

10

15

20

(a) Mass matrix in 1D.

0 20 40 60 80

0

10

20

30

40

50

60

70

80

(b) Mass matrix in 2D.

0 50 100 150 200 250 300

0

50

100

150

200

250

300

(c) Mass matrix in 3D.

0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

22

(d) Stiffness matrix in 1D.

0 20 40 60 80

0

10

20

30

40

50

60

70

80

(e) Stiffness matrix in 2D.

0 50 100 150 200 250 300

0

50

100

150

200

250

300

(f) Stiffness matrix in 3D.

Figure 6.14: Sparsity pattern of the mass and stiffness matrices. The approximation orders are p = 20
in one dimension, p = 10 in two dimensions and p = 8 in three dimensions. In two and
three dimensions, the total polynomial degree on the faces and in the interior was limited
(i. e. trunk spaces).

In a complicated, locally refined mesh, it is not a-priori clear what the support of
a certain basis function is (for instance corresponding to a vertex or an edge). This
section shows how the support can be found and how the polynomial degree has to
be adjusted in that support.

Finding the Support

To ensure global continuity of the basis function � i , the unisolvent sets on the
interfaces in the support of �i have to match.

180

6.3 hp-DISCRETISATION OF H 1
�D

(D)

100

101

102

103

100 101

co
nd

iti
on

 n
um

be
r

polynomial degree p

O(p3)
O(p1)

100

101

102

103

104

100 101

co
nd

iti
on

 n
um

be
r

polynomial degree p

O(p4)
O(p3)

100

101

102

103

104

105

106

100 101

co
nd

iti
on

 n
um

be
r

polynomial degree p

O(p7)
O(p5)

100

101

102

103

104

100 101 102

co
nd

iti
on

 n
um

be
r

ndof N

O(N2)
O(N1)

100

101

102

103

104

105

106

100 101 102 103

co
nd

iti
on

 n
um

be
r

ndof N

O(N3)
O(N2)

Figure 6.15: Condition numbers of the stiffness (dashed line) and mass matrices (solid line) in one, two
and three dimensions (first, second and third column) plotted versus the polynomial degree
p (top row) or the number of degrees of freedom N (short ‘ndof’, bottom row) using log-
log scale. The lines marked with + are computed using trunk spaces whereas × uses the
full tensor product spaces.

quadrilateral(two dimensional) hexahedron(three dimensional)
on every edge p − 1 p − 1
on every face (p − 1)2

in the interior (p − 1)2 (p − 1)3

Table 6.1: Points in the unisolvent sets for Qp in addition to the vertices of the quadrilateral and hexa-
hedron respectively.

• The unisolvent sets for Q1 (polynomials of maximal order one8) in a quadri-
lateral (two dimensional) or a hexahedron (three dimensional) are the corners
of the quadrilateral and the hexahedron respectively.

• The unisolvent sets for Q p are additional points on edges, faces and the
interior (summarised in Table 6.1).

8In two dimensions: Qp := span{xi y j : i, j ≤ p}, i. e. Q1 = span {1, x, y, xy} .

181

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

• Start with a list of all the smallest cells (from the ‘active’ level in the mesh T) which contain
the vertex v.

• Repeat until no changes have to be made:

– Generate a list of all the edges which coincide in the vertex v and belong to one of the
cells in the list.

– Look for related edges in the prepared list. If two edges e and e′ are related (i. e. have an
ancestor–descendant relationship) but are not equal:
Replace the cell belonging to the smaller edge (without loss of generality denoted with
e′) with its ancestor e� in such a way that the corresponding edges of e and e� are equal,
i. e. take the father, grandfather or great grandfather of e′ as e�.

Algorithm 6.3: Finding the support of a vertex mode corresponding to vertex v.

To find the support of a vertex mode, it suffices to match the edges which coincide
in this vertex. To find the support of an edge mode (in three dimensions), the
coinciding faces have to be matched.

Therefore, the idea of an algorithm to find a support of a vertex mode should be
as shown in Algorithm 6.3. Finding the support of an edge mode in three dimen-
sions follows the same lines as Algorithm 6.3—with faces replacing edges.

Example 6.9 (Finding the support of a vertex mode) Figure 6.16 shows how
Algorithm 6.3 finds the support of the bilinear basis function corresponding to
middle vertex in four steps.

The jump from the third to the fourth figure in Figure 6.16 is closely related to
the handling of hanging nodes and the S matrices in Chapter 3. It is assumed
that the top left quadrilateral in Figure 6.16 was refined at once into four smaller
quadrilaterals. Therefore, the parent of a small quadrilateral is the parent to all
four quadrilaterals in the algorithm to find the support of the basis function and
also in the algorithm to handle hanging nodes.

Adjusting the Polynomial Degree

Typically, the degress of the faces and edges (p f and pe respectively) are deter-
mined by “projecting” the degree of the cell p c onto the faces and edges respec-
tively. Even in very simple cases in two dimensions, this can lead to problems.

182

6.3 hp-DISCRETISATION OF H 1
�D

(D)

Figure 6.16: Example for Algorithm 6.3. It is shown how the support of the bilinear basis function
corresponding to the vertex marked by • is found in four steps. The current list of the cells
in the support of the basis function is grayed. The edges on the right of • are checked first.
In this example, the algorithm goes on clockwise. The algorithm does not need or create a
specific order, though.

Figure 6.17: A dashed line means p = 2, a dotted
line means p = 1: the left element
has p = 2 in the interior (indicated
by the cross) and on the edges and
left four elements have p = 1 in the
interior and on the edges.

Figure 6.18: The edges marked with solid lines
need to have p = 2 in order to be
able to represent the shape function
on the large middle edge.

Example 6.10 Figure 6.17 shows a setup in (0, 1)2 with five elements and a poly-
nomial degree of 2 in the large element and 1 in the small elements.

The edge {1/2}× (0, 1) has one basis function � associated to it (namely the one
of the edge of the large element with p = 2). The basis functions of the edges of
the small elements are not taken into account since they are constrained by �. The
basis function

�(x, y) =
{

2x · y(1− y) x ≤ 1/2

2(1− x) · y(1− y) x ≥ 1/2

183

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

Figure 6.19: Geometrically refined mesh. Darker elements have a higher polynomial degree.

can be represented in the left element. Although the support of � is (0, 1) 2, it
cannot be represented in any of the small elements: The polynomial degree of the
edges on {1/2+} × (0, 1), {3/4−} × (0, 1) and {3/4+} × (0, 1) is too small (only
one instead of two). The problem can be resolved by dropping � from the Finite
Element space by setting the polynomial degree of the edge {1/2}× (0, 1) to 1 in all
adjacent elements.

The problem in Example 6.10 does not seem grave at first sight: one basis func-
tion is lost since it is not representable on all elements of the FE space. But in
geometrically refined meshes (c. f. Figure 6.19) with linearly increasing polyno-
mial degree, many basis functions would be lost, if this approach was followed.
However, to ensure exponential convergence, these basis functions are essential.
Since the supports of the basis functions on the edges with hanging nodes do also
include the smallest elements with p = 1 (which do not include any shape func-
tions on edges) all basis functions on edges with adjacent cells whose neighbours
are not equally sized would have to be dropped.

A remedy for this problem would be to

• shrink the support of the concerned basis functions and raise the polynomial
degree on the adjacent edges or

• increase the polynomial degree of all edges which are in the support of the
concerned basis functions up to a sufficient level.

184

6.3 hp-DISCRETISATION OF H 1
�D

(D)

The second option is simpler to implement for the same reason as explained in Ex-
ample 6.9. Namely, a subdivision into four children cannot easily be torn apart and
regrouped: it cannot be reformulated as a subdivision into two children (followed
by a second subdivision into two children). Therefore, shrinking the support of a
basis functions would be very complicated.

Example 6.11 (Example 6.10 continued) The degrees of the edge modes which
were named in Example 6.10 have to be raised to 2 (c. f. Figure 6.18). Then, the
basis function on the edge {1/2} × (0, 1) can be represented in its whole support
(0, 1)2 and is therefore a valid basis function of the FE space.

6.3.4 Algorithm to Assemble the Finite Element Space

In Concepts, it is not possible to build a Finite Element space S
p′,1
�D

(D,T ′) directly
on an arbitrary mesh T ′ with an arbitrary polynomial degree distribution p ′. In-
stead, the adjustments for the mesh and the polynomial degree with respect to a FE
space S

p,1
�D

(D,T) have to be given element-wise. An adjustment for an element
(K , pK) is a vector δl = (δlx , δly, δlz) and a vector δ p = (δpx , δpy, δpz) describ-
ing the refinements in each direction (δl) and the increase in the polynomial degree
(δ p). Here, x , y and z denote local coordinates relative to the element. This makes
it possible to create a sequence of FE spaces. The starting point of such a sequence
is the FE space S1,1

�D
(D,T 1) with polynomial degree 1 on the initial (conforming)

mesh T 1.
Building S

p′,1
�D

(D,T ′) from S
p,1
�D

(D,T) takes these steps:

1. Determine T ′ and p′ from T and p and the adjustments δl and δ p. Enforce
Dirichlet boundary conditions by marking the respective modes as ‘passive’
(explained below).

2. Find the support of all basis functions on vertices, edges and faces (c. f. the
first part of Section 6.3.3).

3. Enforce the minimum rule: the polynomial degree on a face or edge has to
be the minimum of the adjacent elements. This economises a few degrees of
freedom without harming the convergence.

4. Enrich the polynomial degree on some faces and edges (c. f. the second part
of Section 6.3.3).

185

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

5. Build the elements of the FE space (including the computation of the T ma-
trices and the application of the S matrices).

Each of these steps recursively traverses the mesh (which has a tree structure) in
a depth first search fashion. The entry point for such a traversal is the first cell in
T 1. These steps are presented in the following subsections.

Determining Mesh and Polynomial Degree

Algorithm 6.4 shows how the adjustments describing the transition from T to T ′
and from p to p′ are taken into account. meshAndPoly is called inside a loop over
all cells c in the initial mesh T 1. The initial p� (parameter of meshAndPoly) is
set to (−1,−1,−1). The purpose of meshAndPoly is to determine which cells are
‘member of the space’ and the polynomial degree of the cells. The polynomial
degree on the edges and faces is fixed later.

The attribute ‘member of the space’ of a degree of freedom on a face or an edge
which is set in (6.12) means that the degree of freedom belongs to the currently
constructed FE space. This attribute is shared between elements which share this
face or edge. Additionally, each degree of freedom can have an attribute ‘passive’
(opposed to ‘active’) which essentially excludes the degree of freedom from the
FE space. This is used for homogeneous Dirichlet boundary conditions.

Finding the Support of Vertex, Edge and Face Modes

The key part of this task has already been described in the first part of Section 6.3.3.
What remains to be explained is how it all fits together.

At the beginning, lists of vertices, edges and faces are created. Each of these
lists is created by looping over the cells in the current mesh. The lists are made in a
temporary data structure so that more data is at hand which is not stored explicitly
in the mesh data structure, namely:

• parent pointers for the cells,

• pointers to the cells and edges for the vertices,

• pointers to the cells and faces for the edges and

• pointers to the cells for the faces.

186

6.3 hp-DISCRETISATION OF H 1
�D

(D)

• If c ∈ T :

– Adjust pc on c and refine (or coarsen) c if necessary (depending on the adjustments, i. e.
generate the children of c).

– Ensure pc ≥ 1 and set p� = pc.

• If c �∈ T ′:
– Call meshAndPoly(c′, p′ := p�) for all children c′ of c. After each call: p� =

max
{

p�, p′
}
.

– pc = p�.

– ∀ children c′ of c (f ′i and e′j are the faces and edges of c′ respectively):

p fi = max
{

p f ′i , p fi
}

for i = 0, . . . , 5, if f ′i and fi are related

pe j = max
{

p
e′j , pe j

}
for j = 0, . . . , 11, if e′j and e j are related.

• else (i. e. c ∈ T ′):
– Set pc = p� and project pc onto the faces and edges of c.

– Mark the degrees of freedom of the cell (including the faces and edges) as ‘member of
the space’. (6.12)

Algorithm 6.4: meshAndPoly(c, p�), where c is the cell and p� is the desired polynomial degree in c
respectively. T is the mesh used for the old space and T ′ is the mesh used for the new
space. Initially, p� = (−1,−1,−1).

This additional data is used in the algorithms to find the support for the modes on
the vertices, edges and faces.

After the initial set-up phase, relations are checked in the list of faces following
Algorithm 6.5. Algorithm 6.5 implements the same idea as found in Algorithm 6.3
but for the somewhat simpler case of faces. This ensures the global continuity of
face modes.

The same procedure preformed for the faces is now done with the edges, i. e.
Algorithm 6.5 is applied to the list of edges. However, this is not sufficient to
ensure globally continuous edge modes.

187

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

• While anything changes

– Look for pairs of faces f and f ′ with an ancestor–descendant relationship. If such a pair
is found (without loss of generality f ′ is a descendant of f):

∗ Add the ancestor of the cell of f ′ which has the same size as the cell of f to list of
cells of f .

∗ Remove f ′ from the list of faces.

Algorithm 6.5: Checks for related faces in the list of faces. Eventually, every interior face has two cells
registered which have equal size (i. e. have the whole face as one of their sides).

e

f

Figure 6.20: Illustrating the problem of the edge modes in Example6.13.

Example 6.13 (Not globally continuous edge mode) Consider the mesh in Fig-
ure 6.20. After the initial set-up phase, the large cell on the left is the only cell
being in the support of the basis functions corresponding the large, vertical edge
e.

After the applying Algorithm 6.5, edge e has the large cell on the left and the
parent of the two cells in the foreground on the right in its support. This, however,
does not define the support of a globally continuous edge mode on edge e as the
unisolvent sets on the face f do not match.

The correct support for the edge e would be the whole depicted domain.

The problem described in Example 6.13 is fixed by applying an analogon to
Algorithm 6.3 to every edge in the list of edges.

The last step in this phase is to find the correct support for the vertex modes.
This is done by applying Algorithm 6.3 to every vertex in the list of vertices.

188

6.3 hp-DISCRETISATION OF H 1
�D

(D)

• If c ∈ T :

p fi = max
{

q fi , p fi
}

for i = 0, . . . , 5,

pe j = max
{
qe j , pe j

}
for j = 0, . . . , 11,

i. e. take the maximum of p and q on the boundary of the cell.

• else (i. e. c �∈ T): Loop over all children c′ of c:

– If there exist degrees of freedom on the boundary of c:

∗ q fi = max
{

q fi , p fi
}

, i = 0, . . . , 5, if the basis functions on fi of c′ are neces-

sary to represent the basis functions on fi of c (in c′). This heavily depends on the
subdivision strategy and the position of fi with respect to c and the faces of c.

∗ Analogously for qe j , j = 0, . . . , 11.

– Call enrichElm(c′, q).

Algorithm 6.6: enrichElm(c, q), where c is the cell and q is the minimal polynomial degree c has to
fulfil on its boundary (q has the structure (6.5)).

Enforcing the Minimum Rule

Algorithm 6.4 projects the internal polynomial degree p c onto the faces and edges
of c in an arbitrary order (given by the structure of the mesh T). However, using the
minimal polynomial degree of the adjacent cells as the polynomial degree on the
edges and faces saves some degrees of freedom. This is done in a separate phase
by looping over all faces and all edges in the list of faces and the list of edges
respectively. On each face or edge, a loop over all adjacent cells is performed and
the minimal polynomial degree is computed and registered with the face or edge.

Enriching the Polynomial Degree of Faces and Edges

Algorithm 6.6 shows how the polynomial degree of certain faces and edges is
raised in order to represent the necessary basis functions. The reason for this
was given in the second part of Section 6.3. Initially, enrichElm is called with
q = (−1, . . . ,−1) on all cells of T 1.

189

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

• ∀ vertices v of c:

– If v is ‘active’ and ‘member of the space’ and c is in the support of the vertex mode
corresponding to v: Get a global index for the degree of freedom, build a T column and
add it to T . (6.14)

– If v is ‘passive’ or ‘member of the space’ and c is not ‘member of the space’: Deactivate
v, i. e. mark v as ‘passive’.

• Analogously for the edges and faces. When computing the entries of the T column, the orien-
tation and the polynomial degrees on the edges and faces are taken into account. Deactivating
an edge or face means that all existing children of the edge or face are also deactivated (i. e.
marked as ‘passive’).

• If c ∈ T : Get the global indices for the inner degrees of freedom, build T columns for them
and add the T columns to T . Eventually, build an element from c with T and add it to the list of
elements of the space.

• If c �∈ T : ∀c′ children of c:

– Apply the S matrix Scc′ : ∀t ∈ T : t′ = Scc′ t and add t′ to T ′. (6.15)

– Call buildElements(c′, T ′).

Algorithm 6.7: buildElements(c, T), where c is the cell and T is a list of the T columns which are going
to be integrated into the T matrix of c.

Building the Elements

Eventually, Algorithm 6.7 shows how the elements are built. The test if the cell c
was in the support of the vertex mode at v in (6.14) uses the list of vertices which
was built in the previous phases. Analogously, when building the T columns for
the edges and faces, the lists of edges and faces are used.

(6.15) implements Proposition 3.29 column-wise. The T matrix T̃ K ′ of the basis
functions in Binsert is empty as Algorithm 6.7 only computes the basis functions in
Bkeep.

6.3.5 Numerical Experiments

The algorithms presented in this section are not only suited for the meshes gener-
ated by Algorithm 3.3 but also for meshes guided by a-posteriori error estimation.

190

6.3 hp-DISCRETISATION OF H 1
�D

(D)

• Initialise the refinement indicators for the subdivision l = (0, 0, 0) and the increase of the
polynomial degree p = (0, 0, 0).

• Separately for each entry of δl and δ p: set the entry to 1 if r > RAND MAX/2, where r is an
integer computed by the pseudo-random number generator between 0 and RAND MAX.

• Refine the element by δl and δ p.

Algorithm 6.8: Randomised refinement of one element.

A-posteriori error estimation might not generate the same evenly structured meshes
as the a-priori defined refinements of Algorithm 3.3. This is simulated by the ran-
domised refinement: Each element is refined with Algorithm 6.8 to generate a new
hp-FE space.

We demonstrate that our hp-FE space generation algorithms work as expected
also for random meshes by solving the reaction-diffusion problem

−�u + u = f in D, u = 0 on ∂ D,

with the two exact solutions

u(x) = (x1 − 1)x1(x2 − 1)x2(x3 − 1)x3, (6.16)

u(x) = sin(πx1) sin(πx2) sin(πx3). (6.17)

Both problems are analytic—(6.16) is even polynomial. The exact energies are
computed by Mathematica.

The convergence history of the relative energy error is shown in Figure 6.21 to-
gether with time measurements for the space generation, the stiffness matrix com-
putation and the solution of the linear system. Compared to the run-time cost anal-
ysis in Section 3.4, the space generation takes much more time in this case. How-
ever, the maximal polynomial degree used in the randomised examples shown here
is 4 and a polynomial degree of 4 is still in the pre-asymptotic range of the run-time
cost analysis in Section 3.4. There, one can also observe that the space generation
takes more time than the stiffness matrix computation for low polynomial degrees
(c. f. Figure 3.17). On the other hand, it is very likely that the generation of FE
space with randomised refinement is more expensive than the generation of the FE

191

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

10-4

10-3

10-2

10-1

100

100 101 102 103 104

re
la

tiv
e

en
er

gy
 e

rr
or

ndof

10-1

100

101

102

103

100 101 102 103 104

tim
e

[s
]

ndof

Figure 6.21: Randomised refinement with analytical exact solutions in (0, 1)3. The left plot shows the
relative energy error plot versus the number of degrees of freedom: problem (6.16) (solid
line) and problem (6.17) (dashed line). The right plot shows various time measurements
versus the number of degrees of freedom: FE space generation (solid line), stiffness matrix
computation (dashed line) and solution of the linear system (dotted line).

spaces used in Section 3.4 as more irregularities are present (more applications of
S matrices) and also the search algorithms introduced above take more time.

6.4 Fast Integration of Element Matrices: Sum
Factorisation

Besides solving the final linear system,9 the computation of the element matrices
is the most time consuming part of a FE solve. Therefore, it is beneficial to put
some extra effort into speeding it up.

This section reviews the most general idea: sum factorisation. It only depends
on the product structure of the shape functions. Further speed-ups can be gained
from nodal shape functions [84] or hierarchical shape functions (c. f. Section 6.4.2
below), but these methods are both not considered in Concepts.

9This means that the time for the solution of the linear system is not taken into account here. It does
not mean that it is the most time consuming part, though.

192

6.4 FAST INTEGRATION OF ELEMENT MATRICES: SUM FACTORISATION

6.4.1 Theoretical Derivation

The integration in a hexahedral element K amounts to evaluating the sum

[
A
]

i j =
nq{1,2,3}∑

q{1,2,3}=1

N1
i1
(ξq1)M1

j1
(ηq1)N2

i2
(ξq2)M2

j2
(ηq2)N3

i3
(ξq3)M3

j3
(ηq3) · · ·

· · ·wq1wq2wq3b(ξ , η) (6.18)

for each matrix entry i , j where i = (i 1, i2, i3) and j = (j1, j2, j3) are the matrix
indices in tensor product notation. In (6.18), Nk (.) and Ml(.) are the reference
element shape functions in direction k and l (one of 1, 2 or 3) respectively. ξ qi and
ηqi are the abscissas and wqi the weights of the quadrature rule for the numerical
integration. b(ξ, η) summarises the coefficients of the PDE and the determinant of
the Jacobian of the element map FK : K̂ → K .

For an isotropic polynomial degree p and O(p) quadrature points in each direc-
tion, the evaluation of (6.18) takes O(p3) multiplications. In an element matrix,
there are O(p6) entries. All in all, an O(p9) algorithm.

As shown in [84], a reordering of (6.18) to

[
A
]

i j =
nq1∑

q1=1

N1
i1
(ξq1)M1

j1
(ηq1)

nq2∑
q2=1

N2
i2
(ξq2)M2

j2
(ηq2) · · ·

· · ·
nq3∑

q3=1

N3
i3
(ξq3)M3

j3
(ηq3)wq1wq2wq3b(ξ , η)

and the computation of the two temporary matrices

[
R
]
q1,q2,i3, j3

=
nq3∑

q3=1

N3
i3
(ξq3)M3

j3
(ηq3)wq1wq2wq3b(ξ , η) (6.19)

and

[
S
]
q1,i2, j2,i3, j3

=
nq2∑

q2=1

N2
i2 (ξq2)M2

j2(ηq2) ·
[
R
]
q1,q2,i3, j3

(6.20)

193

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

results in a reduction to O(p7) for the whole evaluation of

[
A
]

i j =
nq1∑

q1=1

N1
i1 (ξq1)M1

j1(ηq1) ·
[
S
]
q1,i2, j2,i3, j3

. (6.21)

[84] shows more tricks to reduce the constant in O(p 7) and how to reduce the order
further with different shape functions.

6.4.2 Hierarchical Shape Functions

This is from private communication with Joachim Schöberl at Johannes Kepler
Universität in Linz, Austria [95].

The complexity of a standard element mass matrix computation is O(p 9) =
O(p3n) in three dimensions. This is reduced to O(p7) by the sum factorisation
algorithm shown above. A further reduction to O(p 6) = O(p2n) is possible by
exploiting the hierarchical structure of the shape functions.

Assume the hierarchical shape functions are defined by the recurrence relation

Pi (ξ) = aiξ Pi−1(ξ)+ bi Pi−2(ξ). (6.22)

The three summations (6.19)–(6.21) above can be generalised and simplified to
[
M
]
i j :=

∑
q

ρ(ξq)Pi (ξq)Pj (ξq).

Using the recursion formula (6.22) in i :
[
M
]
i+1, j =

∑
ρPi+1 Pj =

∑
(ai+1ξq Pi + bi+1 Pi−1)Pj

= ai+1

∑
ρξq Pi Pj + bi+1Mi−1, j

and in j :

[
M
]
i, j+1 = a j+1

∑
ρξq Pi Pj + b j+1Mi, j−1 .

Combining both leads to the relation

1

ai+1

[
M
]
i+1, j −

bi+1

ai+1

[
M
]
i−1, j =

1

a j+1

[
M
]
i, j+1 −

b j+1

a j+1

[
M
]
i, j−1 . (6.23)

194

6.4 FAST INTEGRATION OF ELEMENT MATRICES: SUM FACTORISATION

• Precompute the Jacobian and the other coefficients which are needed in all quadrature points.

• Set all entries in A to zero.

• Prepare the auxiliary objects u and v including the shape functions for all three directions and
the respective quadrature rules.

• Initialise the accessor object of the array of coefficients.

• Add the contributions of u and v with the given coefficients into A by calling the sum factori-
sation routine.

• Return A.

Algorithm 6.9: Mass matrix computation by using the sum factorisation routine.

By this identity, it is possible to fill in the values [M]i j . Only two rows must be
evaluated explicitly.

Remark 6.24 Here, the identity was derived based on the summation from the
numerical integration. However, it is also possible to do so based on the integrals:
The same relation (6.23) holds.

This simple example can be extended to the case (6.19)–(6.21) and could be
applied there given hierarchical shape functions. It is also possible to derive a
similar identity for other recurrence relations than (6.22).

However, this is not considered in our implementation as the goal was to be
independent of the concrete form of the shape functions.

6.4.3 Implementational Aspects

What was shown so far is valid for mass matrices (one evaluation of (6.18)) and
stiffness matrices (nine evaluations of (6.18)). The same algorithm can also be
used for the evaluation of the element matrices of other operators like the curl-
curl operator in electromagnetics. All the differences of these evaluations go into
b(ξ , η). This is also true in the implementation.

To make the routine computing the sum factorisation as reusable as possible, it
is templated on the type of coefficients. The routine is called with a large number
of precomputed arrays (up to 15 different arrays for the quadrature rule, the shape
functions, the coefficients and the resulting element matrix). Two types of coeffi-

195

6 hp-FINITE ELEMENT METHODS IN CONCEPTS

• Precompute the Jacobian and the other coefficients which are needed in all quadrature points.

• Set all entries in A to zero.

• Prepare the auxiliary objects u and v including the shape functions for all three directions and
the respective quadrature rules.

• For i = 1 to 3

– Exchange the ith component of u with the derivatives of the shape functions.

– For j = 1 to 3

∗ Exchange the jth component of v with the derivatives of the shape functions.

∗ Initialise the accessor object of the array of coefficient matrices with the indices
i, j .

∗ Add the contributions of u and v with the given coefficients into A by calling the
sum factorisation routine.

∗ Restore v.

– Restore u.

• Return A.

Algorithm 6.10: Stiffness matrix computation by using the sum factorisation routine.

cients are possible: scalars (in the case of a mass matrix) and 3 × 3 matrices (in
cases like stiffness matrices, curl-curl matrices etc.). The scalar case is simple:
every entry in the array of coefficients has to be used. In the case of a coefficient
matrix, of all matrices in the array, only the entry i, j has to be used. This is man-
aged by an accessor object. There should be a loop over all values of i, j outside
the call to the sum factorisation routine (c. f. Algorithms 6.9 and 6.10). In Sec-
tion 7.1.3, the bilinear form of the curl-curl operator is derived. The formulation
there shows that an algorithm similar to Algorithm 6.10 has to be called nine times
to compute an element matrix for the curl-curl operator. The sum factorisation
routine, however, is the same.

6.4.4 Experiments

We try to experimentally confirm the run-time performance of the implementation
of the sum factorisation routine by measurements of the stiffness matrix compu-

196

6.4 FAST INTEGRATION OF ELEMENT MATRICES: SUM FACTORISATION

10-2

10-1

100

101

102

103

104

102 103 104

tim
e

[s
]

ndof

10-2

10-1

100

101

102

103

104

102 103 104

tim
e

[s
]

ndof

Figure 6.22: Timings for building a stiffness matrix for a mesh with one hexahedron with an isotropic
polynomial degree up to 25. The left plot shows the full tensor product space and the
right plot the trunk space (Remark 6.7). In both plots, the dash-dotted lines show p6 and
p7. The other curves show the measured CPU times for the following tasks (from top to
bottom): total time (�), the computation of the element stiffness matrix (+), the assembly
of the element matrix into the global matrix (×) and the application of the T matrix (∗).

tation time in one element with isotropic polynomial degree. Information on the
CPU and compiler used and how the time measurements are conducted are given
in Section 7.3.

Figure 6.22 does not experimentally confirm the work estimate in the previous
section: the sum factorisation is an O(p7) algorithm and what is shown is O(p6).
A more fine-grained timing of the parts in the sum factorisation routine is shown in
Figure 6.23. However, there is nothing of order 7 visible. Apparently, the p 6 term
dominates the p7 term because of a larger constant.

Investigating the operation counts for the full tensor product space for polyno-
mial degrees p = 1, . . . , 9 reveals that the operation counts for (6.21) behave like

25p7 + 373p6 + 1724p5 + 3911p4 + 5111p3 + 4048p2 + 1861p+ 394,

i. e. the O(p7) is visible here. 373/25 ≈ 15 shows that the p6 term dominates the p7

term up to p = 14.

197

10-2

10-1

100

101

102

103

102 103 104

tim
e

[s
]

ndof

10-2

10-1

100

101

102

103

102 103 104

tim
e

[s
]

ndof

Figure 6.23: Timings on the element level for building a mass matrix in a hexahedron with an isotropic
polynomial degree up to 25. The left plot shows the full tensor product space and the
right plot the trunk space (Remark 6.7). In both plots, the dash-dotted lines show p6 and
p7. The other curves show the measured CPU times for the following tasks (from top
to bottom): total time for the sum factorisation routine (∗), evaluation of (6.21) (×) and
evaluation of (6.20) (+).

7 Additional Matters

The last chapter of this part shows how the scalar spaces can be combined using a
Cartesian product to discretise vector valued problems such as Maxwell’s equations
(c. f. Chapter 4), linear elasticity or Stokes’ equations. In addition, a geometric
deadlock problem and the implemented solution are presented.

7.1 Vector Valued Problems

This section explains the ideas and classes to build vector valued FE spaces from
scalar FE spaces as needed for instance for Stokes’ or Maxwell’s equations and lin-
ear elasticity. The classical way to discretise Maxwell’s equations using Nédélec’s
elements is not covered by this, though: only Cartesian products of scalar FE
spaces are covered.

Remark 7.1 Nonetheless, Nédélec type elements can be implemented in Concepts.
However, one cannot rely on previously developed scalar Finite Element spaces.
Instead, the vector valued elements have to be implemented directly. Then, a vector
valued Finite Element space using them is constructed.

This direct approach is also feasible for the vector valued Finite Elements which
could be created using the Cartesian product Ansatz described below. However,
there remains a considerable amount of work although this can be saved by using
the ideas below.

7.1.1 Mathematics and Basic Ideas

Chapter 4 describes how Maxwell’s equations can be discretised using nodal Fi-
nite Elements. Eventually, a FE space S

p,1
�D

(D,T)3 has to be discretised. Lin-

199

7 ADDITIONAL MATTERS

ear elasticity in two dimensions needs a FE space like S
p,1
�D

(D,T)2. In both
cases, it might occur that the boundary conditions are different in the different
components of the Cartesian product, i. e. one needs to have a FE space like
S

p,1
�D1

(D,T)×S
p,1
�D2

(D,T). All this is covered by the following Cartesian product

of FE spaces.
The framework vectorial has the following properties:

1. The mesh T is the same for all scalar spaces in the product.

2. The user is able to reuse scalar spaces, bilinear and linear forms.

3. The classes for assembling, matrices, vectors, solvers, meshes and graphics
are reused.

4. There is no limit on the number of factors in the Cartesian product (except
the available memory).

Basis of the Vector Valued Finite Element Space

Mathematically, a FE space consist of a finite set of basis functions with a bounded
support. The basis functions in a product space with two factors can be constructed
in the following way:

V = span
{
�V

1 , . . . ,�V
n

}
,

W = span
{
�W

1 , . . . ,�W
m

}

⇒ V ×W = span

{(
�V

1
0

)
, . . . ,

(
�V

n
0

)
,

(
0

�W
1

)
, . . . ,

(
0

�W
m

)}
.

(7.2)

The ordering of the basis functions in V × W in (7.2) is such that the resulting
system matrices and vectors have block structure:

A =
(

AV V AV W

AW V AW W

)
, l =

(
lV

lW

)
. (7.3)

The sizes of the matrices are as follows: AV V ∈ R
n×n , AV W ∈ R

n×m , AW V ∈
R

m×n and AW W ∈ R
m×m .

200

7.1 VECTOR VALUED PROBLEMS

Remark 7.4 If the ordering in (7.2) is chosen differently, the blocking in (7.3) is
also different. In terms of bandwidth of the resulting matrix, the ordering given in
(7.2) is far from optimal. However, the bandwidth of the matrix can be reduced
very easily by available packages and algorithms after the assembling step. The
given ordering makes the assembling rather simple, though and any other ordering
would make this step much more complex.

Elements of the Vector Valued Finite Element Space

At the beginning of this section, it was stated that all the factors of the vector valued
FE space need to have the same mesh T = {K }. This helps to define the elements1

(K , T K) of the vector valued space: they have the same support K as the scalar
factors. What might be different from (scalar) space to space is the approximation
degree, the boundary conditions and the number of local shape functions in that
particular element. This is all condensed in the T matrix T V

K of the (scalar) element
(K , T V

K) of the FE space V .
Therefore, the elements in the vector valued FE space V ×W have the same sup-

port K and a different T matrix T K than the elements in the scalar space. Looking
at the assembly procedure of the blocks of the matrices in (7.3) reveals the relation
of T V

K , T W
K and T K .

Assembling of the Vector Valued Finite Element Space

By Definition 3.22, the blocks in (7.3) are assembled in the following way:

AV V =
∑

K ,K̃∈T

(T V
K)�AV V

K K̃
T V

K̃
, AV W =

∑
K ,K̃∈T

(T V
K)�AV W

K K̃
T W

K̃
,

AW V =
∑

K ,K̃∈T

(T W
K)�AW V

K K̃
T V

K̃
, AW W =

∑
K ,K̃∈T

(T W
K)�AW W

K K̃
T W

K̃
.

The element matrices AV V
K K̃

, AV W
K K̃

, AW V
K K̃

and AW W
K K̃

result from the evaluation of

the bilinear form with the element combination (K , T K)–(K̃ , T K̃) (elements from
V × W), just in the ‘scalar’ decomposition. Hence, the assembling in the vector

1In this section, we adopt the notation (cell, T matrix) for an element instead of (cell, polynomial
degree) used elsewhere.

201

7 ADDITIONAL MATTERS

valued space:

A =
∑

K ,K̃∈T

T�K AK K̃ T K̃ ,

where

AK K̃ :=
(

AV V
K K̃

AV W
K K̃

AW V
K K̃

AW W
K K̃

)
and T K :=

(
T V

K
T W

K

)
. (7.5)

Given AV V
K K̃

∈ R
nK×nK̃ and AW W

K K̃
∈ R

mK×mK̃ , the size of AK K̃ is (nK + mK) ×
(nK̃ + mK̃). The T matrices have the sizes T V

K ∈ R
nK×n , T W

K ∈ R
mK×m and

TK ∈ R
(nK+mK)×(n+m).

With the element and T matrices in (7.5) and the basis of the FE space in (7.2),
the requested properties 2 and 3 above are fulfilled (property 4 is also fulfilled but
this is only shown in the next section).

7.1.2 Classes and Implementation

All the classes needed to implement the functionality described above are given
in Figure 7.1. The classes have the same names as those for the scalar FE spaces
introduced in Section 6.1.2. However, these two sets of classes reside in differ-
ent namespaces. The basic classes are in the namespace concepts (upper part of
Figure 7.1) and the classes for the vector valued Finite Elements in the namespace
vectorial (lower part of Figure 7.1).

Almost all classes in the namespace vectorial depend on the class Vectorial2.
This basic class is an abstract container for components in the vector valued Finite
Elements setting. Vectorial is a parametrised type that can be specialised using a
template argument. This template argument gives the type of the scalar component
which should be vectorised. Vectorial takes care of the handling of the different
components (addition, removal and storage of components).

Each of the classes TMatrix, LinearForm, BilinearForm, Element and Space in
the namespace vectorial is a specialisation of Vectorial with the template parameter
of Vectorial set accordingly (the label on the inheritance arrows in Figure 7.1 is the
template argument comp).

2Upper / lower case is significant here!

202

7.1 VECTOR VALUED PROBLEMS

v
e
c
t
o
r
i
a
l

c
o
n
c
e
p
t
s

V
ec

to
ri

al
-
v
d
i
m
:

u
i
n
t

-
i
d
x
:

u
i
n
t

-
v
d
a
t
a
:

A
r
r
a
y
<
F
*
>

+
V
e
c
t
o
r
i
a
l
(
v
d
i
m
:
u
i
n
t
,
u
i
n
t
:
a
r
r
a
y
W
i
d
t
h
)

+
p
u
t
(
v
d
a
t
a
:
F
,
a
:
i
n
t
=
0
,
b
:
i
n
t
=
0
)
:

v
o
i
d

+
g
e
t
(
i
n
t
:
a
,
i
n
t
:
b
=
0
)
:

F
*

+
v
d
i
m
(
)
:

u
i
n
t

c
o
m
p

«
i
n
t
e
r
f
a
c
e
»

E
le

m
en

t
+
T
(
)
:

T
M
a
t
r
i
x
B
a
s
e

«
i
n
t
e
r
f
a
c
e
»

T
M

at
ri

xB
as

e
+
o
p
e
r
a
t
o
r
(
)
(
A
:
E
l
e
m
e
n
t
M
a
t
r
i
x
,
B
:
E
l
e
m
e
n
t
M
a
t
r
i
x
)
:

v
o
i
d

«
i
n
t
e
r
f
a
c
e
»

B
ili

n
ea

rF
o

rm
+
o
p
e
r
a
t
o
r
(
)
(
e
l
m
X
:
E
l
e
m
e
n
t
,
e
l
m
Y
:
E
l
e
m
e
n
t
,
e
m
:
E
l
e
m
e
n
t
M
a
t
r
i
x
)
:

v
o
i
d

«
i
n
t
e
r
f
a
c
e
»

L
in

ea
rF

o
rm

+
o
p
e
r
a
t
o
r
(
)
(
e
l
m
:
E
l
e
m
e
n
t
,
e
m
:
E
l
e
m
e
n
t
M
a
t
r
i
x
)
:

v
o
i
d

«
i
n
t
e
r
f
a
c
e
»

S
p

ac
e

+
d
i
m
(
)
:

u
i
n
t

+
n
e
l
m
(
)
:

u
i
n
t

+
s
c
a
n
(
)
:

S
c
a
n
n
e
r
*

S
p

ac
e

-
d
i
m
:

u
i
n
t

-
n
e
l
m
:

u
i
n
t

+
S
p
a
c
e
(
v
d
i
m
:
u
i
n
t
)

+
r
e
b
u
i
l
d
(
)
:

v
o
i
d

«
c
o
m
p

=

c
o
n
c
e
p
t
s
:
:
S
p
a
c
e
<
F
>
»

E
le

m
en

t
+
E
l
e
m
e
n
t
(
v
d
i
m
:
u
i
n
t
)

«
c
o
m
p

=

c
o
n
c
e
p
t
s
:
:
E
l
e
m
e
n
t
<
F
>
»

c
o
n
c
e
p
t
s
:
:
J
o
i
n
e
r
<
E
l
e
m
e
n
t
<
F
>
*
,

1
>

1

e
l
m

*

T
M

at
ri

x
-
o
f
f
s
e
t
R
o
w
:

u
i
n
t

-
o
f
f
s
e
t
C
o
l
u
m
n
:

u
i
n
t

+
T
M
a
t
r
i
x
(
v
d
i
m
:
u
i
n
t
)

«
c
o
m
p

=

T
M
a
t
r
i
x
O
f
f
s
e
t
<
F
>
»

1

T 1

T
M

at
ri

xO
ff

se
t

-
o
f
f
s
e
t
R
o
w
:

u
i
n
t

-
o
f
f
s
e
t
C
o
l
u
m
n
:

u
i
n
t

+
T
M
a
t
r
i
x
O
f
f
s
e
t
(
T
:
T
M
a
t
r
i
x
B
a
s
e
,
o
f
f
s
e
t
R
o
w
:
u
i
n
t
,
o
f
f
s
e
t
C
o
l
u
m
n
:
u
i
n
t
)

0
,
1

1

B
ili

n
ea

rF
o

rm

«
c
o
m
p

=

c
o
n
c
e
p
t
s
:
:
B
i
l
i
n
e
a
r
F
o
r
m
<
F
>
»

L
in

ea
rF

o
rmF

«
c
o
m
p

=

c
o
n
c
e
p
t
s
:
:
L
i
n
e
a
r
F
o
r
m
<
F
>
»

O
f
f
s
e
t

s
t
o
r
e
s

h
o
w

m
a
n
y

d
e
g
r
e
e
s

o
f

f
r
e
e
d
o
m

a
r
e

i
n

p
r
e
v
i
o
u
s

c
o
m
p
o
n
e
n
t
s
.

V
e
c
t
o
r
i
a
l

a
b
s
t
r
a
c
t
s

a

c
o
n
t
a
i
n
e
r

f
o
r

c
o
m
p
o
n
e
n
t
s
.

T
h
e

t
y
p
e

o
f

t
h
e

c
o
m
p
o
n
e
n
t
s

i
s

g
i
v
e
n

a
s

a

t
e
m
p
l
a
t
e

a
r
g
u
m
e
n
t
.

T
h
e

s
p
e
c
i
a
l
i
s
a
t
i
o
n
s

o
f

V
e
c
t
o
r
i
a
l

d
o

n
o
t

n
e
e
d

t
o

t
a
k
e

c
a
r
e

o
f

h
a
n
d
l
i
n
g

t
h
e

c
o
m
p
o
n
e
n
t
s

o
r

p
u
t

a
n
d

g
e
t

m
e
t
h
o
d
s
.

Figure 7.1: All classes in the namespace vectorial and their dependency on the main namespace con-
cepts.

203

7 ADDITIONAL MATTERS

hp3D::Space scalarX(msh, 0, pX, bcX),
scalarY(msh, 0, pY, bcY),
scalarZ(msh, 0, pZ, bcZ);

vectorial::Space<Real> spc(3);
spc.put(scalarX);
spc.put(scalarY);
spc.put(scalarZ);

Algorithm 7.1: Creating a vector valued FE space.

scalar*
hp3D::Space

«create»

spc
vectorial::Space

«create»

put(scalarX)

«create»

elm
vectorial::Element

«create»

t
vectorial::TMatrix

«create»

toff
vectorial::TMatrixOffset

put(scalarY)
put()

toff
vectorial::TMatrixOffset

put()
«create»

put(scalarX)
put()

put()

toff
vectorial::TMatrixOffset

«create»

Figure 7.2: Sequence diagram for creation of a vector valued FE space. The left most life line symbol-
ises the main program of the user.

Building a Vector Valued Finite Element Space

Building a vector valued FE space from the previously constructed scalar spaces
is as simple as adding them with the put call to the vector valued space, c. f. Algo-
rithm 7.1 and Figure 7.2. The first call to put generates the list of elements in the
vector valued space. Every subsequent call to put adds the new elements as new
components to the already generated elements in the vector valued FE space (using
the put call of Element in the namespace vectorial).

An Element in vectorial receiving a put call from its space adds the element
to its components and adds the T matrix of the newly arrived scalar element to

204

7.1 VECTOR VALUED PROBLEMS

its T matrix (using a put call to TMatrix in the namespace vectorial). A TMatrix
receiving a put call from an element stores the arriving T matrix as a component
using a TMatrixOffset. TMatrix implements the idea of having different T matrices
as blocks building a larger T matrix whereas TMatrixOffset implements the idea of
having a T matrix with shifted indices (hence the name ‘offset’).

Bilinear and Linear Forms for Vector Valued Problems

In a similiar way to how a vector valued FE space was constructed, the vector
valued bilinear and linear forms are built from scalar ones. The main difference to
the construction of the space described before is that the user has to give an index to
the put call. This index identifies the order in the block structure of the bilinear and
linear forms. If a place in this block structure is not occupied by a scalar bilinear
or linear form it is simply assumed to be identically zero. This makes it simple for
the user to create ‘sparse’ block structures in the bilinear or linear form (by leaving
out a block).

This implementation fulfils item 4 of the list of properties given at the beginning
of Section 7.1.1: The user has to give the number of factors in the Cartesian product
of the FE spaces. This number does not have an upper bound.

7.1.3 Example of a Bilinear Form

Writing the blocks of a bilinear form is straightforward after having seen the ideas
once. They are presented using the example of the curl–curl operator from the
discretisation of Maxwell’s equations.

The curl–curl operator results in the bilinear form

a(u, v) =
∫

K
(curl u)� · curl v dx =

∫
K

(∇x × u)� · (∇x × v) dx.

The integration is performed in the reference element K̂ with the mapping FK :
K̂ → K , ξ �→ x and ∇x = d F−� ·∇ξ . d F−1

K is the inverse of the Jacobian matrix
with the columns a j :

d F−1 =
(

∂ξi

∂x j

)3

i, j=1
= (

a1 a2 a3
)
.

205

7 ADDITIONAL MATTERS

Thus with N(ξ) := u ◦ FK and M(ξ) := v ◦ FK ,

a(u, v) =
∫

K̂

(
(d F−� · ∇ξ)× N

)� · ((d F−� · ∇ξ)× M
)
|d F| dξ

=
∫

K̂

⎛
⎝a�2 ∇N3 − a�3 ∇N2

a�3 ∇N1 − a�1 ∇N3

a�1 ∇N2 − a�2 ∇N1

⎞
⎠
�⎛
⎝a�2 ∇M3 − a�3 ∇M2

a�3 ∇M1 − a�1 ∇M3

a�1 ∇M2 − a�2 ∇M1

⎞
⎠ |d F| dξ

=
3∑

i=1

3∑
j=1

∫
K̂
∇N�i Mij∇Mj |d F| dξ , (7.6)

where Mij is a 3× 3 matrix according to the following table (M ij = M�
j i):

i \ j 1 2 3

1 a2a�2 + a3a�3 −a2a�1 −a3a�1
2 −a1a�2 a1a�1 + a3a�3 −a3a�2
3 −a1a�3 −a3a�1 a1a�1 + a2a�2 .

As shown in (7.3), the bilinear form has a block structure. In our case, a(. , .)

has a 3× 3 block structure:

a(u, v) =
⎛
⎝a11(u1, v1) a12(u1, v2) a13(u1, v3)

a21(u2, v1) a22(u2, v2) a23(u2, v3)

a31(u3, v1) a32(u3, v2) a33(u3, v3)

⎞
⎠ . (7.7)

Therefore, the sum in (7.6) degenerates to

aij (ui , v j) =
∫

K̂
∇N�i Mij∇Mj |d F| dξ

in one of the blocks in (7.7). The coefficient’s matrix M ij is suitable for the sum
factorisation framework presented in Section 6.4.

7.2 Geometric Deadlock Problem

This problem has already been mentioned in Section 6.2.2.

206

7.2 GEOMETRIC DEADLOCK PROBLEM

(a) Refinement in the left and right hexahedra are
given.

(b) Compatible refinement.

Figure 7.3: Deadlock problem.

The mesh in Figure 7.3(a) shows a deadlock situation. The middle hexahedron
cannot be refined in any of the ways the left or right hexahedron were refined. The
problem arises at the shared faces: A shared face would have to be refined in two
incompatible ways.

Remark 7.8 This situation does normally not occur when refining a mesh by hand
or using an a-priori algorithm like Algorithm 3.3. However, in an automatic hp-
adaptive algorithm, this could happen.

The mesh in Figure 7.3(b) shows a possible solution to the above mentioned
deadlock problem: The middle hexahedron is refined into four children. This way,
the shared faces can be refined in a compatible way. Namely, each of the two
children of the first refinement of the faces (given in Figure 7.3(a)) are refined
themselves into two children. These small quadrilaterals can then be used to define
the four new hexahedra as children of the middle hexahedron.

The subdivision algorithm automatically upgrades an incompatible refinement
to a compatible one. This is done by a ‘trial and error’ method: As long as the
requested refinement is incompatible (reported by an exception c. f. Section 6.2.2),
it is upgraded in an appropriate way and retried. If even a subdivision into eight
children fails, it is discarded completely (with a message to the user).

The algorithms in Section 6.3 need some adaptions to the new situation since one
main implicit precondition has changed: The faces of a cell are no longer refined in
the same way as the cell itself: If a geometric deadlock situation has to be solved, a
face is refined into four children in two steps and the cell itself is refined into four
children in one step. To reflect this, some technical special cases have to be dealt
with in the algorithms. However, the basic ideas stay the same.

207

7 ADDITIONAL MATTERS

timeval* utime = &ru_.ru_utime;
timeval* stime = &ru_.ru_stime;
float stamp = (utime->tv_sec * 1.0e6 + utime->tv_usec +

stime->tv_sec * 1.0e6 + stime->tv_usec) / 1.0e6;

getrusage(RUSAGE_SELF, &ru_);

float ut = (utime->tv_sec * 1.0e6 + utime->tv_usec) / 1.0e6;
float st = (stime->tv_sec * 1.0e6 + stime->tv_usec) / 1.0e6;

float res = ut+st-stamp;

Algorithm 7.2: Run-time measurements. ru is a persistent variable of this routine. stamp = tsi−1 and
res = �ti .

7.3 CPU and Timing Information

7.3.1 Hardware and Compiler

The computations were done on a Sun Fire 880 with 32 GBytes of physical main
memory and 8 processors at 800 MHz—only using one processor, though: Con-
cepts is neither using parallelism with threads (shared memory) nor message pass-
ing (MPI, distributed memory). GCC 3 [57] was used to compile the software.

7.3.2 Code for Run-Time Measurements

The getrusage method of the C library returns a struct containing (amongst other
things) timing information in the ru utime (user time used ut) and ru stime (system
time used st) fields. We compute the used time �ti by the difference between two
time stamps tsi = uti + sti : �ti = tsi+1 − tsi (c. f. Algorithm 7.2). Note that the
minimal resolution of the timer is 0.01 s.

208

7.4 HISTORY AND AUTHORS OF CONCEPTS

7.4 History and Authors of Concepts

The software was mainly written by Dr. Christian Lage. The first versions and
many of the ideas behind the software appear in his Ph.D. thesis [73] in the early
90ies of the last century. The predecessor of the current version was developed
during his post doctoral studies at the Seminar for Applied Mathematics of the
Swiss Federal Institute of Technology (ETH), Zurich. The design ideas leading to
this version are summarised in [74].

Dr. Ana-Maria Matache worked on the hp-FEM part of Concepts. She im-
plemented the quadrilateral elements for two dimensional problems together with
Christian during her Ph.D. studies [82]. It was her who gave the author his first
introductions to Concepts.

Dr. Gregor Schmidlin worked on the BEM part of Concepts during his Ph.D.
studies [93].

Many students have also worked on and with Concepts:

• In summer 1999, David Hoch and Andreas Rüegg implemented mixed and
variable boundary conditions for hp-FEM as a term project.

• During the winter term 1999/2000, the author wrote his diploma thesis based
on Concepts. At this time, he implemented hp-DGFEM for a second order
PDE with constant coefficients and mixed and variable boundary conditions.

• During the winter term 2000/2001, Andreas Rüegg wrote his diploma thesis
about generalised FEM. He continues to work with generalised FEM at our
institute as a Ph.D. student.

• In the summer term 2002, Manuel Walser designed and implemented time
stepping schemes (in particular the Newmark scheme) for discretised prob-
lems as a term project. Norbert Fernandes designed and implemented an
interface to the Eigenvalue solver JDBSYM [58, 59].

• In the winter term 2002/2003, Christoph Winkelmann and Adrian Burri
used Concepts to solve non-linear convection-diffusion problems using a Fi-
nite Volume Discontinuous Galerkin Scheme. During their work, the time-
stepping classes were improved considerably.

209

7 ADDITIONAL MATTERS

• During the winter term 2003/2004, Christoph Winkelmann wrote his
diploma thesis using Concepts on DGFEM in two dimensions for time de-
pendent saddle point problems.

After completing his diploma thesis, the author started to work on three dimen-
sional hp-FEM in Concepts as part of his Ph.D. studies in spring 2000.

In spring 2002, Kersten Schmidt began to work on vector valued problems and
implemented the namespace vectorial and the necessary bilinear forms required to
solve Maxwell’s equations using weighted regularisation. He is now implementing
hp edge elements for quadrilaterals and hexahedra for his Ph.D. research.

Open Source

The author has been successful in convincing all contributors and his advisor Prof.
Christoph Schwab that an open source [90] version of Concepts should be released
[26]. We chose the GNU General Public License (GPL) [53] as the license for the
public part of Concepts. Some parts (where active research is still going on) remain
closed to the public but might be released under the same license at a later date.

210

Bibliography

[1] Robert A. Adams. Sobolev spaces. Academic Press, New York, London, 1975. Pure and
Applied Mathematics, Vol. 65.

[2] Mark Ainsworth. Essential boundary conditions and multi-point constraints in finite element
analysis. Comput. Methods Appl. Mech. Engrg., 190(48):6323–6339,
doi:10.1016/S0045-7825(01)00236-5, 2001.

[3] Mark Ainsworth and Joe Coyle. Hierarchic hp-edge element families for Maxwell’s equations
on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Engrg.,
190(49–50):6709–6733, doi:10.1016/S0045-7825(01)00259-6, 2001.

[4] Mark Ainsworth, Joe Coyle, Paul D. Ledger, and Ken Morgan. Computing Maxwell
Eigenvalues by Using Higher Order Edge Elements in Three Dimensions. IEEE Transactions
on Magnetics, 39(5):2149–2153, doi:10.1109/TMAG.2003.817097, September 2003.

[5] Mark Ainsworth and Katia Pinchedez. hp-approximation theory for BDFM and RT finite
elements on quadrilaterals. SIAM J. Numer. Anal., 40(6):2047–2068,
doi:10.1137/S0036142901391128, 2002.

[6] Jochen Alberty, Carsten Carstensen, and Stefan A. Funken. Remarks around 50 lines of
Matlab: short finite element implementation. Numer. Algorithms, 20(2–3):117–137, 1999.

[7] Asgard Beowulf Cluster, http://www.asgard.ethz.ch/.

[8] Ivo Babuška and Benqi Guo. Approximation properties of the h-p version of the finite element
method. Comput. Methods Appl. Mech. Engrg., 133(3-4):319–346, 1996.

[9] Ivo Babuška and John E. Osborn. Finite Element Methods (Part I), volume II of Handbook of
numerical analysis, chapter Eigenvalue problems, pages 641–787. North-Holland, 1991.

[10] Ivo Babuška and Manil Suri. The p and h-p versions of the finite element method, basic
principles and properties. SIAM Rev., 36(4):578–632, 1994.

[11] Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Lois Curfman McInnes,
and Barry F. Smith, PETSc home page, http://www.mcs.anl.gov/petsc, 2001.

[12] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient
Management of Parallelism in Object Oriented Numerical Software Libraries. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing,
pages 163–202. Birkhauser Press, 1997.

[13] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc Users
Manual. Technical Report ANL-95/11 – Revision 2.1.0, Argonne National Laboratory, 2001.

211

http://dx.doi.org/10.1016/S0045-7825(01)00236-5
http://dx.doi.org/10.1016/S0045-7825(01)00259-6
http://dx.doi.org/10.1109/TMAG.2003.817097
http://dx.doi.org/10.1137/S0036142901391128
http://www.asgard.ethz.ch/
http://www.asgard.ethz.ch/
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

BIBLIOGRAPHY

[14] Wolfgang Bangerth, Ralf Hartmann, and Guido Kanschat. deal.II Differential Equations
Analysis Library, Technical Reference. IWR Heidelberg.

[15] Wolfgang Bangerth and Guido Kanschat. Concepts for Object-Oriented Finite Element
Software – the deal.II library. Preprint 99-43 (SFB 359), IWR Heidelberg, 10 1999.

[16] Rick Beatson and Leslie Greengard. A short course on fast multipole methods. In Mark
Ainsworth and J. Levesley, editors, Wavelets, multilevel methods and elliptic PDEs, Numer.
Math. Sci. Comput., pages 1–37. Oxford Univ. Press, New York, 1997.

[17] Richard E. Bellman, editor. Stochastic Processes in Mathematical Physics and Engineering,
volume 16 of Proceedings of Symposia in Applied Mathematics. American Mathematical
Society, 1964.

[18] Beowulf Cluster Site, http://www.beowulf.org/.

[19] Susanne C. Brenner and L. Ridgway Scott. The mathematical theory of finite element methods,
volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, 1994.

[20] Franco Brezzi and Michel Fortin. Mixed and hybrid finite element methods, volume 15 of
Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991.

[21] Timothy A. Budd. An introduction to object oriented programming. Addison-Wesley, 1991.

[22] Françoise Chatelin. Eigenvalues of matrices. John Wiley & Sons Ltd., Chichester, 1993.
Translated from the French and with additional material by Walter Ledermann.

[23] Noam Chomsky. Syntactic Structures, volume 4 of Janua Linguarum Series Minor.
’S-Gravenhage Mouton, 1963.

[24] Philippe G. Ciarlet. The finite element method for elliptic problems. North-Holland Publishing
Co., Amsterdam, 1978. Studies in Mathematics and its Applications, Vol. 4.

[25] Philippe G. Ciarlet. Finite Element Methods (Part I), volume II of Handbook of numerical
analysis, chapter Basic Error Estimates for Elliptic Problems, pages 17–351. North-Holland,
1991.

[26] Concepts Development Team, Concepts Homepage,
http://www.concepts.math.ethz.ch/, 2003.

[27] Martin Costabel. A coercive bilinear form for Maxwell’s equations. J. Math. Anal. Appl.,
157(2):527–541, 1991.

[28] Martin Costabel and Monique Dauge. Maxwell and Lamé eigenvalues on polyhedra. Math.
Methods Appl. Sci., 22(3):243–258, 1999.

[29] Martin Costabel and Monique Dauge. Weighted regularization of Maxwell equations in
polyhedral domains. A rehabilitation of nodal finite elements. Numer. Math., 93(2):239–277,
doi:10.1007/s002110100388, 2002.

[30] Martin Costabel, Monique Dauge, and Serge Nicaise. Singularities of Maxwell interface
problems. M2AN Math. Model. Numer. Anal., 33(3):627–649, 1999.

[31] Martin Costabel, Monique Dauge, and Christoph Schwab. Exponential Convergence of
hp-FEM for Maxwell’s Equations with Weighted Regularization in Polygonal Domains.
Technical Report 2004-05, Seminar for Applied Mathematics, ETH Zurich, 2004. Submitted to
M3AS.

212

http://www.beowulf.org/
http://www.beowulf.org/
http://www.concepts.math.ethz.ch/
http://www.concepts.math.ethz.ch/
http://dx.doi.org/10.1007/s002110100388

BIBLIOGRAPHY

[32] Martin Costabel, Monique Dauge, and Christoph Schwab. Exponential Convergence of
hp-FEM for Maxwell’s Equations with Weighted Regularization. In preparation, 2005.

[33] Joe Coyle and Paul D. Ledger. Evidence of exponential convergence in the computation of
Maxwell eigenvalues. To appear in Comput. Methods Appl. Mech. Engrg., 2003.

[34] Eric Darve. The fast multipole method. I. Error analysis and asymptotic complexity. SIAM J.
Numer. Anal., 38(1):98–128 (electronic), doi:10.1137/S0036142999330379, 2000.

[35] Eric Darve. The fast multipole method: numerical implementation. J. Comput. Phys.,
160(1):195–240, doi:10.1006/jcph.2000.6451, 2000.

[36] Monique Dauge, Benchmark computations for Maxwell equations for the approximation of
highly singular solutions,
http://perso.univ-rennes1.fr/monique.dauge/benchmax.html, 2002.

[37] Monique Dauge, Private Communication, April 2004.

[38] Tim A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. Technical Report TR-03-006, Departement of Computer and Information Science and
Engineering, University of Florida, 2003. Submitted to ACM Trans. Math. Software.

[39] Tim A. Davis, UMFPACK Homepage,
http://www.cise.ufl.edu/research/sparse/umfpack/, 2003.

[40] Tim A. Davis. UMFPACK Version 4.1 User Guide. Technical Report TR-03-008, Univ. of
Florida, CISE Dept., Gainesville, FL, 2003.

[41] Leszek Demkowicz, J. Tinsely Oden, Waldemar Rachowicz, and O. Hardy. Toward a universal
h-p adaptive finite element strategy. I. Constrained approximation and data structure. Comput.
Methods Appl. Mech. Engrg., 77(1-2):79–112, doi:10.1016/0045-7825(89)90129-1, 1989.

[42] Leszek Demkowicz, David Pardo, and Waldemar Rachowicz, Homepage for 3Dhp90,
http://www.ticam.utexas.edu/˜leszek/3Dhp90.html.

[43] Leszek Demkowicz, David Pardo, and Waldemar Rachowicz. 3D hp-Adaptive Finite Element
Package (3Dhp90). Version 2.0, The Ultimate Data Structure for Three Dimensional,
Anisotropic hp Refinements. Technical Report 02-24, TICAM, 2002.

[44] Leszek Demkowicz, Waldemar Rachowicz, and Philippe R. B. Devloo. A fully automatic
hp-adaptivity. In Proceedings of the Fifth International Conference on Spectral and High
Order Methods (ICOSAHOM-01) (Uppsala), volume 17, pages 117–142,
doi:10.1023/A:1015192312705, 2002.

[45] James W. Demmel, John R. Gilbert, and Xiaoye S. Li, SuperLU Homepage,
http://www.nersc.gov/˜xiaoye/SuperLU/, 1999.

[46] James W. Demmel, John R. Gilbert, and Xiaoye S. Li. SuperLU Users’ Guide. Technical
Report LBNL-44289, Lawrence Berkely National Lab, 2003.

[47] Philippe R. B. Devloo. PZ: An object oriented environment for scientific programming.
Comput. Methods Appl. Mech. Engrg., 150(1–4):133–153,
doi:10.1016/S0045-7825(97)00097-2, 1997.

[48] Alexander Düster. High order finite elemnts for three-dimensional, thin-walled nonlinear
continua. PhD thesis, Technische Universität München, 2001.

213

http://dx.doi.org/10.1137/S0036142999330379
http://dx.doi.org/10.1006/jcph.2000.6451
http://perso.univ-rennes1.fr/monique.dauge/benchmax.html
http://perso.univ-rennes1.fr/monique.dauge/benchmax.html
http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.cise.ufl.edu/research/sparse/umfpack/
http://dx.doi.org/10.1016/0045-7825(89)90129-1
http://www.ticam.utexas.edu/~leszek/3Dhp90.html
http://www.ticam.utexas.edu/~leszek/3Dhp90.html
http://dx.doi.org/10.1023/A:1015192312705
http://www.nersc.gov/~xiaoye/SuperLU/
http://www.nersc.gov/~xiaoye/SuperLU/
http://dx.doi.org/10.1016/S0045-7825(97)00097-2

BIBLIOGRAPHY

[49] Alexander Düster, Henrike Bröker, and Ernst Rank. The p-version of the Finite Element
Method for three-dimensional curved thin walled structures. Int. J. Numer. Methods Engng,
52(7):673–703, doi:10.1002/nme.222, 2001.

[50] Philippe R. B. Devloo et. al., PZ Homepage, http://labmec.fec.unicamp.br/˜pz/,
2002.

[51] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 1998.

[52] Miroslav Fiedler. Special matrices and their applications in numerical mathematics, chapter
Tensor Product of Matrices. Compound Matrices, page 136ff. Martinus Nijhoff Publishers,
1986. Translated from the Czech by Petr Přikryl and Karel Segeth.

[53] Free Software Foundation, The GNU General Public License (GPL),
http://www.opensource.org/licenses/gpl-license.php, June 1991.

[54] Philipp Frauenfelder and Christian Lage. Concepts—An Object-Oriented Software Package for
Partial Differential Equations. M2AN Math. Model. Numer. Anal., 36(5):937–951,
doi:10.1051/m2an:2002036, 2002.

[55] Philipp Frauenfelder, Christoph Schwab, and Radu A. Todor. Finite elements for elliptic
problems with stochastic coefficients. Comput. Methods Appl. Mech. Engrg.,
doi:10.1016/j.cma.2004.04.008, 2004. To appear.

[56] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Professional Computing Series. Addison-Wesley, 1995.

[57] GCC—The GNU Compiler Collection, http://www.gnu.org/software/gcc/, 2003.

[58] Roman Geus. The Jacobi-Davidson algorithm for solving large sparse symmetric eigenvalue
problems with application to the design of accelerator cavities. PhD thesis14734, ETH Zurich,
2002.

[59] Roman Geus and Oscar Chinellato, JDBSYM 0.14,
http://www.inf.ethz.ch/personal/geus/software.html, 2000.

[60] Roger G. Ghanem and Pol D. Spanos. Stochastic finite elements: a spectral approach.
Springer-Verlag, New York, 1991.

[61] Vivette Girault and Pierre-Arnaud Raviart. Finite element methods for Navier-Stokes equations,
volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986.
Theory and algorithms.

[62] Gene H. Golub. Some modified matrix eigenvalue problems. SIAM Rev., 15:318–334, 1973.

[63] Wen Z. Gui and Ivo Babuška. The h, p and h-p versions of the finite element method in 1
dimension. I: The error analysis of the p-version, II: The error analysis of the h- and
hp-version, III: The adaptive h-p version. Numer. Math., 49(6):577–683, 1986.

[64] Wolfgang Hackbusch. Integral equations, volume 120 of International Series of Numerical
Mathematics. Birkhäuser Verlag, Basel, 1995. Theory and numerical treatment, Translated and
revised by the author from the 1989 German original.

[65] Wolfgang Hackbusch and Zenon P. Nowak. On the fast matrix multiplication in the boundary
element method by panel clustering. Numer. Math., 54(4):463–491, 1989.

214

http://dx.doi.org/10.1002/nme.222
http://labmec.fec.unicamp.br/~pz/
http://labmec.fec.unicamp.br/~pz/
http://www.opensource.org/licenses/gpl-license.php
http://www.opensource.org/licenses/gpl-license.php
http://dx.doi.org/10.1051/m2an:2002036
http://dx.doi.org/10.1016/j.cma.2004.04.008
http://www.gnu.org/software/gcc/
http://www.gnu.org/software/gcc/
http://e-collection.ethbib.ethz.ch/show?type=diss&nr=14734
http://www.inf.ethz.ch/personal/geus/software.html
http://www.inf.ethz.ch/personal/geus/software.html

BIBLIOGRAPHY

[66] J. M. Hammersley and D. C. Handscomb. Monte Carlo methods. Methuen & Co. Ltd., London,
1965.

[67] Christophe Hazard and Marc Lenoir. On the solution of time-harmonic scattering problems for
Maxwell’s equations. SIAM J. Math. Anal., 27(6):1597–1630, 1996.

[68] Vincent Heuveline, HiFlow Homepage,http://www.hiflow.de/, 2002.

[69] Engineering Software Research & Development Inc., StressCheck Homepage,
http://www.esrd.com/, 2003.

[70] John David Jackson. Classical electrodynamics. John Wiley & Sons Inc., New York, second
edition, 1975.

[71] Malvin H. Kalos and Paula A. Whitlock. Monte Carlo methods. Vol. I. A Wiley-Interscience
Publication. John Wiley & Sons Inc., New York, 1986. Basics.

[72] George Em Karniadakis and Spencer J. Sherwin. Spectral/hp element methods for CFD.
Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 1999.

[73] Christian Lage. Softwareentwicklung zur Randelementmethode: Analyse und Entwurf
effizienter Techniken. PhD thesis, Christian-Albrechts-Universität, Kiel, 1995.

[74] Christian Lage. Concept Oriented Design of Numerical Software. Technical Report 98-07,
Seminar for Applied Mathematics, ETH Zurich, 7 1998.

[75] LAPACK Homepage, http://www.netlib.org/lapack/.

[76] Paul D. Ledger. An hp-adaptive finite element procedure for electromagnetic scattering
problems. PhD thesis, University of Wales, November 2001.

[77] Richard B. Lehoucq, Kristyn J. Maschhoff, Danny C. Sorensen, and Chao Yang, ARPACK
Homepage, http://www.caam.rice.edu/software/ARPACK/.

[78] Richard B. Lehoucq, Danny C. Sorensen, and Chao Yang. ARPACK users’ guide. Software,
Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1998. Solution of large-scale eigenvalue problems with implicitly restarted
Arnoldi methods.

[79] Rolf Leis. Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen
Medien. Math. Z., 106:213–224, 1968.

[80] Michel Loève. Probability theory. I, volume 45 of Graduate Texts in Mathematics.
Springer-Verlag, New York, fourth edition, 1977.

[81] Michel Loève. Probability theory. II, volume 46 of Graduate Texts in Mathematics.
Springer-Verlag, New York, fourth edition, 1978.

[82] Ana-Maria Matache. Spectral and p-Finite Elements for problems with microstructure. PhD
thesis 13815, ETH Zurich, 2001.

[83] Jens M. Melenk. hp-Finite Element Methods for Singular Perturbations, volume 1796 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.

[84] Jens M. Melenk, Klaus Gerdes, and Christoph Schwab. Fully Discrete hp-Finite Elements:
Fast Quadrature. Comput. Methods Appl. Mech. Engrg., 190(32–33):4339–4364,
doi:10.1016/S0045-7825(00)00322-4, 2001.

215

http://www.hiflow.de/
http://www.hiflow.de/
http://www.esrd.com/
http://www.esrd.com/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/
http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13815
http://dx.doi.org/10.1016/S0045-7825(00)00322-4

BIBLIOGRAPHY

[85] Jens M. Melenk and Christoph Schwab. H P FEM for reaction-diffusion equations. I. Robust
exponential convergence. SIAM J. Numer. Anal., 35(4):1520–1557 (electronic),
doi:10.1137/S0036142997317602, 1998.

[86] David Musser and Alexander A. Stepanov. Generic Programming. In ISSAC: Proceedings of
the ACM SIGSAM International Symposium on Symbolic and Algebraic Computation, 1989.

[87] Jean-Claude Nédélec. Mixed finite elements in R
3. Numer. Math., 35(3):315–341, 1980.

[88] Jean-Claude Nédélec. A new family of mixed finite elements in R
3. Numer. Math., 50(1):57–81,

1986.

[89] Object Management Group, Inc., Framingham, USA. OMG Unified Modeling Language
Specification, 1999.

[90] Bruce Perens, The Open Source Definition,
http://www.opensource.org/docs/definition.php, 2004. The first draft of this
document was released as “The Debian Free Software Guidelines” in 1997. The Debian-specific
references were removed from the document to create the “Open Source Definition”.

[91] Olaf Schenk, Klaus Gärtner, Wolfgang Fichtner, and Andreas Stricker. PARDISO: a
high-performance serial and parallel sparse linear solver in semiconductor device simulation.
Future Generation Computer Systems, 18(1):69–78, doi:10.1016/S0167-739X(00)00076-5,
2001.

[92] Martin Schlather. Introduction to positive definite functions and to unconditional simulation of
random fields. Technical Report ST-99-10, Department of Mathematics and Statistics,
Lancaster University, 1999.

[93] Gregor Schmidlin. Fast Solution Algorithms for Integral Equations in R
3. PhD thesis 15016,

ETH Zurich, 2003.

[94] Gregor Schmidlin, Christian Lage, and Christoph Schwab. Rapid solution of first kind
boundary integral equations in R

3. Engineering Analysis with Boundary Elements,
27(5):469–490, doi:10.1016/S0955-7997(02)00156-X, 2003.

[95] Joachim Schöberl, Private Communication, November 2003.

[96] Dominik Schötzau, Christoph Schwab, and Andrea Toselli. Stabilized hp-DGFEM for
Incompressible Flow. Math. Models Meth. Appl. Sci., 13(10):1413–1436,
doi:10.1142/S0218202503002970, 2003.

[97] Christoph Schwab. p- and hp-finite element methods. Numerical Mathematics and Scientific
Computation. The Clarendon Press Oxford University Press, New York, 1998. Theory and
applications in solid and fluid mechanics.

[98] Christoph Schwab and Manil Suri. The p and hp versions of the finite element method for
problems with boundary layers. Math. Comp., 65(216):1403–1429, 1996.

[99] Christoph Schwab and Radu A. Todor. Approximation of Random Fields using generalised Fast
Multipole Methods. In preparation.

[100] Christoph Schwab and Radu A. Todor. Sparse finite elements for elliptic problems with
stochastic loading. Numer. Math., 95(4):707–734, doi:10.1007/s00211-003-0455-z, 2003.

216

http://dx.doi.org/10.1137/S0036142997317602
http://www.opensource.org/docs/definition.php
http://www.opensource.org/docs/definition.php
http://dx.doi.org/10.1016/S0167-739X(00)00076-5
http://e-collection.ethbib.ethz.ch/show?type=diss&nr=15016
http://dx.doi.org/10.1016/S0955-7997(02)00156-X
http://dx.doi.org/10.1142/S0218202503002970
http://dx.doi.org/10.1007/s00211-003-0455-z

BIBLIOGRAPHY

[101] Jeremy G. Siek and Andrew Lumsdaine. The Matrix Template Library: Generic Components
for High-Performance Scientific Computing. Computing in Science & Engineering, 1(6):70–78,
November/December 1999.

[102] Alexander A. Stepanov and Meng Lee. The Standard Template Library. Hewlett-Packard
Laboratories, Palo Alto, CA, October 1995.

[103] Gilbert Strang and George J. Fix. An analysis of the finite element method. Prentice-Hall Inc.,
Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation.

[104] Bjarne Stroustrup. A history of C++: 1979–1991. In The second ACM SIGPLAN conference on
History of programming languages, volume 28 of ACM SIGPLAN Notices, pages 271–297.
SIGPLAN, ACM Press, New York, doi:10.1145/154766.155375, March 1993.

[105] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley Longman, Inc., third
edition, 1997.

[106] Barna Szabó and Ivo Babuška. Finite element analysis. A Wiley-Interscience Publication. John
Wiley & Sons Inc., New York, 1991.

[107] Radu A. Todor. Numerical treatment of stochastic PDEs. PhD thesis, Swiss Fedral Institute of
Technology Zurich. In preparation.

[108] Andrea Toselli. hp discontinuous Galerkin approximations for the Stokes problem. Math.
Models Methods Appl. Sci., 12(11):1565–1597, doi:10.1142/S0218202502002240, 2002.

[109] Andrea Toselli and Christoph Schwab. Mixed hp-finite element approximations on geometric
edge and boundary layer meshes in three dimensions. Numer. Math., 94(4):771–801, 2003.

[110] N. Wiener. The homogeneous chaos. Amer. J. Math., 60:897–936, 1930.

[111] N. Wiener. Nonlinear Problems in Random Theory. MIT Press and John Wiley and Sons, New
York, 1958.

[112] Thomas P. Wihler. Discontinuous Galerkin FEM for Elliptic Problems in Polygonal Domains.
PhD thesis 14973, ETH Zurich, 2002.

[113] Dongbin Xiu and George Em Karniadakis. The Wiener-Askey polynomial chaos for stochastic
differential equations. SIAM J. Sci. Comput., 24(2):619–644,
doi:10.1137/S1064827501387826, 2002.

217

http://dx.doi.org/10.1145/154766.155375
http://dx.doi.org/10.1142/S0218202502002240
http://e-collection.ethbib.ethz.ch/show?type=diss&nr=14973
http://dx.doi.org/10.1137/S1064827501387826

Curriculum Vitae

On September 19, 1974, I was born in Winterthur, Switzerland. I visited the
mandatory schools in Niederglatt (Kanton Zürich) and the Kantonsschule Zürcher
Unterland in Bülach. In January 1994, I received the Matura Typus C.

In fall 1994, I matriculated at ETH Zürich to study mathematics. I graduated in
spring 2000 with degree Dipl. Math. ETH.

Since April 2000, I have been working as a research and teaching assistant at the
Seminar for Applied Mathematics at ETH Zürich. During this time, I developed
my dissertation thesis in the field of numerical mathematics supervised by Prof.
Dr. Christoph Schwab.

Since October 2004, I am working as a consultant for Solution Providers AG,
Dübendorf.

219

