Anisotropic h and p refinement for conforming FEM in 3D

Philipp Frauenfelder
Christian Lage
Christoph Schwab

pfrauenf@math.ethz.ch

Seminar for Applied Mathematics Federal Institute of Technology, ETH Zürich

Goal for Meshes

- Hierarchy of hanging nodes
- Anisotropic refinements

- Introduction
- Anisotropic h refinements
 - S and T matrices
 - Assembly of Supports

- Introduction
- Anisotropic h refinements
 - S and T matrices
 - Assembly of Supports
- Anisotropic p refinements

- Introduction
- Anisotropic h refinements
 - S and T matrices
 - Assembly of Supports
- Anisotropic p refinements
- hp Meshes

- Introduction
- Anisotropic h refinements
 - S and T matrices
 - Assembly of Supports
- Anisotropic p refinements
- hp Meshes
- Perspectives

Previous hp **Software**

- Szabó 1985: PROBE (p only)
- Demkowicz, Oden, Rachowicz et al. 1989: PHLEX, hp90
- Anderson: STRIPE (p only on a-priori generated meshes)
- Flaherty, Shephard: Tetrahedra only (3D anisotropy?)
- Karniadakis, Sherwin: NEKTAR (regular meshes only, tetrahedra, hexahedra, prisms, p only)
- Devloo
- Szabó since 1995: STRESSCHECK (p only)
- Heuveline et al.: HiFlow
- In development: deal.II (Kanschat & Bangerth), ngsolve (Schöberl et al.)

FE Method

- Let $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3 (dimension independent design)
- Find $u \in V$ such that

$$a(u, v) = l(v) \quad \forall v \in V,$$

V a FE space, a(.,.) a bilinear form and l(.) a linear form.

• Standard FE: $V \subset H^1(\Omega)$

$$V = S^{1,\underline{p}}(\Omega, \mathcal{T})$$

$$= \left\{ u \in H^1(\Omega) : u|_K \circ F_K \in \mathcal{Q}_p \ \forall K \in \mathcal{T} \right\}$$

 $\Rightarrow u \in V$ is continuous, ie. $\mathcal{C}^0(\bar{\Omega})$.

Vector valued problems are possible

FE Space: Generalities

- Basis $\{\Phi_i\}_{i=1}^N$ constructed from element shape functions ϕ_j^K on elements $K \in \mathcal{T}$.
- Reference element shape functions: N_j , element map: $F_K: \hat{K} \to K$

$$\Rightarrow \phi_j^K \circ F_K = N_j.$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Local refinements as mean to improve approximation of exact solution by FE solution

But standard FE forbids locally refined grids: discontinuities are possible.

Topolocigal closure

Topolocigal closure

Topolocigal closure

Drawbacks: more elements, more element types, what about refining a ?

Topolocigal closure

Drawbacks: more elements, more element types, what about refining a ?

- Our philosophy: hexahedral meshes only (tensorized interpolants, spectral quadrature techniques)
- Our solution: Treating the constraints induced by the hanging nodes Why conforming? a(u,v)=a(v,u) and $a(u,u)\geq \alpha \|u\|_V^2\Rightarrow A$ SPD, pccg . . .

Our Software: Concepts

- Started by Christian Lage during his Ph.D. studies (1995).
- Used and improved by Frauenfelder, Matache, Schmidlin, Schmidt and several students.
- Concept Oriented Design using mathematical principles [1].
- Currently two parts: hp-FEM, BEM (wavelet and multipole methods).
- C++

[1] P. F. and Ch. Lage, "Concepts—An Object Oriented Software Package for Partial Differential Equations", *Mathematical Modelling and Numerical Analysis* 36 (5), pp. 937–951 (2002).

- Introduction
- Anisotropic h refinements
 - S and T matrices
 - Assembly of Supports
- Anisotropic p refinements
- hp Meshes
- Perspectives

T Matrix

Definition 1 (T Matrix). Element shape functions $\{\phi_j^K\}_{j=1}^{m_K}$ on element K, global basis functions $\{\Phi_i\}_{i=1}^N$.

The T matrix $T_K \in \mathbb{R}^{m_K \times N}$ of element K is implicitly defined by

$$\left. egin{aligned} \Phi_{i}
ight|_{K} = \sum_{j=1}^{m_{K}} \left[oldsymbol{T}_{K}
ight]_{ji} \phi_{j}^{K} \end{aligned}$$

as vectors:

$$\underline{\Phi}|_{K} = T_{K}^{\top} \underline{\phi}^{K}.$$

Assembly using T Matrices

Assembling:

$$\underline{\boldsymbol{l}} = l(\underline{\Phi}) = l\big(\sum_{\tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} \underline{\phi}^{\tilde{K}}\big) = \sum_{\tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} l(\underline{\phi}^{\tilde{K}}) = \sum_{\tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} \underline{\boldsymbol{l}}_{\tilde{K}}$$

Assembly using T Matrices

Assembling:

$$\underline{\boldsymbol{l}} = l(\underline{\Phi}) = l(\sum_{\tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} \underline{\phi}^{\tilde{K}}) = \sum_{\tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} l(\underline{\phi}^{\tilde{K}}) = \sum_{\tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} \underline{\boldsymbol{l}}_{\tilde{K}}$$

$$\mathbf{A} = a(\underline{\Phi}, \underline{\Phi}) = \sum_{K, \tilde{K}} \mathbf{T}_{\tilde{K}}^{\top} a(\underline{\phi}^{K}, \underline{\phi}^{\tilde{K}}) \mathbf{T}_{K} = \sum_{K, \tilde{K}} \mathbf{T}_{\tilde{K}}^{\top} \mathbf{A}_{\tilde{K}K} \mathbf{T}_{K}$$

Note: $A_{\tilde{K}K} = 0$ in standard FEM for $\tilde{K} \neq K$.

Example: Regular Mesh

Two elements with three local shape functions each and four global basis functions.

$$m{T}_I = egin{pmatrix} m{1} & m{2} & m{3} & m{4} \ m{1} & m{1} & m{0} & m{0} & m{0} \ m{2} & m{0} & m{1} & m{0} & m{0} \ m{3} & m{0} & m{0} & m{1} & m{0} \end{pmatrix}$$

Example: Regular Mesh

Two elements with three local shape functions each and four global basis functions.

$$m{T}_I = egin{pmatrix} 1 & 2 & 3 & 4 \ 1 & 1 & 0 & 0 & 0 \ 2 & 0 & 1 & 0 & 0 \ 3 & 0 & 0 & 1 & 0 \ \end{pmatrix} \ m{T}_J = egin{pmatrix} 1 & 2 & 3 & 4 \ 1 & 0 & 1 & 0 & 0 \ 2 & 0 & 0 & 0 & 1 \ 3 & 0 & 0 & 1 & 0 \ \end{pmatrix}$$

Example: Irregular Mesh

Three elements with three local shape functions each and four global basis functions. The hanging node is marked with o.

$$m{T}_L = egin{pmatrix} m{1} & m{2} & m{3} & m{4} \ m{1} & 0 & 1 & 0 & 0 \ m{2} & 0 & 0 & 0 & 1 \ m{3} & 0 & 1/2 & 1/2 & 0 \end{pmatrix}$$

Example: Irregular Mesh

Three elements with three local shape functions each and four global basis functions. The hanging node is marked with o.

$$m{T}_L = egin{pmatrix} 1 & 2 & 3 & 4 \ 1 & 0 & 1 & 0 & 0 \ 2 & 0 & 0 & 0 & 1 \ 3 & 0 & 1/2 & 1/2 & 0 \end{pmatrix} \ m{T}_K = egin{pmatrix} 1 & 2 & 3 & 4 \ 1 & 0 & 1/2 & 1/2 & 0 \ 2 & 0 & 0 & 0 & 1 \ 3 & 0 & 0 & 1 & 0 \end{pmatrix}$$

⇒ continuous basis functions.

Generation of T Matrices

 Regular Mesh: Counting and assigning indices with respect to topological entities such as vertices, edges and faces.
 Explained in detail later.

Generation of T Matrices

- Regular Mesh: Counting and assigning indices with respect to topological entities such as vertices, edges and faces.
 Explained in detail later.
- Irregular Mesh: Irregularity due to a refinement of an initially regular mesh.

Irregularity due to a refinement of an initially regular mesh.

Mesh	\mathcal{M}	refine	\mathcal{M}'
Basis fcts.	$B = B_{\text{repl}} \cup B_{\text{keep}}$	\longrightarrow	$B' = B_{\text{ins}} \cup B_{\text{keep}}$

Irregularity due to a refinement of an initially regular mesh.

Mesh	\mathcal{M}	refine	\mathcal{M}'
Basis fcts.	$B = B_{\text{repl}} \cup B_{\text{keep}}$	\longrightarrow	$B' = B_{\text{ins}} \cup B_{\text{keep}}$

 B_{repl} : basis fcts. which can be solely

described by elements of $\mathcal{M}' \backslash \mathcal{M}$

 $B_{\rm ins}$: basis fcts. generated by regular parts

of $\mathcal{M}' ackslash \mathcal{M}$

Irregularity due to a refinement of an initially regular mesh.

Mesh	\mathcal{M}	refine	\mathcal{M}'
Basis fcts.	$B = B_{\text{repl}} \cup B_{\text{keep}}$	→	$B' = B_{\text{ins}} \cup B_{\text{keep}}$

 B_{repl} : basis fcts. which can be solely

described by elements of $\mathcal{M}' \backslash \mathcal{M}$

 $B_{\rm ins}$: basis fcts. generated by regular parts

of $\mathcal{M}' ackslash \mathcal{M}$

Irregularity due to a refinement of an initially regular mesh.

Mesh	\mathcal{M}	refine	\mathcal{M}'
Basis fcts.	$B = B_{\text{repl}} \cup B_{\text{keep}}$	\longrightarrow	$B' = B_{\text{ins}} \cup B_{\text{keep}}$

 B_{repl} : basis fcts. which can be solely

described by elements of $\mathcal{M}' \backslash \mathcal{M}$

 $B_{\rm ins}$: basis fcts. generated by regular parts

of $\mathcal{M}' ackslash \mathcal{M}$

Every element of B has a column in the T matrix. Generation is

- easy for B_{ins} (like regular mesh),
- simple for B_{keep} : modify column from \mathcal{M} by S matrix.

S Matrix

Definition 2 (S Matrix). Let $K' \subset K$ be the result of a refinement of element K. The S matrix $S_{K'K} \in \mathbb{R}^{m_{K'} \times m_K}$ is defined by

$$\left.\phi_{j}^{K}
ight|_{K'}=\sum_{l=1}^{m_{K'}}\left[oldsymbol{S_{K'K}}
ight]_{lj}\phi_{l}^{K'}$$

as vectors:

$$\left. \underline{\phi}^K \right|_{K'} = S_{K'K}^ op \underline{\phi}^{K'}$$

 $\phi_j^K \big|_{K'}$ is represented as a linear combination of the shape functions $\left\{\phi_l^{K'}\right\}_{l=1}^{m_{K'}}$ of K'.

Application of S Matrix

Proposition 1. Let $K' \subset K$ be the result of a refinement of an element K. Then, the T matrix of K' can be computed as

$$oldsymbol{T}_{K'} = oldsymbol{S}_{K'K} oldsymbol{T}_K^{ ext{keep}} + oldsymbol{T}_{K'}^{ ext{ins}}$$

where T_K^{keep} denotes the T matrix of element K (with columns not related to functions in B_{keep} set to zero) and $T_{K'}^{\text{ins}}$ the T matrix for functions in B_{ins} with respect to K'.

Proposition 2. Let $\hat{K}' \subset \hat{K}$ be the result of a refinement of the reference element \hat{K} with $H: \hat{K} \to \hat{K}'$ the subdivision map. The element maps are

$$F_K:\hat{K} o K$$
 and $F_{K'}:\hat{K} o K'$

and $F_{K'} \circ H^{-1} = F_K$ holds. Then, $S_{\hat{K}'\hat{K}} = S_{K'K}$.

Meshes

Meshes

Meshes

S Matrix in Dimension d=1

Subdividing $\hat{J}=(0,1)$ in $\hat{J}'=(0,1/2)$ and $\hat{J}^{\star}=(1/2,1)$ with the reference element shape functions

$$N_j(\xi) = \begin{cases} 1 - \xi & j = 1\\ \xi & j = 2\\ \xi(1 - \xi)P_{j-3}^{1,1}(2\xi - 1) & j = 3, \dots, J \end{cases}$$

yields (solving a linear system) for J=4:

$$m{S}_{\hat{J}'\hat{J}} = egin{pmatrix} 1 & 0 & 0 & 0 \ 1/2 & 1/2 & 1/4 & 0 \ 0 & 0 & 1/4 & -3/4 \ 0 & 0 & 0 & 1/8 \end{pmatrix} \ \ ext{and} \ m{S}_{\hat{J}^{\star}\hat{J}} = egin{pmatrix} 1/2 & 1/2 & 1/4 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1/4 & 3/4 \ 0 & 0 & 0 & 1/8 \end{pmatrix}.$$

Hierarchic shape functions ⇒ hierarchic S matrices.

S Matrices: Tensor Product in 2D

• d>1 with hexahedral meshes \Rightarrow S matrices are built from tensor products of 1D S matrices.

S Matrices: Tensor Product in 2D

- d > 1 with hexahedral meshes \Rightarrow S matrices are built from tensor products of 1D S matrices.
- In 2D: $N_{i,j} = N_i \otimes N_j$, the four bilinear shape functions are:

$$N_{1,2}(\underline{\xi}) = N_1(\xi_1) \cdot N_2(\xi_2)$$
 $N_{2,2}(\underline{\xi}) = N_2(\xi_1) \cdot N_2(\xi_2)$
 $N_{1,1}(\xi) = N_1(\xi_1) \cdot N_1(\xi_2)$ $N_{2,1}(\xi) = N_2(\xi_1) \cdot N_1(\xi_2)$

S Matrices: Tensor Product in 2D

- d > 1 with hexahedral meshes \Rightarrow S matrices are built from tensor products of 1D S matrices.
- In 2D: $N_{i,j} = N_i \otimes N_j$, the four bilinear shape functions are:

$$N_{1,2}(\underline{\xi}) = N_1(\xi_1) \cdot N_2(\xi_2)$$
 $N_{2,2}(\underline{\xi}) = N_2(\xi_1) \cdot N_2(\xi_2)$
 $N_{1,1}(\underline{\xi}) = N_1(\xi_1) \cdot N_1(\xi_2)$ $N_{2,1}(\underline{\xi}) = N_2(\xi_1) \cdot N_1(\xi_2)$

Consider the subdivisions:

S Matrices: Tensor Product in 2D II

Subdivision map of left variant: $H: \hat{K} \to \hat{K}', \underline{\xi} \mapsto {\xi_1/2 \choose \xi_2}$. S matrix $S_{\hat{K}'\hat{K}}$ is defined by:

$$N_{i,j}|_{\hat{K}'} = \sum_{k,l} \left[\mathbf{S}_{\hat{K}'\hat{K}} \right]_{(k,l),(i,j)} N_{k,l} \circ H^{-1}.$$

S Matrices: Tensor Product in 2D II

Subdivision map of left variant: $H: \hat{K} \to \hat{K}', \underline{\xi} \mapsto {\xi_1/2 \choose \xi_2}$. S matrix $S_{\hat{K}'\hat{K}}$ is defined by:

$$N_{i,j}|_{\hat{K}'} = \sum_{k,l} \left[\mathbf{S}_{\hat{K}'\hat{K}} \right]_{(k,l),(i,j)} N_{k,l} \circ H^{-1}.$$

Tensor product shape functions:

$$(N_i \otimes N_j)|_{\hat{K}'} = \sum_{k,l} \left[\mathbf{S}_{\hat{K}'\hat{K}} \right]_{(k,l),(i,j)} (N_k \otimes N_l) \circ H^{-1}. \tag{1}$$

S Matrices: Tensor Product in 2D III

S matrices for 1D reference element shape fcts. used in (1):

$$N_i|_{\hat{J'}} = \sum_m \left[m{S}_{\hat{J'}\hat{J}}
ight]_{mi} N_m \circ G^{-1}$$
 for the ξ_1 part and $N_j = \sum_m \left[m{E}
ight]_{nj} N_n$ for the ξ_2 part,

where $G: \xi \mapsto \xi/2$.

S Matrices: Tensor Product in 2D III

S matrices for 1D reference element shape fcts. used in (1):

$$N_i|_{\hat{J'}} = \sum_m \left[m{S}_{\hat{J'}\hat{J}}
ight]_{mi} N_m \circ G^{-1}$$
 for the ξ_1 part and $N_j = \sum_m \left[m{E}
ight]_{nj} N_n$ for the ξ_2 part,

where $G: \xi \mapsto \xi/2$. Plugging into the left hand side of (1) yields:

$$(N_i \otimes N_j)|_{\hat{K}'} = N_i|_{\hat{J}'} \otimes N_j = \sum_{m,n} \left(\left[\mathbf{S}_{\hat{J}'\hat{J}} \right]_{mi} N_m \circ G^{-1} \right) \otimes \left(\left[\mathbf{E} \right]_{nj} N_n \right)$$

$$= \sum_{m,n} \left[\mathbf{S}_{\hat{J}'\hat{J}} \right]_{mi} \cdot \left[\mathbf{E} \right]_{nj} N_m \circ G^{-1} \otimes N_n.$$

S Matrices: Tensor Product in 2D IV

Comparing with the right hand side of (1):

$$\sum_{m,n} \left[\mathbf{S}_{\hat{J}'\hat{J}} \right]_{mi} \cdot \left[\mathbf{E} \right]_{nj} N_m \circ G^{-1} \otimes N_n$$

$$= \sum_{k,l} \left[\mathbf{S}_{\hat{K}'\hat{K}} \right]_{(k,l),(i,j)} N_k \circ G^{-1} \otimes N_l.$$

S Matrices: Tensor Product in 2D IV

Comparing with the right hand side of (1):

$$\sum_{m,n} \left[\boldsymbol{S}_{\hat{J}'\hat{J}} \right]_{mi} \cdot \left[\boldsymbol{E} \right]_{nj} N_m \circ G^{-1} \otimes N_n$$

$$= \sum_{k,l} \left[\boldsymbol{S}_{\hat{K}'\hat{K}} \right]_{(k,l),(i,j)} N_k \circ G^{-1} \otimes N_l.$$

Therefore for the vertical subdivision:

$$egin{aligned} oldsymbol{S}_{\hat{K}'\hat{K}} &= oldsymbol{S}_{\hat{J}'\hat{J}} \otimes oldsymbol{E} \end{aligned} \qquad & ext{for the left quad } \hat{K}', \ oldsymbol{S}_{\hat{K}^{\star}\hat{K}} &= oldsymbol{S}_{\hat{J}^{\star}\hat{J}} \otimes oldsymbol{E} \end{aligned} \qquad & ext{for the right quad } \hat{K}^{\star}. \end{aligned}$$

S Matrices: Tensor Product in 2D V

Horizontal subdivision:

$$oldsymbol{S}_{\hat{K}'\hat{K}} = oldsymbol{E} \otimes oldsymbol{S}_{\hat{J}'\hat{J}}$$

$$oldsymbol{S}_{\hat{K}^{\star}\hat{K}} = oldsymbol{E} \otimes oldsymbol{S}_{\hat{J}^{\star}\hat{J}}$$

for the bottom quad \hat{K}' ,

for the top quad \hat{K}^{\star} .

S Matrices: Tensor Product in 2D V

Horizontal subdivision:

$$egin{aligned} oldsymbol{S}_{\hat{K}'\hat{K}} &= oldsymbol{E} \otimes oldsymbol{S}_{\hat{J}'\hat{J}} \end{aligned} & ext{for the bottom quad } \hat{K}', \ oldsymbol{S}_{\hat{K}^{\star}\hat{K}} &= oldsymbol{E} \otimes oldsymbol{S}_{\hat{I}^{\star}\hat{I}} \end{aligned} & ext{for the top quad } \hat{K}^{\star}. \end{aligned}$$

Subdivision into four quads:

- subdivide \hat{K} horizontally into two children
- subdivide upper and lower child vertically into \hat{K}^d and \hat{K}^c and \hat{K}^a and \hat{K}^b resp.

$$egin{aligned} oldsymbol{S}_{\hat{K}^d\hat{K}} &= \left(oldsymbol{S}_{\hat{J}'\hat{J}}\otimesoldsymbol{E}
ight) \cdot \left(oldsymbol{E}\otimesoldsymbol{S}_{\hat{J}^{\star}\hat{J}}
ight) & oldsymbol{S}_{\hat{K}^c\hat{K}} &= \left(oldsymbol{S}_{\hat{J}^{\star}\hat{J}}\otimesoldsymbol{E}
ight) \cdot \left(oldsymbol{E}\otimesoldsymbol{S}_{\hat{J}^{\star}\hat{J}}
ight) & oldsymbol{S}_{\hat{K}^c\hat{K}} &= \left(oldsymbol{S}_{\hat{J}^{\star}\hat{J}}\otimesoldsymbol{E}
ight) \cdot \left(oldsymbol{E}\otimesoldsymbol{S}_{\hat{J}^{\star}\hat{J}}
ight) \\ oldsymbol{S}_{\hat{K}^a\hat{K}} &= \left(oldsymbol{S}_{\hat{J}'\hat{J}}\otimesoldsymbol{E}
ight) \cdot \left(oldsymbol{E}\otimesoldsymbol{S}_{\hat{J}'\hat{J}}
ight) & oldsymbol{S}_{\hat{K}^b\hat{K}} &= \left(oldsymbol{S}_{\hat{J}^{\star}\hat{J}}\otimesoldsymbol{E}
ight) \cdot \left(oldsymbol{E}\otimesoldsymbol{S}_{\hat{J}'\hat{J}}
ight) \end{aligned}$$

S Matrices: Tensor-Product in 3D

Same idea as in 2D, just of this form:

$$oldsymbol{S}_{\hat{K}'\hat{K}} = \prod \left(oldsymbol{A} \otimes oldsymbol{B} \otimes oldsymbol{C}
ight)$$

in each of the factors, one of A, B or C is an 1D S matrix. Depending on the factors, 7 subdivisions are possible:

Concepts: allow arbitrary number and combination of these 7 subdivisions in 3D.

Overview

- Introduction
- Anisotropic h refinements
 - S and T matrices
 - Assembly of Supports
- Anisotropic p refinements
- hp Meshes
- Perspectives

 Can easily be treated since all edges are broken

- Can easily be treated since all edges are broken
- "Level of refinement" on each cell is enough to handle hanging nodes

- Can easily be treated since all edges are broken
- "Level of refinement" on each cell is enough to handle hanging nodes

 More complicated as not all edges are broken

- Can easily be treated since all edges are broken
- "Level of refinement" on each cell is enough to handle hanging nodes

- More complicated as not all edges are broken
- "Level of refinement" (also a vector valued level) is not enough

- Can easily be treated since all edges are broken
- "Level of refinement" on each cell is enough to handle hanging nodes

- More complicated as not all edges are broken
- "Level of refinement" (also a vector valued level) is not enough

Condition for Continuity

• In order to have continuous global basis functions Φ_i , the unisolvent sets on the interfaces in the support of Φ_i have to match.

Condition for Continuity

- In order to have continuous global basis functions Φ_i , the unisolvent sets on the interfaces in the support of Φ_i have to match.
- Unisolvent set for Q_1 in a quad / hex are the corners:

⇒ matching edges which coincide in a vertex is sufficient

Condition for Continuity

- In order to have continuous global basis functions Φ_i , the unisolvent sets on the interfaces in the support of Φ_i have to match.
- Unisolvent set for Q_1 in a quad / hex are the corners:

- ⇒ matching edges which coincide in a vertex is sufficient
- Unisolvent set for Q_p are
 - additional p-1 points on every edge
 - additional $(p-1)^2$ points on every face
 - additional $(p-1)^3$ points in the interior
 - ⇒ matching faces which coincide in an edge is sufficient for continuous edge modes

Algorithm for Continuity (Vertex)

 In every cell of the finest mesh, register all edges and cells in their vertices.

Algorithm for Continuity (Vertex)

- In every cell of the finest mesh, register all edges and cells in their vertices.
- For every vertex, while something changed in the last loop:
 - Check if some of the edges of the vertex have a relationship (ancestor / descendant).

Algorithm for Continuity (Vertex)

- In every cell of the finest mesh, register all edges and cells in their vertices.
- For every vertex, while something changed in the last loop:
 - Check if some of the edges of the vertex have a relationship (ancestor / descendant).
 - If two edges are related, exchange the smaller cell in the list of the vertex by the cell matching the larger cell.
 - Delete the list of edges and rebuild it from the list of cells.

Overview

- Introduction
- Anisotropic h refinements
 - S and T matrices
 - Assembly of Supports
- Anisotropic p refinements
- hp Meshes
- Perspectives

Anisotropic p

Why anisotropic p? Necessary for thin plates, shells, films.

- Every edge has p, every face has $\underline{p}=(p_0,p_1)$, every cell has $\underline{p}=(p_0,p_1,p_2)$. They can differ in a cell!
- The minimum rule for edges and faces is enforced.

The common edge of K and K' has $p = \min\{p_K, p_{K'}\}$.

• Higher p on an edge than neighbouring elements prescribe is possible!

p Enrichment on Edges

• $p^{\star} \geq 2$ for the basis functions Φ_i on the marked edge must be possible to achieve exponential convergence.

Analogly for edge and faces in 3D.

p Enrichment on Edges

- $p^* \geq 2$ for the basis functions Φ_i on the marked edge must be possible to achieve exponential convergence.
- The basis functions on the red edges contribute to Φ_i $\Rightarrow p \geq p^*$ must be possible and enforced.

Analogly for edge and faces in 3D.

Trunk Spaces

• Tensor Product Space: p^3 shape functions, internal shape functions have indices

$$i=2,\ldots,p_{\xi},$$
 $j=2,\ldots,p_{\eta}$ and $k=2,\ldots,p_{\zeta}$

• Trunk Space: $O(p^2)$ shape functions, internal shape functions have indices

$$i=2,\ldots,p_{\xi}-4,$$
 $j=2,\ldots,p_{\eta}-4$ and $k=2,\ldots,p_{\zeta}-4$ where $i+j+k=6,\ldots,\max{\{p_{\xi},p_{\eta},p_{\zeta}\}}$, [2].

[2] Szabó and Babuška, "Finite Element Analysis", John Wiley & Sons, 1991.

Overview

- Introduction
- Anisotropic h refinements
 - S and T matrices
 - Assembly of Supports
- Anisotropic p refinements
- hp Meshes
- Perspectives

Exponential Convergence in Pseudo-3D

Edge type singularity.

$$-\Delta u + u = f \text{ in } \Omega = (-1,1) \times (0,1) \times (0,1/2)$$

$$u(r,\phi,z) = \sqrt{r} \sin(\phi/2) z (1-z)$$

$$u = 0$$

in
$$\Omega$$

on
$$\{z=0\}\subset\partial\Omega$$

and on
$$\{y=0\}\cap\{x \geq 0\}\subset\partial\Omega$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Exponential Convergence in 3D

$$-\Delta u + u = f \text{ in } \Omega = (0,1)^3$$

$$u(r,\theta,\phi) = \sqrt{r}\sin\theta\sin\phi \qquad \text{in } \Omega$$

$$u = 0 \qquad \qquad \text{on } \{$$

on
$$\{y=0\}\subset\partial\Omega$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Exp. Conv. in 3D, Edge Mesh

Vertex type singularity.

$$-\Delta u + u = f \text{ in } \Omega = (0, 1)^3$$
$$u(r, \theta, \phi) = \sqrt{r} \sin \theta \sin \phi$$
$$u = 0$$

in
$$\boldsymbol{\Omega}$$

on
$$\{y=0\}\subset\partial\Omega$$
 Eigenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Anisotropic h and p refinement for conforming FEM in 3D – p.40/48

Maxwell EVP

Find Eigenvalues $\lambda=\omega^2$ such that $\exists (\underline{E},\underline{H})\neq 0$ satisfying

$$\operatorname{curl} \underline{E} - i\omega \mu \underline{H} = 0$$
 and $\operatorname{curl} \underline{H} + i\omega \varepsilon \underline{E} = 0$ in Ω ,

with perfect conductor b.c. $\underline{E} \times \underline{n} = 0$, $\underline{H} \cdot \underline{n} = 0$ on $\partial \Omega$. $\underline{E} \in H_0(\operatorname{curl}; \Omega)$.

Maxwell EVP

Find Eigenvalues $\lambda = \omega^2$ such that $\exists (\underline{E}, \underline{H}) \neq 0$ satisfying

$$\operatorname{curl} \underline{E} - i\omega\mu\underline{H} = 0$$
 and $\operatorname{curl} \underline{H} + i\omega\varepsilon\underline{E} = 0$ in Ω ,

with perfect conductor b.c. $\underline{E} \times \underline{n} = 0$, $\underline{H} \cdot \underline{n} = 0$ on $\partial \Omega$. $\underline{E} \in H_0(\operatorname{curl}; \Omega)$.

"Electric" variational form:

Find the frequencies $\omega > 0$ such that $\exists \underline{E} \in H_0(\operatorname{curl};\Omega) \setminus \{0\}$ with

$$\int_{\Omega} 1/\mu \operatorname{curl} \underline{E} \cdot \operatorname{curl} \underline{F} = \omega^2 \int_{\Omega} \varepsilon \underline{E} \cdot \underline{F} \text{ and } \operatorname{div} \varepsilon \underline{E} = 0 \quad \forall \underline{F} \in H_0(\operatorname{curl}; \Omega).$$

Weighted Regularization for Maxwell EVP

Find the frequencies $\omega > 0$ such that $\exists \underline{u} \in X_N$ with

$$\int_{\Omega} \operatorname{curl} \underline{u} \cdot \operatorname{curl} \underline{v} + \langle \underline{u}, \underline{v} \rangle_{Y} = \omega^{2} \int_{\Omega} \underline{u} \cdot \underline{v}$$

$$\forall \underline{v} \in X_{N} := \{ \underline{u} \in H_{0}(\operatorname{curl}; \Omega) : \operatorname{div} \underline{u} \in L^{2}(\Omega) \}$$

Weighted Regularization for Maxwell EVP

Find the frequencies $\omega > 0$ such that $\exists \underline{u} \in X_N$ with

$$\int_{\Omega} \operatorname{curl} \underline{u} \cdot \operatorname{curl} \underline{v} + \langle \underline{u}, \underline{v} \rangle_{Y} = \omega^{2} \int_{\Omega} \underline{u} \cdot \underline{v}$$

$$\forall \underline{v} \in X_{N} := \{ \underline{u} \in H_{0}(\operatorname{curl}; \Omega) : \operatorname{div} \underline{u} \in L^{2}(\Omega) \}$$

$$\langle \underline{u}, \underline{v} \rangle_{Y} = s \int_{\Omega} \rho(\underline{x}) \operatorname{div} \underline{u} \operatorname{div} \underline{v}$$

Properly chosen weight $\rho(\underline{x})$ and $\underline{s} \in \mathbb{R}_+$.

Weighted Regularization for Maxwell EVP

Find the frequencies $\omega > 0$ such that $\exists \underline{u} \in X_N$ with

$$\int_{\Omega} \operatorname{curl} \underline{u} \cdot \operatorname{curl} \underline{v} + \langle \underline{u}, \underline{v} \rangle_{Y} = \omega^{2} \int_{\Omega} \underline{u} \cdot \underline{v}$$

$$\forall \underline{v} \in X_{N} := \{ \underline{u} \in H_{0}(\operatorname{curl}; \Omega) : \operatorname{div} \underline{u} \in L^{2}(\Omega) \}$$

$$\langle \underline{u}, \underline{v} \rangle_{Y} = s \int_{\Omega} \rho(\underline{x}) \operatorname{div} \underline{u} \operatorname{div} \underline{v}$$

Properly chosen weight $\rho(\underline{x})$ and $\underline{s} \in \mathbb{R}_+$. Good choice: $\rho(\underline{x}) = r^{\alpha}$ where r is the distance to a reentrant corner and $\alpha \geq 0$ in a range depending on the angle of the reentrant corner.

[3] Martin Costabel and Monique Dauge, "Weighted regularization of Maxwell equations in polyhedral domains", *Numer. Math.* 93 (2), pp. 239–277 (2002).

EVP in the Thick L Shaped Domain

$$\sigma = 0.15$$

$$\alpha = 2$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

EVP in the Thick L Shaped Domain

$$\sigma = 0.5$$

$$\alpha = 2$$

Eidgenössische Technische Hochschule Zürich

Perspectives

- Maxwell EVP in the Fichera corner
- Anisotropic error estimation, anistropic regularity estimation
- Improved mesh handling

- Iterative multilevel domain decompositioning solvers: Toselli (Zürich), Schöberl (Linz)
- Stochastic Eigenvalue Problems (e.g. stochastic ε and μ for Maxwell)

Perspectives

- Maxwell EVP in the Fichera corner
- Anisotropic error estimation, anistropic regularity estimation
- Improved mesh handling

- Iterative multilevel domain decompositioning solvers: Toselli (Zürich), Schöberl (Linz)
- Stochastic Eigenvalue Problems (e.g. stochastic ε and μ for Maxwell)

Hanging Nodes in Isotropic Meshes

- Traverse all cells on locally finest level: mark every vertex / edge / face being used.
- On next (hierarchical) traversal of the mesh:
 - Add dofs which are marked to be on the current level to the list L of local dofs. Mark dof as registered.
 - If cell is on finest level $L \to T$ matrix
 - Otherwise $S \cdot L$ is added to L of child (next deeper level)

Mortar

- Give up C^0 , introduce Lagrange multiplier (the mortar)
- $-\Delta u = f$ in Ω with hom. Dirichlet bc. using mortar method leads to

$$\begin{pmatrix} \boldsymbol{A} & \boldsymbol{\Lambda} \\ \boldsymbol{\Lambda}^\top & 0 \end{pmatrix} \cdot \begin{pmatrix} \underline{u} \\ \underline{\lambda} \end{pmatrix} = \begin{pmatrix} \underline{f} \\ \underline{0} \end{pmatrix}, \text{ ie. }$$

- ⇒ conjugate gradients not applicable
- ⇒ no standard domain decompositioning solvers
- ⇒ inf-sup condition needed
- The inf-sup cond. is OK in 2D, 3D for shape regular meshes. Not OK for hp FEM, existing proofs only for uniform meshes.
- Analogly for Discontinous Galerkin in 3D: Stability of hp DG on geometric meshes is not clear. First results by Schwab, Toselli, Schötzau for Stokes (not Mortar).

Shape Functions

The reference element shape functions on (-1,1) of order p [4]:

$$N_i(\xi) = \begin{cases} \frac{1-\xi}{2} & i = 0\\ \frac{1-\xi}{2} \frac{1+\xi}{2} P_{i-1}^{1,1}(\xi) & 1 \le i \le p-1\\ \frac{1+\xi}{2} & i = p \end{cases}$$

 $P_{i-1}^{1,1}(\xi)$ are integrated Legendre Polynomials: $L_i(\xi) = P_i^{0,0}(\xi)$ and

$$\int_{-1}^{\xi} (1-x)^{\alpha} (1+x)^{\beta} P_i^{\alpha,\beta}(x) \, dx = \frac{-1}{2i} (1-\xi)^{\alpha+1} (1+\xi)^{\beta+1} P_{i-1}^{\alpha+1,\beta+1}(\xi)$$

$$\Rightarrow \int_{-1}^{\xi} P_i^{0,0}(x) \, dx = \frac{-1}{2i} (1-\xi)(1+\xi) P_{i-1}^{1,1}(\xi)$$

[4] Karniadakis and Sherwin, "Spectral/hp Element Methods for CFD", Oxford University Press, 1999.

Shape Functions

The reference element shape functions on (-1,1) of order p [4]:

$$N_i(\xi) = \begin{cases} \frac{1-\xi}{2} & i = 0\\ \frac{1-\xi}{2} \frac{1+\xi}{2} P_{i-1}^{1,1}(\xi) & 1 \le i \le p-1\\ \frac{1+\xi}{2} & i = p \end{cases}$$

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich