Anisotropic *h* and *p* refinement for conforming FEM in 3D

Philipp Frauenfelder Christian Lage Christoph Schwab

pfrauenf@math.ethz.ch

Seminar for Applied Mathematics Federal Institute of Technology, ETH Zürich

Goal

- Hierarchy of hanging nodes
- Anisotropic refinements

- Introduction
- Anisotropic *h* refinements
 - S and T matrices
 - Assembly of Supports

Introduction

- Anisotropic *h* refinements
 - S and T matrices
 - Assembly of Supports
- Anisotropic p refinements

Introduction

- Anisotropic *h* refinements
 - S and T matrices
 - Assembly of Supports
- Anisotropic p refinements
- *hp* Meshes

Introduction

- Anisotropic *h* refinements
 - S and T matrices
 - Assembly of Supports
- Anisotropic p refinements
- *hp* Meshes
- Perspectives

Previous hp **Software**

- Szabó 1985: PROBE (p only)
- Demkowicz, Oden, Rachowicz et al. 1989: PHLEX, hp90
- Anderson: STRIPE (p only on a-priori generated meshes)
- Flaherty, Shephard: Tetrahedra only (3D anisotropy?)
- Karniadakis, Sherwin: NEKTAR (regular meshes only, tetrahedra, hexahedra, prisms)
- Devloo
- Szabó since 1995: STRESSCHECK
- Heuveline et al.: HiFlow

FE Method

- Let $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3 (dimension independent design)
- Find $u \in V$ such that

$$a(u,v) = l(v) \quad \forall v \in V,$$

V a FE space, a(.,.) a bilinear form and l(.) a linear form.

• Standard FE: $V \subset H^1(\Omega)$

$$V = S^{1,\underline{p}}(\Omega, \mathcal{T})$$

= $\left\{ u \in H^1(\Omega) : u |_K \circ F_K \in \mathcal{Q}_p \ \forall K \in \mathcal{T} \right\}$

 $\Rightarrow u \in V$ is continuous, ie. $\mathcal{C}^0(\overline{\Omega})$.

• Vector valued problems are possible

FE Space: Generalities

- Basis $\{\Phi_i\}_{i=1}^N$ constructed from element shape functions ϕ_j^K on elements $K \in \mathcal{T}$.
- Reference element shape functions: N_j , element map: $F_K : \hat{K} \to K$

$$\Rightarrow \phi_j^K \circ F_K = N_j.$$

• Topolocigal closure

• Topolocigal closure

• Topolocigal closure

Drawbacks: more elements, more element types, what about refining a

• Topolocigal closure

Drawbacks: more elements, more element types, what about refining a \square ?

- Our philosophy: hexahedral meshes only (tensorized interpolants, spectral quadrature techniques)
- Our solution: Treating the constraints induced by the hanging nodes Why conforming? a(u,v) = a(v,u) and $a(u,u) \ge \alpha ||u||_V^2 \Rightarrow A$ SPD, pccg ...

Our Software: Concepts

- Started by Christian Lage during his Ph.D. studies (1995).
- Used and improved by Frauenfelder, Matache, Schmidlin, Schmidt and several students.
- Concept Oriented Design using mathematical principles.
- Currently two parts: *hp*-FEM, BEM (wavelet and multipole methods).
- C++

- Introduction
- Anisotropic *h* refinements
 - S and T matrices
 - Assembly of Supports
- Anisotropic *p* refinements
- *hp* Meshes
- Perspectives

T Matrix

Definition 1 (T Matrix). Element shape functions $\{\phi_j^K\}_{j=1}^{m_K}$ on element K, global basis functions $\{\Phi_i\}_{i=1}^N$. The T matrix $T_K \in \mathbb{R}^{m_K \times N}$ of element K is implicitly defined by

$$\Phi_i|_K = \sum_{j=1}^{m_K} \left[\boldsymbol{T}_K \right]_{ji} \phi_j^K$$

as vectors:

$$\underline{\Phi}|_{K} = \boldsymbol{T}_{K}^{\top} \underline{\phi}^{K}.$$

Assembly using T Matrices

Assembling:

$$\underline{l} = l(\underline{\Phi}) = l\left(\sum_{\tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} \underline{\phi}^{\tilde{K}}\right) = \sum_{\tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} l(\underline{\phi}^{\tilde{K}}) = \sum_{\tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} \underline{l}_{\tilde{K}}$$

Assembly using T Matrices

Assembling:

$$\underline{l} = l(\underline{\Phi}) = l\left(\sum_{\tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} \underline{\phi}^{\tilde{K}}\right) = \sum_{\tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} l(\underline{\phi}^{\tilde{K}}) = \sum_{\tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} \underline{l}_{\tilde{K}}$$
$$\boldsymbol{A} = a(\underline{\Phi}, \underline{\Phi}) = \sum_{K, \tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} a(\underline{\phi}^{K}, \underline{\phi}^{\tilde{K}}) \boldsymbol{T}_{K} = \sum_{K, \tilde{K}} \boldsymbol{T}_{\tilde{K}}^{\top} \boldsymbol{A}_{\tilde{K}K} \boldsymbol{T}_{K}$$

Note: $A_{\tilde{K}K} = 0$ in standard FEM for $\tilde{K} \neq K$.

Example: Regular Mesh

Two elements with three local shape functions each and four global basis functions.

$$\boldsymbol{T}_{I} = \begin{pmatrix} \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{2} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{3} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \end{pmatrix}$$

Example: Regular Mesh

Two elements with three local shape functions each and four global basis functions.

$$oldsymbol{T}_{I} = egin{pmatrix} 1 & 2 & 3 & 4 \ 1 & 1 & 0 & 0 & 0 \ 2 & 0 & 1 & 0 & 0 \ 3 & 0 & 0 & 1 & 0 \ 3 & 0 & 0 & 1 & 0 \ \end{pmatrix} oldsymbol{T}_{J} = egin{pmatrix} 1 & 2 & 3 & 4 \ 1 & 0 & 1 & 0 & 0 \ 2 & 0 & 0 & 0 & 1 \ 3 & 0 & 0 & 1 & 0 \ \end{pmatrix}$$

Example: Irregular Mesh

Three elements with three local shape functions each and four global basis functions. The hanging node is marked with \circ .

$$\boldsymbol{T}_L = \begin{pmatrix} \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} \\ \mathbf{1} & 0 & \mathbf{1} & 0 & 0 \\ \mathbf{2} & 0 & 0 & 0 & \mathbf{1} \\ \mathbf{3} & 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

Example: Irregular Mesh

Three elements with three local shape functions each and four global basis functions. The hanging node is marked with \circ .

$$\boldsymbol{T}_{L} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 & 1 \\ 3 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$
$$\boldsymbol{T}_{K} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 2 & 0 & 0 & 0 & 1 \\ 3 & 0 & 0 & 1 & 0 \end{pmatrix}$$

 \Rightarrow continuous basis functions.

Generation of T Matrices

 Regular Mesh: Counting and assigning indices with respect to topological entities such as vertices, edges and faces.
 Explained in detail later.

Generation of T Matrices

- Regular Mesh: Counting and assigning indices with respect to topological entities such as vertices, edges and faces.
 Explained in detail later.
- Irregular Mesh: Irregularity due to a refinement of an initially regular mesh.

Irregularity due to a refinement of an initially regular mesh.

Mesh	${\cal M}$	refine	\mathcal{M}'
Basis fcts.	$B = B_{\rm repl} \cup B_{\rm keep}$	\longrightarrow	$B' = B_{ins} \cup B_{keep}$

Irregularity due to a refinement of an initially regular mesh.

Mesh	${\cal M}$	refine	\mathcal{M}'
Basis fcts.	$B = B_{\rm repl} \cup B_{\rm keep}$	\longrightarrow	$B' = \underline{B_{\text{ins}}} \cup B_{\text{keep}}$

- $B_{
 m repl}$: basis fcts. which can be solely described by elements of $\mathcal{M}' ackslash \mathcal{M}$
- B_{ins} : basis fcts. generated by regular parts of $\mathcal{M}' ackslash \mathcal{M}$

Irregularity due to a refinement of an initially regular mesh.

Irregularity due to a refinement of an initially regular mesh.

Mesh \mathcal{M} refine \mathcal{M}' Basis fcts. $B = B_{repl} \cup B_{keep}$ \longrightarrow $B' = B_{ins} \cup B_{keep}$ \mathcal{M}' \mathcal{M}'

Every element of B has a column in the T matrix. Generation is

- easy for B_{ins} (like regular mesh),
- simple for B_{keep} : modify column from \mathcal{M} by S matrix.

S Matrix

Definition 2 (S Matrix). Let $K' \subset K$ be the result of a refinement of element K. The S matrix $S_{K'K} \in \mathbb{R}^{m_{K'} \times m_K}$ is defined by

$$\phi_{j}^{K}\big|_{K'} = \sum_{l=1}^{m_{K'}} [\boldsymbol{S}_{K'K}]_{lj} \phi_{l}^{K'}$$

as vectors:

$$\left. \overline{\phi}^K \right|_{K'} = {oldsymbol{S}}_{K'K}^{ op} \overline{\phi}^{K'}$$

 $\phi_j^K |_{K'}$ is represented as a linear combination of the shape functions $\left\{\phi_l^{K'}\right\}_{l=1}^{m_{K'}}$ of K'.

Application of S Matrix

Proposition 1. Let $K' \subset K$ be the result of a refinement of an element *K*. Then, the *T* matrix of K' can be computed as

 $oldsymbol{T}_{K'} = oldsymbol{S}_{K'K} oldsymbol{T}_{K}^{ ext{keep}} + oldsymbol{T}_{K'}^{ ext{ins}}$

where T_{K}^{keep} denotes the T matrix of element K (with columns not related to functions in B_{keep} set to zero) and $T_{K'}^{\text{ins}}$ the T matrix for functions in B_{ins} with respect to K'.

Proposition 2. Let $\hat{K}' \subset \hat{K}$ be the result of a refinement of the reference element \hat{K} with $H : \hat{K} \to \hat{K}'$ the subdivision map. The element maps are

$$F_K: \hat{K} \to K \text{ and } F_{K'}: \hat{K} \to K'$$

and $F_{K'} \circ H^{-1} = F_K$ holds. Then, $S_{\hat{K}'\hat{K}} = S_{K'K}$.

Meshes

	_	
Meshes

Meshes

S Matrix in Dimension d = 1

Subdividing $\hat{J} = (0, 1)$ in $\hat{J}' = (0, 1/2)$ and $\hat{J}^* = (1/2, 1)$ with the reference element shape functions

$$N_{j}(\xi) = \begin{cases} 1-\xi & j=1\\ \xi & j=2\\ \xi(1-\xi)P_{j-3}^{1,1}(2\xi-1) & j=3,\dots,J \end{cases}$$

yields (solving a linear system) for J = 4:

$$\boldsymbol{S}_{\hat{j}'\hat{j}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1/2}{2} & \frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} & -\frac{3}{4} \\ 0 & 0 & 0 & \frac{1}{8} \end{pmatrix} \text{ and } \boldsymbol{S}_{\hat{j}\star\hat{j}} = \begin{pmatrix} \frac{1/2}{2} & \frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & \frac{3}{4} \\ 0 & 0 & 0 & \frac{1}{8} \end{pmatrix}$$

Hierarchic shape functions \Rightarrow hierarchic S matrices.

S Matrices: Tensor Product in 2D

 d > 1 with hexahedral meshes ⇒ S matrices are built from tensor products of 1D S matrices.

S Matrices: Tensor Product in 2D

- d > 1 with hexahedral meshes ⇒ S matrices are built from tensor products of 1D S matrices.
- In 2D: $N_{i,j} = N_i \otimes N_j$, the four bilinear shape functions are:

$$N_{1,2}(\underline{\xi}) = N_1(\xi_1) \cdot N_2(\xi_2) \qquad N_{2,2}(\underline{\xi}) = N_2(\xi_1) \cdot N_2(\xi_2)$$
$$N_{1,1}(\underline{\xi}) = N_1(\xi_1) \cdot N_1(\xi_2) \qquad N_{2,1}(\underline{\xi}) = N_2(\xi_1) \cdot N_1(\xi_2)$$

S Matrices: Tensor Product in 2D

- d > 1 with hexahedral meshes ⇒ S matrices are built from tensor products of 1D S matrices.
- In 2D: $N_{i,j} = N_i \otimes N_j$, the four bilinear shape functions are:

$$N_{1,2}(\underline{\xi}) = N_1(\xi_1) \cdot N_2(\xi_2) \qquad N_{2,2}(\underline{\xi}) = N_2(\xi_1) \cdot N_2(\xi_2)$$
$$N_{1,1}(\underline{\xi}) = N_1(\xi_1) \cdot N_1(\xi_2) \qquad N_{2,1}(\underline{\xi}) = N_2(\xi_1) \cdot N_1(\xi_2)$$

Consider the subdivisions:

S Matrices: Tensor Product in 2D II

Subdivision map of left variant: $H : \hat{K} \to \hat{K}', \underline{\xi} \mapsto \begin{pmatrix} \xi_1/2 \\ \xi_2 \end{pmatrix}$. S matrix $S_{\hat{K}'\hat{K}}$ is defined by:

$$N_{i,j}|_{\hat{K}'} = \sum_{k,l} \left[\mathbf{S}_{\hat{K}'\hat{K}} \right]_{(k,l),(i,j)} N_{k,l} \circ H^{-1}.$$

S Matrices: Tensor Product in 2D II

Subdivision map of left variant: $H : \hat{K} \to \hat{K}', \underline{\xi} \mapsto \begin{pmatrix} \xi_1/2 \\ \xi_2 \end{pmatrix}$. S matrix $S_{\hat{K}'\hat{K}}$ is defined by:

$$N_{i,j}|_{\hat{K}'} = \sum_{k,l} \left[\mathbf{S}_{\hat{K}'\hat{K}} \right]_{(k,l),(i,j)} N_{k,l} \circ H^{-1}.$$

Tensor product shape functions:

$$(N_i \otimes N_j)|_{\hat{K}'} = \sum_{k,l} \left[\boldsymbol{S}_{\hat{K}'\hat{K}} \right]_{(k,l),(i,j)} (N_k \otimes N_l) \circ H^{-1}.$$
(1)

S Matrices: Tensor Product in 2D III

S matrices for 1D reference element shape fcts. used in (1):

$$N_{i}|_{\hat{J}'} = \sum_{m} \left[\boldsymbol{S}_{\hat{J}'\hat{J}} \right]_{mi} N_{m} \circ G^{-1} \qquad \text{for t}$$
$$N_{j} = \sum_{n} \left[\boldsymbol{E} \right]_{nj} N_{n} \qquad \text{for t}$$

for the ξ_1 part and

for the ξ_2 part,

where $G: \xi \mapsto \xi/2$.

S Matrices: Tensor Product in 2D III

S matrices for 1D reference element shape fcts. used in (1):

$$\begin{split} N_i|_{\hat{j}'} &= \sum_m \left[oldsymbol{S}_{\hat{j}'\hat{j}}
ight]_{mi} N_m \circ G^{-1} & ext{for the } \xi_1 ext{ part and} \\ N_j &= \sum_n \left[oldsymbol{E}
ight]_{nj} N_n & ext{for the } \xi_2 ext{ part,} \end{split}$$

where $G: \xi \mapsto \xi/2$. Plugging into the left hand side of (1) yields:

$$(N_i \otimes N_j)|_{\hat{K}'} = N_i|_{\hat{J}'} \otimes N_j = \sum_{m,n} \left(\left[\boldsymbol{S}_{\hat{J}'\hat{J}} \right]_{mi} N_m \circ G^{-1} \right) \otimes \left(\left[\boldsymbol{E} \right]_{nj} N_n \right)$$
$$= \sum_{m,n} \left[\boldsymbol{S}_{\hat{J}'\hat{J}} \right]_{mi} \cdot \left[\boldsymbol{E} \right]_{nj} N_m \circ G^{-1} \otimes N_n.$$

S Matrices: Tensor Product in 2D IV

Comparing with the right hand side of (1):

$$\sum_{m,n} \left[\boldsymbol{S}_{\hat{J}'\hat{J}} \right]_{mi} \cdot \left[\boldsymbol{E} \right]_{nj} N_m \circ G^{-1} \otimes N_n$$

$$=\sum_{k,l} \left[\boldsymbol{S}_{\hat{K}'\hat{K}} \right]_{(k,l),(i,j)} N_k \circ G^{-1} \otimes N_l.$$

S Matrices: Tensor Product in 2D IV

Comparing with the right hand side of (1):

$$\sum_{m,n} \left[\boldsymbol{S}_{\hat{J}'\hat{J}} \right]_{mi} \cdot \left[\boldsymbol{E} \right]_{nj} N_m \circ G^{-1} \otimes N_n$$
$$= \sum_{k,l} \left[\boldsymbol{S}_{\hat{K}'\hat{K}} \right]_{(k,l),(i,j)} N_k \circ G^{-1} \otimes N_l.$$

Therefore for the vertical subdivision:

$$\begin{split} \boldsymbol{S}_{\hat{K}'\hat{K}} &= \boldsymbol{S}_{\hat{J}'\hat{J}} \otimes \boldsymbol{E} & \text{for the left quad } \hat{K}', \\ \boldsymbol{S}_{\hat{K}^{\star}\hat{K}} &= \boldsymbol{S}_{\hat{J}^{\star}\hat{J}} \otimes \boldsymbol{E} & \text{for the right quad } \hat{K}^{\star}. \end{split}$$

S Matrices: Tensor Product in 2D V

Horizontal subdivision:

$$\boldsymbol{S}_{\hat{K}'\hat{K}} = \boldsymbol{E} \otimes \boldsymbol{S}_{\hat{J}'\hat{J}}$$

 $oldsymbol{S}_{\hat{K}^{\star}\hat{K}} = oldsymbol{E}\otimes oldsymbol{S}_{\hat{J}^{\star}\hat{J}}$

for the bottom quad \hat{K}' , for the top quad \hat{K}^{\star} .

S Matrices: Tensor Product in 2D V

Horizontal subdivision:

Subdivision into four quads:

 $\boldsymbol{S}_{\hat{K}'\hat{K}} = \boldsymbol{E} \otimes \boldsymbol{S}_{\hat{J}'\hat{J}}$

 $oldsymbol{S}_{\hat{K}^{\star}\hat{K}} = oldsymbol{E} \otimes oldsymbol{S}_{\hat{I}^{\star}\hat{I}}$

- subdivide \hat{K} horizontally into two children
- subdivide upper and lower child vertically into \hat{K}^d and \hat{K}^c and \hat{K}^a and \hat{K}^b resp.

$$\begin{split} \boldsymbol{S}_{\hat{K}^{d}\hat{K}} &= \left(\boldsymbol{S}_{\hat{J}'\hat{J}}\otimes\boldsymbol{E}\right)\cdot\left(\boldsymbol{E}\otimes\boldsymbol{S}_{\hat{J}^{\star}\hat{J}}\right) \quad \boldsymbol{S}_{\hat{K}^{c}\hat{K}} &= \left(\boldsymbol{S}_{\hat{J}^{\star}\hat{J}}\otimes\boldsymbol{E}\right)\cdot\left(\boldsymbol{E}\otimes\boldsymbol{S}_{\hat{J}^{\star}\hat{J}}\right) \\ \boldsymbol{S}_{\hat{K}^{a}\hat{K}} &= \left(\boldsymbol{S}_{\hat{J}'\hat{J}}\otimes\boldsymbol{E}\right)\cdot\left(\boldsymbol{E}\otimes\boldsymbol{S}_{\hat{J}'\hat{J}}\right) \quad \boldsymbol{S}_{\hat{K}^{b}\hat{K}} &= \left(\boldsymbol{S}_{\hat{J}^{\star}\hat{J}}\otimes\boldsymbol{E}\right)\cdot\left(\boldsymbol{E}\otimes\boldsymbol{S}_{\hat{J}'\hat{J}}\right) \end{split}$$

for the bottom quad \hat{K}' ,

for the top quad \hat{K}^{\star} .

S Matrices: Tensor-Product in 3D

Same idea as in 2D, just of this form:

$$\boldsymbol{S}_{\hat{K}'\hat{K}} = \prod \left(\boldsymbol{A} \otimes \boldsymbol{B} \otimes \boldsymbol{C} \right)$$

in each of the factors, one of A, B or C is an 1D S matrix. Depending on the factors, 7 subdivisions are possible:

Concepts: allow arbitrary number and combination of these 7 subdivisions

in 3D.

Overview

- Introduction
- Anisotropic *h* refinements
 - S and T matrices

Assembly of Supports

- Anisotropic *p* refinements
- *hp* Meshes
- Perspectives

 Can easily be treated since all edges are broken

- Can easily be treated since all edges are broken
- "Level of refinement" on each cell is enough to handle hanging nodes

- Can easily be treated since all edges are broken
- "Level of refinement" on each cell is enough to handle hanging nodes
 - More complicated as not all edges are broken

- Can easily be treated since all edges are broken
- "Level of refinement" on each cell is enough to handle hanging nodes
 - More complicated as not all edges are broken
 - "Level of refinement" (also a vector valued level) is not enough

- Can easily be treated since all edges are broken
- "Level of refinement" on each cell is enough to handle hanging nodes
 - More complicated as not all edges are broken
 - "Level of refinement" (also a vector valued level) is not enough

Condition for Continuity

• In order to have continuous global basis functions Φ_i , the unisolvent sets on the interfaces in the support of Φ_i have to match.

Condition for Continuity

- In order to have continuous global basis functions Φ_i , the unisolvent sets on the interfaces in the support of Φ_i have to match.
- Unisolvent set for Q_1 in a quad / hex are the corners:

Condition for Continuity

- In order to have continuous global basis functions Φ_i , the unisolvent sets on the interfaces in the support of Φ_i have to match.
- Unisolvent set for Q_1 in a quad / hex are the corners:

 \Rightarrow matching edges which coincide in a vertex is sufficient

- Unisolvent set for Q_p are
 - additional p-1 points on every edge
 - additional $(p-1)^2$ points on every face
 - additional $(p-1)^3$ points in the interior

 \Rightarrow matching faces which coincide in an edge is sufficient for continuous edge modes

Algorithm for Continuity (Vertex)

• In every cell of the finest mesh, register all edges and cells in their vertices.

Algorithm for Continuity (Vertex)

- In every cell of the finest mesh, register all edges and cells in their vertices.
- For every vertex, while something changed in the last loop:
 - Check if some of the edges of the vertex have a relationship (ancestor / descendant).

Algorithm for Continuity (Vertex)

- In every cell of the finest mesh, register all edges and cells in their vertices.
- For every vertex, while something changed in the last loop:
 - Check if some of the edges of the vertex have a relationship (ancestor / descendant).
 - If two edges are related, exchange the smaller cell in the list of the vertex by the cell matching the larger cell.
 - Delete the list of edges and rebuild it from the list of cells.

Overview

- Introduction
- Anisotropic *h* refinements
 - S and T matrices
 - Assembly of Supports
- Anisotropic p refinements
- *hp* Meshes
- Perspectives

Anisotropic p

Why anisotropic p? Necessary for thin plates, shells, films.

- Every edge has p, every face has $\underline{p} = (p_0, p_1)$, every cell has $\underline{p} = (p_0, p_1, p_2)$. They can differ in a cell!
- Every face exists only once. It has a distinguished edge and an orientation. The orientation of the face in the cell and the position of the marked edge are stored: $\rho = 1$, $\tau = 3$.

p Enrichment on Edges

• $p^{\star} \geq 2$ for the basis functions Φ_i on the marked edge must be possible to achieve exponential convergence.

Analogly for edge and faces in 3D.
p Enrichment on Edges

- $p^{\star} \geq 2$ for the basis functions Φ_i on the marked edge must be possible to achieve exponential convergence.
- The basis functions on the red edges contribute to Φ_i $\Rightarrow p \ge p^*$ must be possible and enforced.

Analogly for edge and faces in 3D.

Overview

- Introduction
- Anisotropic *h* refinements
 - S and T matrices
 - Assembly of Supports
- Anisotropic *p* refinements
- *hp* Meshes
- Perspectives

Exponential Convergence in Pseudo-3D

Edge type singularity.

$$\begin{split} -\Delta u + u &= f \text{ in } \Omega = (-1, 1) \times (0, 1) \times (0, 1/2) \\ u(r, \phi, z) &= \sqrt{r} \sin(\phi/2) z (1 - z) & \text{ in } \Omega \\ u &= 0 & \text{ on } \{z = 0\} \subset \partial \Omega \\ &\text{ and on } \{y = 0\} \cap \{x \geq 0\} \subset \partial \Omega \end{split}$$

Exponential Convergence in 3D

Exp. Conv. in 3D, Edge Mesh

Vertex type singularity.

$$\begin{aligned} -\Delta u + u &= f \text{ in } \Omega = (0, 1)^3 \\ u(r, \theta, \phi) &= \sqrt{r} \sin \theta \sin \phi & \text{ in } \Omega \\ u &= 0 & \text{ on } \{y = 0\} \subset \partial \Omega \end{aligned}$$

Anisotropic h and p refinement for conforming FEM in 3D - p.39/43

Test: Randomized Refinement

$$-\Delta u + u = f \text{ in } \Omega = (0, 1)^3$$
$$u(x, y, z) = \sin(\pi x) \sin(\pi y) \sin(\pi z) \qquad \text{ in } \Omega$$
$$u = 0 \qquad \text{ on } \partial \Omega$$

Anisotropic h and p refinement for conforming FEM in 3D - p.40/43

Perspectives

- Applications: Maxwell with weighted regularization (Costabel, Dauge)
- Anisotropic error estimation, anistropic regularity estimation
- Improved mesh handling

 Iterative multilevel domain decompositioning solvers: Toselli (Zürich), Schöberl (Linz)

Perspectives

- Applications: Maxwell with weighted regularization (Costabel, Dauge)
- Anisotropic error estimation, anistropic regularity estimation
- Improved mesh handling

 Iterative multilevel domain decompositioning solvers: Toselli (Zürich), Schöberl (Linz)

Hanging Nodes in Isotropic Meshes

- Traverse all cells on locally finest level: mark every vertex / edge / face being used.
- On next (hierarchical) traversal of the mesh:
 - Add dofs which are marked to be on the current level to the list L of local dofs. Mark dof as registered.
 - If cell is on finest level $L \rightarrow T$ matrix
 - Otherwise $S \cdot L$ is added to L of child (next deeper level)

Mortar

- Give up C^0 , introduce Lagrange multiplier (the mortar)
- $-\Delta u = f$ in Ω with hom. Dirichlet bc. using mortar method leads to $\begin{pmatrix} A & A \\ A^\top & 0 \end{pmatrix} \cdot \begin{pmatrix} \underline{u} \\ \underline{\lambda} \end{pmatrix} = \begin{pmatrix} \underline{f} \\ \underline{0} \end{pmatrix}$, ie.

SPD PDE \Rightarrow SPD matrix

- \Rightarrow conjugate gradients not applicable
- \Rightarrow no standard domain decompositioning solvers

 \Rightarrow inf-sup condition needed

- The inf-sup cond. is OK in 2D, 3D for shape regular meshes.
 Not OK for hp FEM, existing proofs only for uniform meshes.
- Analogly for Discontinous Galerkin in 3D: Stability of hp DG on geometric meshes is not clear. First results by Schwab, Toselli, Schötzau for Stokes (not Mortar).