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Goal

• Hierarchy of hanging nodes

• Anisotropic refinements
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Overview

• Introduction

• Anisotropic h refinements

• S and T matrices

• Assembly of Supports

• Anisotropic p refinements

• hp Meshes

• Perspectives
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Previous hp Software

• Szabó 1985: PROBE (p only)

• Demkowicz, Oden, Rachowicz et al. 1989: PHLEX, hp90

• Anderson: STRIPE (p only on a-priori generated meshes)

• Flaherty, Shephard: Tetrahedra only (3D anisotropy?)

• Karniadakis, Sherwin: NEKTAR (regular meshes only, tetrahedra,
hexahedra, prisms)

• Devloo

• Szabó since 1995: STRESSCHECK

• Heuveline et al.: HiFlow
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FE Method

• Let Ω ⊂ R
d, d = 1, 2, 3 (dimension independent design)

• Find u ∈ V such that

a(u, v) = l(v) ∀v ∈ V,

V a FE space, a(. , .) a bilinear form and l(.) a linear form.

• Standard FE: V ⊂ H1(Ω)

V = S1,p(Ω, T )

=
{

u ∈ H1(Ω) : u|K ◦ FK ∈ Qp ∀K ∈ T
}

⇒ u ∈ V is continuous, ie. C0(Ω̄).

• Vector valued problems are possible
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FE Space: Generalities

• Basis {Φi}N

i=1 constructed from element shape functions φK
j on

elements K ∈ T .

• Reference element shape functions: Nj , element map: FK : K̂ → K

⇒ φK
j ◦ FK = Nj .PSfrag replacements
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FE Meshes

Local refinements as mean to improve
approximation of exact solution by FE
solution

But standard FE forbids locally re-
fined grids: discontinuities are possi-
ble.
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Mortar vs. Enforcing Continuity

• Topolocigal closure

Drawbacks: more elements, more element types, what about

refining a ?

• Our philosophy: hexahedral meshes only (tensorized interpolants,
spectral quadrature techniques)

• Our solution: Treating the constraints induced by the hanging nodes
Why conforming? a(u, v) = a(v, u) and a(u, u) ≥ α‖u‖2

V ⇒ A SPD,
pccg . . .
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Our Software: Concepts

• Started by Christian Lage during his Ph.D. studies (1995).

• Used and improved by Frauenfelder, Matache, Schmidlin, Schmidt
and several students.

• Concept Oriented Design using mathematical principles.

• Currently two parts: hp-FEM, BEM (wavelet and multipole methods).

• C++
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T Matrix

Definition 1 (T Matrix). Element shape functions
{

φK
j

}mK

j=1
on element K,

global basis functions {Φi}N

i=1.
The T matrix T K ∈ R

mK×N of element K is implicitly defined by

Φi|K =

mK
∑

j=1

[T K ]ji φK
j

as vectors:

Φ|K = T
>

KφK .
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Assembly using T Matrices

Assembling:

l = l(Φ) = l
(

∑

K̃

T
>

K̃
φK̃

)

=
∑

K̃

T
>

K̃
l(φK̃) =

∑

K̃

T
>

K̃
lK̃

A = a(Φ, Φ) =
∑

K,K̃

T
>

K̃
a(φK , φK̃)T K =

∑

K,K̃

T
>

K̃
AK̃KT K

Note: AK̃K = 0 in standard FEM for K̃ 6= K.
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Example: Regular Mesh

Two elements with three local shape functions each and four global basis
functions.
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Example: Irregular Mesh

Three elements with three local shape functions each and four global
basis functions. The hanging node is marked with ◦.
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⇒ continuous basis functions.

Anisotropic h and p refinement for conforming FEM in 3D – p.14/43



Example: Irregular Mesh

Three elements with three local shape functions each and four global
basis functions. The hanging node is marked with ◦.

I

K

L

1 2

3

3 4

21

3

1

2

1

3

2

T L =









1 2 3 4

1 0 1 0 0

2 0 0 0 1

3 0 1/2 1/2 0









T K =









1 2 3 4

1 0 1/2 1/2 0

2 0 0 0 1

3 0 0 1 0









⇒ continuous basis functions.

Anisotropic h and p refinement for conforming FEM in 3D – p.14/43



Generation of T Matrices

• Regular Mesh: Counting and assigning indices with respect to
topological entities such as vertices, edges and faces.
Explained in detail later.

• Irregular Mesh: Irregularity due to a refinement of an initially
regular mesh.

OK: , not OK:
Explanation follows.
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T Matrices for Irregular Meshes

Irregularity due to a refinement of an initially regular mesh.
Mesh M refine M′

Basis fcts. B = Brepl ∪ Bkeep −→ B′ = Bins ∪ Bkeep

Brepl: basis fcts. which can be solely
described by elements of M′\M

Bins: basis fcts. generated by regular parts
of M′\M

Every element of B has a column in the T matrix. Generation is

• easy for Bins (like regular mesh),

• simple for Bkeep: modify column from M by S matrix.
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S Matrix

Definition 2 (S Matrix). Let K ′ ⊂ K be the result of a refinement of
element K. The S matrix SK′K ∈ R

mK′×mK is defined by

φK
j

∣

∣

K′
=

mK′

∑

l=1

[SK′K ]lj φK′

l

as vectors:

φK
∣

∣

∣

K′

= S
>

K′KφK′

φK
j

∣

∣

K′
is represented as a linear combination of the shape functions

{

φK′

l

}mK′

l=1
of K ′.
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Application of S Matrix

Proposition 1. Let K ′ ⊂ K be the result of a refinement of an element K.
Then, the T matrix of K ′ can be computed as

T K′ = SK′KT
keep
K + T

ins
K′

where T
keep
K denotes the T matrix of element K (with columns not

related to functions in Bkeep set to zero) and T
ins
K′ the T matrix for

functions in Bins with respect to K ′.

Proposition 2. Let K̂ ′ ⊂ K̂ be the result of a refinement of the reference
element K̂ with H : K̂ → K̂ ′ the subdivision map. The element maps are

FK : K̂ → K and FK′ : K̂ → K ′

and FK′ ◦ H−1 = FK holds. Then, S
K̂′K̂

= SK′K .
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Meshes
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Meshes
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S Matrix in Dimension d = 1

Subdividing Ĵ = (0, 1) in Ĵ ′ = (0, 1/2) and Ĵ? = (1/2, 1) with the reference
element shape functions

Nj(ξ) =







1 − ξ j = 1

ξ j = 2

ξ(1 − ξ)P 1,1
j−3(2ξ − 1) j = 3, . . . , J

yields (solving a linear system) for J = 4:

S
Ĵ′Ĵ

=









1 0 0 0
1/2 1/2 1/4 0

0 0 1/4 −3/4

0 0 0 1/8









and S
Ĵ?Ĵ

=









1/2 1/2 1/4 0

0 1 0 0

0 0 1/4 3/4

0 0 0 1/8









.

Hierarchic shape functions ⇒ hierarchic S matrices.
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S Matrices: Tensor Product in 2D

• d > 1 with hexahedral meshes ⇒ S matrices are built from tensor
products of 1D S matrices.

• In 2D: Ni,j = Ni ⊗ Nj , the four bilinear shape functions are:

N1,2(ξ) = N1(ξ1) · N2(ξ2) N2,2(ξ) = N2(ξ1) · N2(ξ2)

N1,1(ξ) = N1(ξ1) · N1(ξ2) N2,1(ξ) = N2(ξ1) · N1(ξ2)

• Consider the subdivisions:

PSfrag replacements

K̂ ′

K̂ ′

K̂?

K̂?

K̂a K̂b

K̂cK̂d
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S Matrices: Tensor Product in 2D II

Subdivision map of left variant: H : K̂ → K̂ ′, ξ 7→
(

ξ1/2

ξ2

)

. S matrix S
K̂′K̂

is defined by:

PSfrag replacements
K̂ ′ K̂?

Ni,j |K̂′ =
∑

k,l

[

S
K̂′K̂

]

(k,l),(i,j)
Nk,l ◦ H−1.

Tensor product shape functions:

(Ni ⊗ Nj)|K̂′ =
∑

k,l

[

S
K̂′K̂

]

(k,l),(i,j)
(Nk ⊗ Nl) ◦ H−1. (1)
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Nk,l ◦ H−1.

Tensor product shape functions:

(Ni ⊗ Nj)|K̂′ =
∑

k,l

[

S
K̂′K̂

]

(k,l),(i,j)
(Nk ⊗ Nl) ◦ H−1. (1)
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S Matrices: Tensor Product in 2D III

S matrices for 1D reference element shape fcts. used in (1):

Ni|Ĵ′=
∑

m

[

S
Ĵ′Ĵ

]

mi
Nm ◦ G−1 for the ξ1 part and

Nj=
∑

n

[E]nj Nn for the ξ2 part,

where G : ξ 7→ ξ/2.

Plugging into the left hand side of (1) yields:

(Ni ⊗ Nj)|K̂′ = Ni|Ĵ′ ⊗ Nj =
∑

m,n

([

S
Ĵ′Ĵ

]

mi
Nm ◦ G−1

)

⊗
(

[E]nj Nn

)

=
∑

m,n

[

S
Ĵ′Ĵ

]

mi
· [E]njNm ◦ G−1 ⊗ Nn.
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S Matrices: Tensor Product in 2D IV

Comparing with the right hand side of (1):

∑

m,n

[

S
Ĵ′Ĵ

]

mi
· [E]nj Nm ◦ G−1 ⊗ Nn

=
∑

k,l

[

SK̂′K̂

]

(k,l),(i,j)
Nk ◦ G−1 ⊗ Nl.

PSfrag replacements K̂ ′ K̂?

Therefore for the vertical subdivision:

S
K̂′K̂

= S
Ĵ′Ĵ

⊗ E for the left quad K̂ ′,

S
K̂?K̂

= S
Ĵ?Ĵ

⊗ E for the right quad K̂?.
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S Matrices: Tensor Product in 2D V

PSfrag replacements

K̂ ′

K̂?

PSfrag replacements

K̂ ′

K̂?

K̂a K̂b

K̂cK̂d

Horizontal subdivision:

S
K̂′K̂

= E ⊗ S
Ĵ′Ĵ

for the bottom quad K̂ ′,

S
K̂?K̂

= E ⊗ S
Ĵ?Ĵ

for the top quad K̂?.

Subdivision into four quads:

• subdivide K̂ horizontally into two children

• subdivide upper and lower
child vertically into K̂d and K̂c and K̂a and K̂b resp.

S
K̂dK̂

=
(

S
Ĵ′Ĵ

⊗ E
)

·
(

E ⊗ S
Ĵ?Ĵ

)

S
K̂cK̂

=
(

S
Ĵ?Ĵ

⊗ E
)

·
(

E ⊗ S
Ĵ?Ĵ

)

SK̂aK̂=
(

SĴ′Ĵ ⊗ E
)

·
(

E ⊗ SĴ′Ĵ

)

SK̂bK̂=
(

SĴ?Ĵ ⊗ E
)

·
(

E ⊗ SĴ′Ĵ

)
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Ĵ′Ĵ

for the bottom quad K̂ ′,

S
K̂?K̂

= E ⊗ S
Ĵ?Ĵ
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S Matrices: Tensor-Product in 3D

Same idea as in 2D, just of this form:

S
K̂′K̂

=
∏

(A ⊗ B ⊗ C)

in each of the factors, one of A, B or C is an 1D S matrix.
Depending on the factors, 7 subdivisions are possible:

Concepts: allow arbitrary number and combination of these 7 subdivisions

in 3D.
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Overview

• Introduction

• Anisotropic h refinements
• S and T matrices

• Assembly of Supports
• Anisotropic p refinements

• hp Meshes

• Perspectives
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Anisotropic and Conforming

Main point: find the cells (either coarse or fine) which belong to the
support of a certain basis function.
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Anisotropic and Conforming II

PSfrag replacements • Can easily be treated since all edges are
broken

• “Level of refinement” on each cell is enough to
handle hanging nodes

PSfrag replacementsPSfrag replacements

• More complicated as not all
edges are broken

• “Level of refinement” (also a
vector valued level) is not
enough

•

PSfrag replacements

should be seen as
conforming
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Condition for Continuity

• In order to have continuous global basis functions Φi, the unisolvent
sets on the interfaces in the support of Φi have to match.

• Unisolvent set for Q1 in a quad / hex are the corners:

⇒ matching edges which coincide in a vertex is sufficient

• Unisolvent set for Qp are

• additional p − 1 points on every edge

• additional (p − 1)2 points on every face

• additional (p − 1)3 points in the interior
⇒ matching faces which coincide in an edge is sufficient for
continuous edge modes
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Algorithm for Continuity (Vertex)

• In every cell of the finest mesh, register all edges and cells in their
vertices.

• For every vertex, while something changed in the last loop:
• Check if some of the edges of the vertex have a relationship

(ancestor / descendant).
• If two edges are related, exchange the smaller cell in the list of

the vertex by the cell matching the larger cell.
• Delete the list of edges and rebuild it from the list of cells.
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Overview

• Introduction

• Anisotropic h refinements
• S and T matrices
• Assembly of Supports

• Anisotropic p refinements
• hp Meshes

• Perspectives
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Anisotropic p

Why anisotropic p? Necessary for thin plates, shells, films.

• Every edge has p, every face has p = (p0, p1), every cell has
p = (p0, p1, p2). They can differ in a cell!

• Every face exists only once. It has a distinguished edge and an
orientation. The orientation of the face in the cell and the position of
the marked edge are stored: ρ = 1, τ = 3.
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p Enrichment on Edges

• p? ≥ 2 for the basis functions Φi on the marked edge must be
possible to achieve exponential convergence.

• The basis functions on the red edges contribute to Φi

⇒ p ≥ p? must be possible and enforced.

PSfrag replacements
3

33

2 2

21

Analogly for edge and faces in 3D.
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Some Basis Functions
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Exponential Convergence in Pseudo-3D

Edge type singularity.
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dof^1/3

−∆u + u = f in Ω = (−1, 1) × (0, 1) × (0, 1/2)

u(r, φ, z) =
√

r sin(φ/2)z(1 − z) in Ω

u = 0 on {z = 0} ⊂ ∂Ω

and on {y = 0} ∩ {x ≥ 0} ⊂ ∂Ω
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Exponential Convergence in 3D
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solve

integration

Vertex type singularity.

−∆u + u = f in Ω = (0, 1)3

u(r, θ, φ) =
√

r sin θ sin φ in Ω

u = 0 on {y = 0} ⊂ ∂Ω
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Exp. Conv. in 3D, Edge Mesh
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Vertex type singularity.

−∆u + u = f in Ω = (0, 1)3

u(r, θ, φ) =
√

r sin θ sinφ in Ω

u = 0 on {y = 0} ⊂ ∂Ω
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Test: Randomized Refinement
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Refinements which are not al-
lowed were dropped.

−∆u + u = f in Ω = (0, 1)3

u(x, y, z) = sin(πx) sin(πy) sin(πz) in Ω

u = 0 on ∂Ω
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Perspectives

• Applications: Maxwell with weighted regularization (Costabel,
Dauge)

• Anisotropic error estimation,
anistropic regularity estimation

• Improved mesh handling

• Iterative multilevel domain decompositioning solvers:
Toselli (Zürich), Schöberl (Linz)
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Hanging Nodes in Isotropic Meshes

• Traverse all cells on locally finest level: mark every vertex / edge /
face being used.

• On next (hierarchical) traversal of the mesh:
• Add dofs which are marked to be on the current level to the list

L of local dofs. Mark dof as registered.
• If cell is on finest level L → T matrix
• Otherwise S · L is added to L of child (next deeper level)
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Mortar

• Give up C0, introduce Lagrange multiplier (the mortar)

• −∆u = f in Ω with hom. Dirichlet bc. using mortar method leads to
(

A Λ

Λ
> 0

)

·
(

u

λ

)

=

(

f

0

)

, ie.

SPD PDE 6⇒ SPD matrix

⇒ conjugate gradients not applicable

⇒ no standard domain decompositioning solvers

⇒ inf-sup condition needed

• The inf-sup cond. is OK in 2D, 3D for shape regular meshes.
Not OK for hp FEM, existing proofs only for uniform meshes.

• Analogly for Discontinous Galerkin in 3D: Stability of hp DG on
geometric meshes is not clear. First results by Schwab, Toselli,
Schötzau for Stokes (not Mortar).
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